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Abstract. The temporal variability of the sea surface par-
tial pressure of CO2 (pCO2) and the underlying processes
driving this variability are poorly understood in the coastal
ocean. In this study, we tailor an existing method that quanti-
fies the effects of thermal changes, biological activity, ocean
circulation and freshwater fluxes to examine seasonal pCO2
changes in highly variable coastal environments. We first
use the Modular Ocean Model version 6 (MOM6) and bio-
geochemical module Carbon Ocean Biogeochemistry And
Lower Trophics version 2 (COBALTv2) at a half-degree res-
olution to simulate coastal CO2 dynamics and evaluate them
against pCO2 from the Surface Ocean CO2 Atlas database
(SOCAT) and from the continuous coastal pCO2 product
generated from SOCAT by a two-step neuronal network
interpolation method (coastal Self-Organizing Map Feed-
Forward neural Network SOM-FFN, Laruelle et al., 2017).
The MOM6-COBALT model reproduces the observed spa-
tiotemporal variability not only in pCO2 but also in sea sur-
face temperature, salinity and nutrients in most coastal envi-
ronments, except in a few specific regions such as marginal
seas. Based on this evaluation, we identify coastal regions
of “high” and “medium” agreement between model and
coastal SOM-FFN where the drivers of coastal pCO2 sea-
sonal changes can be examined with reasonable confidence.
Second, we apply our decomposition method in three con-
trasted coastal regions: an eastern (US East Coast) and a
western (the Californian Current) boundary current and a po-
lar coastal region (the Norwegian Basin). Results show that
differences in pCO2 seasonality in the three regions are con-
trolled by the balance between ocean circulation and bio-

logical and thermal changes. Circulation controls the pCO2
seasonality in the Californian Current; biological activity
controls pCO2 in the Norwegian Basin; and the interplay
between biological processes and thermal and circulation
changes is key on the US East Coast. The refined approach
presented here allows the attribution of pCO2 changes with
small residual biases in the coastal ocean, allowing for fu-
ture work on the mechanisms controlling coastal air–sea CO2
exchanges and how they are likely to be affected by future
changes in sea surface temperature, hydrodynamics and bio-
logical dynamics.

1 Introduction

The ocean plays an important role in offsetting human-
induced carbon dioxide (CO2) emissions associated with ce-
ment production and fossil fuel combustion (Friedlingstein
et al., 2019). Globally, the ocean is a net sink that absorbs
roughly one-quarter of the anthropogenic CO2 emitted into
the atmosphere (−2.5± 0.6 petagram of carbon per year
(Pg C yr−1) for the 2009–2018 decade, Friedlingstein et al.,
2019). The spatiotemporal variability of this oceanic CO2 up-
take is relatively well constrained in the open ocean thanks
to several methods including sea surface CO2 data-derived
interpolations (e.g., Landschützer et al., 2014; Rödenbeck
et al., 2014, 2015; Takahashi et al., 2002), models and at-
mospheric inversions (e.g., Gruber et al., 2009, 2019; Keel-
ing and Manning, 2014; Manning and Keeling, 2006), but
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it is less constrained and understood in the coastal ocean.
Nonetheless, in recent decades, significant progress has been
made with regard to the quantification and analysis of the
spatial distribution of the coastal air–sea CO2 exchange
(FCO2) globally and regionally (e.g., Borges et al., 2005;
Cai, 2011; Chen et al., 2013; Laruelle et al., 2010, 2014;
Roobaert et al., 2019). The FCO2 seasonal cycle was also
recently analyzed in coastal regions worldwide by Roobaert
et al. (2019). This study identified that at the annual timescale
the global coastal ocean acts as an atmospheric CO2 sink
(−0.2± 0.02 Pg C yr−1), with a more intense CO2 uptake
occurring in boreal summer because of the disproportionate
contribution of high-latitude coastal regions in the Northern
Hemisphere, which cover 25 % of the total coastal area and
are characterized by an intense CO2 sink in summer. A more
in-depth analysis also revealed that the majority of the coastal
seasonal FCO2 variations stems from the air–sea gradient in
partial pressure of CO2 (pCO2), although changes in wind
speed and sea ice cover can be significant regionally.

Several processes influence the seasonal variations of sur-
face ocean pCO2 and thus the seasonality in FCO2. These
processes include changes in sea surface temperature (SST)
tied to air–sea heat fluxes and ocean circulation, changes in
sea surface salinity (SSS) associated with evaporation, fresh-
water fluxes (from land, ice melt, precipitation and evapora-
tion) and ocean circulation, as well as variations in sea sur-
face alkalinity (ALK) and dissolved inorganic carbon (DIC)
tied to biological activity, freshwater fluxes and ocean cir-
culation (Sarmiento and Gruber, 2006). In the open ocean,
the respective influence of these processes on the pCO2 vari-
ability has been interpreted using changes in SST, SSS, ALK
and DIC observed in situ (e.g., Landschützer et al., 2018;
Takahashi et al., 1993) or based on global and regional ocean
biogeochemical models relying on a mechanistic, quantita-
tive description of the physical, chemical and biological pro-
cesses controlling the ocean carbon cycle (e.g., Doney et al.,
2009). These investigations reveal that changes in SST (i.e.,
the thermal effect) are the main driver of the seasonal pCO2
in tropical oceanic regions, while non-thermal components
(change associated with DIC, ALK and SSS) dominate at
midlatitudes and high latitudes (poleward of 40◦ N and 40◦ S,
e.g., Landschützer et al., 2018; Takahashi et al., 2002).

In the coastal ocean, the processes controlling the pCO2
seasonal dynamics were mostly investigated regionally (e.g.,
Arruda et al., 2015; Frankignoulle and Borges, 2001; Laru-
elle et al., 2014; Nakaoka et al., 2006; Shadwick et al., 2010,
2011; Signorini et al., 2013; Turi et al., 2014; Yasunaka et al.,
2016), and only a few observation-based studies attempted
to analyze the coastal pCO2 seasonal variability into pro-
cesses at the global scale (Cao et al., 2020; Chen and Hu,
2019; Laruelle et al., 2017). Regional studies using either
observations or model results have covered, e.g., the shelves
of the entire Atlantic Basin (Laruelle et al., 2014), the US
West Coast (California Current, Turi et al., 2014), US East
Coast (e.g., Shadwick et al., 2010, 2011; Signorini et al.,

2013), the southern and southeastern Brazilian shelves, the
Uruguayan and Patagonia shelves, and shelves in the SW
Atlantic Ocean (Arruda et al., 2015). In the California Cur-
rent, the strong upwelling of carbon-rich waters was identi-
fied as the main control of the pCO2 seasonality (Turi et al.,
2014). On the Patagonia shelf, the thermal effect and bio-
logical pumps were found to be the main drivers of the sea-
sonal pCO2 variability, with only a small contribution from
the ocean circulation (Arruda et al., 2015), while along the
US East Coast seasonal thermal changes play the major role
(Shadwick et al., 2010, 2011; Laruelle et al., 2015; Signorini
et al., 2013). These studies are, however, confined to spe-
cific regions and a global picture of the mechanisms driving
the coastal pCO2 dynamics is still missing. In addition, the
attribution analysis of specific physical and biological pro-
cesses is incomplete. Indeed, the attribution relies on a linear
decomposition linking variations in sea surface ocean pCO2
to seasonal changes in DIC, ALK, SST and SSS (e.g., Sig-
norini et al., 2013, Doney et al., 2009; Lovenduski et al.,
2007; Takahashi et al., 1993; Turi et al., 2014) or on a se-
ries of sequential simulations isolating biological and physi-
cal terms and thus ignores how covariations between the dif-
ferent terms dampen or reinforce each other (e.g., Arruda et
al., 2015; Turi et al., 2014).

In this study, we develop a new framework to elucidate
the seasonal pCO2 dynamics of the global coastal ocean.
This framework relies on the global Modular Ocean Model
version 6 (MOM6, Adcroft et al., 2019) from the NOAA
Geophysical Fluid Dynamics Laboratory coupled to the bio-
geochemical module Carbon Ocean Biogeochemistry And
Lower Trophics version 2 (COBALTv2, Stock et al., 2014,
2020). MOM6-COBALT model outputs provide the relevant
variables and processes that are required to perform an ex-
plicit decomposition of the inorganic carbon dynamics (Liao
et al., 2020) in the entire coastal domain. These outputs are
then analyzed using a novel approach to attribute seasonal
variations in surface ocean pCO2 to changes in biological ac-
tivity, ocean circulation, SST, air–sea CO2 fluxes and fresh-
water fluxes (Liao et al., 2020) and which is here enhanced
for the coastal ocean. The decomposition method constitutes
a significant improvement upon previous studies. First, it ac-
counts for co-variations in biological and physical processes
and how their evolution jointly modulates the pCO2 signal.
Second, it improves on the traditional linear approaches de-
veloped for the open ocean (Sarmiento and Gruber, 2006;
Takahashi et al., 1993) and used since then (e.g. Lovenduski
et al., 2007) because, as shown later in this study, the linear
decomposition introduces significant biases in coastal waters
due to the larger range in DIC, ALK, pH and salinity values
encountered in the variable coastal environment (Egleston et
al., 2010).

In light of these knowledge gaps, the objective of this pa-
per are twofold.
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– First, we evaluate the performance of the MOM6-
COBALT model in its ability to reproduce the observed
spatiotemporal fields of SSS, SST, sea surface nutrients
and pCO2 in the global coastal domain. In particular,
we identify the coastal regions where the model best re-
produces the observed ocean pCO2 variability and can
thus be considered most suitable for a detailed analysis
of the drivers of the pCO2 seasonal changes.

– Second, to illustrate the capabilities of our upgraded de-
composition framework, we examine the drivers of the
pCO2 seasonality in three contrasted coastal regions:
the US East Coast, the US West Coast and the Norwe-
gian Basin.

2 Methodology

2.1 Ocean biogeochemical model description

In this study, we used the ocean model MOM6 and the Sea
Ice Simulator version 2 (fourth generation of ocean ice mod-
els, OM4) detailed in Adcroft et al. (2019). The version of
OM4 adopted here is OM4p5 which has a nominal hori-
zontal resolution of 0.5◦ (i.e., with a finer latitudinal reso-
lution of 0.26◦ in the tropical region). In the vertical, it in-
cludes 75 hybrid coordinates with a z∗ coordinate near the
surface (geopotential coordinate allowing free surface undu-
lations) and a modified potential density coordinate below.
The vertical spacing increases from 2 m in the upper 20 m
(i.e., first 10 layers) to larger isopycnal layers below. Lay-
ers in z∗ broadly deepen towards high latitudes (see Ad-
croft et al., 2019, for details on the grid). This ocean ice
model is coupled to the biogeochemical module COBALT
version 2 (COBALTv2), which includes 33 state variables to
resolve global-scale cycles of carbon, nitrogen, phosphate,
silicate, iron, calcium carbonate, oxygen and lithogenic ma-
terials (Stock et al., 2020). Details about the planktonic food
web dynamics in COBALT, and global assessments of large-
scale carbon fluxes through the food web, such as net pri-
mary production, can be found in Stock et al. (2014, 2020).
The ocean model is forced by the 55 km horizontal resolu-
tion Japanese atmospheric reanalysis (JRA55-do) version 1.3
at a 3 h frequency between 1959 and 2018 (Tsujino et al.,
2018), and the atmospheric CO2 concentration data (xCO2)
from the Earth System Research Laboratory (Conway et al.,
1994; Masarie, 2012). The xCO2 is converted to pCO2 using
atmospheric and water vapor pressures by the model. SST,
SSS, sea surface nutrients (nitrate, phosphate, silicate) and
oxygen were initialized from the World Ocean Atlas ver-
sion 2013 (Garcia et al., 2013a, b; Locarnini et al., 2013;
Zweng et al., 2013). Initial DIC and ALK conditions are
taken from GLODAPv2 (Olsen et al., 2016). The initial DIC
is corrected for the accumulation of anthropogenic carbon
to match the level expected in the first year of the simula-
tion (1959) using the data-based estimate of ocean anthro-

pogenic carbon content of Khatiwala et al. (2013). At the
end of an 81-year spin-up repeating the year 1959, the model
reached a near-equilibrium between atmospheric pCO2 and
surface ocean pCO2, with a drift in global air–sea CO2 flux
< 0.004 Pg C yr−1 over the last 10 years of the spin-up. Fur-
ther details on the configuration, spin-up and simulation can
be found in Liao et al. (2020).

2.2 Observational products and model evaluation

We first evaluate the ability of MOM6-COBALT to repro-
duce the observed spatial distribution of environmental vari-
ables in the coastal domain, namely the SST, SSS and sea
surface nutrients (nitrate, phosphate and silicate). The ob-
servational SST and SSS fields are from the daily NOAA
OI SST V2 (Reynolds et al., 2007) and the daily Hadley
center EN4 SSS (Good et al., 2013), respectively. The ob-
served nutrient fields in the sea surface are extracted from
the World Ocean Atlas version 2018 (Garcia et al., 2019).
We also compare the simulated coastal pCO2 directly to un-
interpolated observations extracted from the Surface Ocean
CO2 Atlas database (SOCAT) using monthly observations
from SOCAT version 6 gridded at the spatial resolution of
0.25◦ (SOCATv6, Bakker et al., 2016). For the evaluation
period used in this study (1998–2015), this database con-
tains 9.8 million pCO2 observations within the coastal do-
main. All data from SOCATv6 are converted from fugacity
of CO2 in water to pCO2 using the formulation of Taka-
hashi et al. (2012). We finally compare the pCO2 simu-
lated by the MOM6-COBALT model to the 0.25◦ continu-
ous monthly pCO2 fields generated from the SOCAT obser-
vations by the two-step neuronal network (Self-Organizing
Map Feed-Forward neural Network, SOM-FFN) in coastal
regions (Laruelle et al., 2017). The SOM-FFN data prod-
uct of Laruelle et al. (2017) is thus not “raw” and implies
a significant amount of statistical modeling. It is also derived
from an earlier version of SOCAT (SOCATv4, Laruelle et
al., 2017) than the one used in this study. In what follows,
the pCO2 products generated by the model, the statistical in-
terpolation of observations, and the un-interpolated observa-
tions will be referred to as MOM6-COBALT, coastal SOM-
FFN and SOCATv6, respectively. All observational and sim-
ulated fields are converted from their original spatiotempo-
ral resolution to monthly 0.25◦ gridded climatologies for the
1998–2015 period to match the one used by the coastal SOM-
FFN. Cells that are covered by more than 95 % sea ice are re-
moved from the comparison since we assume no transfer of
our master variable (pCO2) through sea ice. In our analysis,
we apply the broad definition of the coastal zone by Laruelle
et al. (2017), using a global mask that excludes estuaries and
inland water bodies, while its outer limit is set 300 km away
from the shoreline. This definition leads to a total surface
area of 77 million km2, which is split into 45 coastal regions
using the MARgins and CATchment Segmentation (MAR-
CATS, Laruelle et al., 2013). These 45 regions are grouped
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into seven broad classes with similar hydrological and cli-
matic settings (Liu et al., 2010): (1) an Eastern Boundary
Current and (2) Western Boundary Current (EBC and WBC,
respectively), (3) tropical margins, (4) subpolar and (5) polar
margins, (6) marginal seas, and (7) Indian margins.

The model evaluation of all gridded environmental vari-
ables including pCO2 is performed for the annual mean
and the seasonal cycle both globally and within each of
the 45 MARCATS regions. For the seasonal analysis a cli-
matological monthly anomaly is calculated, for each vari-
able, as the difference between the variable x for a given
month and its climatological annual mean. The evaluation
of the seasonal amplitude is then performed using the bias
between observed and simulated root mean square (rms) of
their monthly anomalies. A positive bias represents a larger
simulated seasonal amplitude than derived from the observa-
tions. The temporal shift between the observed and simulated
seasonal cycles is also assessed from the Pearson correla-
tion coefficient (no units) of the regression between monthly
times series simulated by MOM6-COBALT and those ex-
tracted from the observations. These comparisons not only
serve to assess the overall model performance in reproducing
observations but also help to identify potential discrepancies
between observed and simulated environmental fields (e.g.,
SST, SSS) that are used by the two-step neuronal network
coastal SOM-FFN to generate the continuous pCO2 clima-
tology. We use two metrics to evaluate SOCATv6 spatial and
temporal coverage. First, we evaluate the spatial coverage at
the MARCATS region scale by computing the percent sur-
face area sampled by SOCATv6 data for each MARCATS re-
gion. A 50 % spatial coverage means that SOCATv6 data are
available in 50 % of the 0.25◦× 0.25◦ cells included in this
specific MARCATS region (this metric is used in Fig. 1a).
Second, we evaluate the ability of SOCATv6 to capture the
seasonality at the grid cell scale by computing the number of
months where there is at least one SOCATv6 pCO2 measure-
ment for each 0.25◦× 0.25◦ grid cell. An 8-month temporal
coverage means that 8 out of the 12 months are sampled at
least once in this grid cell (this metric is used in Fig. 6a).

Finally, from this global and regional spatiotemporal eval-
uation, we label the agreement between the model and
coastal SOM-FFN (“high”, “medium” and “low”) for each
MARCATS region and identify regions for which our re-
sults are the most robust for further in-depth analysis of
the processes driving the coastal pCO2 dynamics. The la-
bels of agreement are based on three criteria. First, we assess
whether the simulated annual mean pCO2 is within 20 µatm
of the one extracted from the coastal SOM-FFN. This thresh-
old of 20 µatm roughly corresponds to the globally averaged
pCO2 gradient between the atmosphere and the coastal sea
surface (Laruelle et al., 2018). The second and third criteria
evaluate the magnitude and phasing of the simulated pCO2
seasonal cycle against the coastal SOM-FFN using an abso-
lute bias in the seasonal magnitude <20 µatm and a Pearson
coefficient > 0.5 as a threshold. The agreement is considered

“high” when the three criteria are fulfilled, “medium” when
criteria 2 and 3 are satisfied, and “low” when only one (or
no) criterion is met for the seasonality.

2.3 Processes controlling seasonal pCO2 variability: a
method tailored for coastal regions

The pCO2 in surface sea water can be computed from DIC
and ALK following Eq. (1) (Sarmiento and Gruber, 2006;
Wolf-Gladrow et al., 2007):

pCO2 =
K ′2

K ′0K
′

1

(2DIC−ALK)2

ALK−DIC
, (1)

where K ′0 is the aqueous-phase solubility constant of CO2
in water and K ′1 and K ′2 represent the apparent equilibrium
dissociation constants of the carbonate system. Several phys-
ical and biogeochemical processes can thus affect pCO2 via
changes in DIC, ALK and/or via the K ′2

K ′0K
′

1
term, which de-

pends on SST and SSS. To quantify the processes control-
ling the pCO2 variability at the seasonal timescale of inter-
est to this study, we adopt the method of Liao et al. (2020).
The method starts from the traditional approach that links
variations in sea surface ocean pCO2 to changes in DIC,
ALK, SST and SSS using the following linear decomposi-
tion (Doney et al., 2009; Lovenduski et al., 2007; Takahashi
et al., 1993; Turi et al., 2014):

1pCO2 ≈
∂pCO2

∂DIC
1DIC+

∂pCO2

∂ALK
1ALK

+
∂pCO2

∂SST
1SST+

∂pCO2

∂SSS
1SSS, (2)

where 1x terms represent the seasonal anomaly of x (i.e.,
the departure from the annual mean) and ∂pCO2

∂DIC , ∂pCO2
∂ALK ,

∂pCO2
∂SST and ∂pCO2

∂SSS are coefficients that describe the sensitivity
of pCO2 to changes in DIC, ALK, SST and SSS, respec-
tively. The coefficients for DIC, SST and SSS are always
positive as pCO2 increases with increases in DIC, SST or
SSS, while the coefficient for ALK is always negative as
pCO2 systematically decreases with increasing ALK. These
coefficients are generally estimated using the approach of
Sarmiento and Gruber (2006) (see Eqs. S1–S4 in the Supple-
ment), which has been widely used in the open ocean (Liao
et al., 2020; Sarmiento and Gruber, 2006; Takahashi et al.,
1993). In this study, we refine the estimation of the coeffi-
cients so they can be used for the wide range of DIC / ALK
ratios that can be encountered in the coastal waters. This in-
cludes conditions when the DIC / ALK ratio is close to 1,
such as in regions with significant freshwater discharge like
those found near estuarine mouths or on polar shelves sub-
ject to sea ice melting when pH is around 7.5 (Egleston et al.,
2010). In these cases, the traditional approximation method
using mean DIC, ALK, SSS and SST fields breaks down
(see Eqs. S1–S2 and Fig. S1 in the Supplement). To cir-
cumvent this important limitation, we computed the coeffi-
cients of the pCO2 dependency using a regression approach

Ocean Sci., 18, 67–88, 2022 https://doi.org/10.5194/os-18-67-2022



A. Roobaert et al.: A framework to evaluate and elucidate the driving mechanisms of... 71

Figure 1. (a) SOCATv6 spatial coverage (color) and agreement between model and coastal SOM-FFN product (symbols) in coastal MAR-
CATS (Margins and CATchment Segmentation) regions. The blue intensity indicates the fraction of the MARCATS region’s surface area
covered by SOCATv6 observations (from light to dark blue). Dots indicate where the model fulfills three evaluation criteria (“high” agreement
regions) of the spatiotemporal pCO2 distribution (i.e., annual mean mismatch <20 µatm between MOM6-COBALT and coastal SOM-FFN,
Pearson correlation coefficient > 0.5, and seasonal amplitude mismatch <20 µatm). Dashes indicate where the model only fulfills two cri-
teria (seasonal amplitude and phase, “medium” agreement). Other regions (“low” agreement with no symbol) do not fulfill the two criteria
associated with seasonality. Details of the model to coastal SOM-FFN agreement are given in Table 1. (b) Discretization of the coastal seas
into 45 MARCATS regions (Laruelle et al., 2013) grouped into the following seven classes: Eastern Boundary Current (EBC, MARCATS 2,
4, 19, 22, 24 and 33) and Western Boundary Current (WBC, MARCATS 6, 10, 25, 35 and 39), polar (MARCATS 13, 14, 15, 16, 43, 44, and
45) and subpolar margins (MARCATS 1, 5, 11, 17, 34, 36 and 42), tropical margins (MARCATS 3, 7, 8, 23, 26, 37 and 38), Indian margins
(MARCATS 27, 30, 31 and 32), and marginal seas (MARCATS 9, 12, 18, 20, 21, 28, 29, 40 and 41).
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Table 1. Model vs. coastal SOM-FFN agreement level. For each MARCATS region, the agreement (“high”, “medium” and “low”) is at-
tributed by the pCO2 spatiotemporal analysis. Regions where the model fulfills criteria on the annual mean and seasonality are labeled
as high-agreement regions (i.e., annual mean mismatch <20 µatm between MOM6-COBALT and coastal SOM-FFN, Pearson correlation
coefficient >0.5, and seasonal amplitude mismatch <20 µatm, dots in Fig. 1a). High∗-agreement regions can present a bias >20 µatm on the
comparison with SOCATv6 (see Table S1 in the Supplement). Medium-agreement regions represent MARCATS regions where the model
only fulfills seasonal criteria (seasonal amplitude and phase, dashed in Fig. 1a). Other regions (low agreement) do not fulfill the two criteria
associated with the seasonality (no symbol in Fig. 1a). Regions with high agreement are considered the most robust for an in-depth analysis
of the processes driving the coastal pCO2 dynamics and are highlighted in bold.

Annual mean pCO2 (µatm) Seasonal pCO2

Amplitude (µatm)

MARCATS MARCATS MARCATS Coastal Model Coastal Model Phasing Model vs.
number (Mx) name category SOM-FFN rms bias SOM-FFN bias (Pearson coastal SOM-FFN

coefficient) agreement

2 Californian Current EBC 360.0 34.5 8.3 16.2 1.0 Medium
4 Peruvian Upwelling Current EBC 377.6 106.4 4.1 6.6 −0.4 Low
19 Iberian upwelling EBC 354.8 9.3 7.5 15.6 0.8 High
22 Moroccan upwelling EBC 379.4 10.2 7.4 8.7 0.9 High
24 SW Africa EBC 349.1 79.3 7.2 4.2 0.9 Medium
33 Leeuwin Current EBC 349.4 4.2 5.6 12.7 0.9 High
27 W Arabian Sea Indian margins 383.5 11.6 8.7 3.6 0.3 Low
30 E Arabian Sea Indian margins 388.4 −8.3 4.8 6.2 0.7 High
31 Bay of Bengal Indian margins 377.3 −24.1 7.4 13.5 −0.2 Low
32 Tropical E Indian Ocean Indian margins 373.3 0.3 2.3 5.4 0.9 High
9 Gulf of Mexico Marginal sea 384.3 −9.1 13.9 12.9 1.0 High
12 Hudson Bay Marginal sea 326.4 5.7 65.3 −46.4 0.4 Low
18 Baltic Sea Marginal sea 336.2 21.4 79.4 −44.4 0.9 Low
20 Mediterranean Sea Marginal sea 388.1 −11.9 25.1 20.6 1.0 Low
21 Black Sea Marginal sea 325.0 25.2 141.9 −116.9 −0.5 Low
28 Red Sea Marginal sea 412.2 −16.5 25.0 −0.4 −0.9 Low
29 Persian Gulf Marginal sea 411.2 −7.6 31.3 30.7 −0.9 Low
40 Sea of Japan Marginal sea 330.3 −9.3 21.1 28.0 0.9 Low
41 Sea of Okhotsk Marginal sea 321.2 29.2 28.6 −6.5 0.7 Medium
13 Canadian Archipelago Polar 325.4 −53.1 43.4 −18.0 0.9 Medium
14 N Greenland Polar 306.0 −24.3 21.7 −9.0 0.8 Medium
15 S Greenland Polar 325.2 1.3 24.5 −8.5 1.0 High
16 Norwegian Basin Polar 328.1 −0.7 19.9 −6.1 0.9 High
43 Siberian shelves Polar 338.2 −19.7 57.4 −15.7 0.9 High*
44 Barents and Kara seas Polar 311.6 −3.3 24.9 −7.4 0.7 High
45 Antarctic shelves Polar 373.7 −17.6 22.6 13.3 1.0 High*
1 NE Pacific Subpolar 342.5 16.8 15.8 −4.5 0.8 High*
5 South America Subpolar 351.1 14.0 12.1 −6.4 0.8 High
11 Sea of Labrador Subpolar 326.3 5.5 17.0 0.8 0.2 Low
17 NE Atlantic Subpolar 354.4 −4.5 14.9 −8.2 0.6 High
34 S Australia Subpolar 352.7 13.5 3.7 12.8 0.9 High
36 New Zealand Subpolar 352.4 6.1 2.6 6.2 −0.5 Low
42 NW Pacific Subpolar 337.7 25.2 36.5 −19.2 1.0 Medium
3 Tropical E Pacific Tropical 382.2 17.2 6.9 3.1 0.3 Low
7 Tropical W Atlantic Tropical 380.3 −19.8 2.8 9.6 1.0 High
8 Caribbean Sea Tropical 387.6 −1.7 6.6 2.2 1.0 High
23 Tropical E Atlantic Tropical 374.6 15.9 2.9 1.5 0.6 High*
26 Tropical W Indian Ocean Tropical 384.8 4.8 7.1 5.6 0.9 High*
37 N Australia Tropical 378.5 −4.0 4.3 5.2 1.0 High
38 SE Asia Tropical 373.5 0.6 2.6 8.9 0.2 Low
6 Brazilian Current WBC 374.8 7.0 6.7 7.5 0.9 High
10 US East Coast WBC 368.1 −9.6 12.0 12.4 0.9 High
25 Agulhas Current WBC 367.1 5.7 7.1 8.1 1.0 High
35 E Australian Current WBC 343.9 2.9 3.3 7.4 1.0 High
39 East China Sea and Kuroshio WBC 359.6 −4.1 10.3 13.2 0.9 High
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based on the CO2SYS program (Lewis and Wallace, 1998).
At each point in space, pCO2 was computed using the 1998–
2015 average of DIC, ALK, SSS and SST with CO2SYS
(method 14 in the CO2SYS MATLAB program, Millero,
2010). The ∂pCO2

∂DIC coefficient was then computed as the slope
of the linear regression between pCO2 and DIC obtained by
allowing DIC to vary around the local mean DIC value while
keeping other tracers (ALK, SST, SSS) constant. The DIC
range used to compute the slope was set to the ± 2 SD of
the 1998–2015 monthly values at that location with an up-
per bound at ± 60 µmol kg−1 (see the Supplement for fur-
ther details). The same approach was repeated to compute
the coefficients for the pCO2 dependence on ALK, SST and
SSS, respectively. Our methodology leads to coefficients that
are constant in time but are space dependent. In Fig. S1, we
compare the coastal pCO2 reconstructed from the traditional
decomposition (using the space-varying coefficients reported
by Sarmiento and Gruber, 2006) with those computed here
using the CO2SYS regression. For the global coastal ocean,
we find a large bias (global mean root-mean-square error
(RMSE) of fitting pCO2 anomaly in Eq. (2) = 14.6 µatm),
which is especially pronounced at high latitudes. In contrast,
the decomposition method based on our methodology dras-
tically reduce the biases (global mean RMSE = 2.8 µatm) in
coastal regions and allows a more robust reconstruction of
the pCO2 variability.

We further evaluated how using coefficients that vary in
both time and space could reduce the residual biases be-
tween our pCO2 decomposition (using space-dependent co-
efficients that are constant in time) and the pCO2 simulated
in the model that are found in regions with large freshwater
discharge, such as the mouth of the Amazon River or Arctic
coastal waters. We compare the pCO2 seasonality simulated
by the model to the pCO2 reconstructed by the following
three methods: space-varying coefficients from Sarmiento
and Gruber (2006), regression-based space-varying coeffi-
cients, and regression-based space- and time-varying coeffi-
cients, all of which used a point in the Amazon River plume
(1◦ N, 310.25◦ E, Fig. S1d and e). At this location, the use
of the regression-based coefficients greatly improves the re-
covery of the simulated pCO2 compared to using the tradi-
tional coefficients of Sarmiento and Gruber (2006), reducing
the RMSE from 83 to 24 µatm, corresponding to a bias re-
duction of 71 %. The use of both space- and time-dependent
regression-based coefficients further reduces this bias, bring-
ing down the RMSE from 24 to 18 µatm corresponding to an
additional 7 % reduction of the initial bias (83 µatm). Based
on these results, we chose to use space dependent only coef-
ficients, which is a simpler approach to implement here and
in future studies.

Here we assume that the coefficients are constant in
time, and the temporal change in pCO2 (∂tpCO2 in
µatm per month) can therefore be expressed as a simple func-
tion of the temporal changes in DIC (∂tDIC), ALK (∂tALK),

SST (∂tSST) and SSS (∂tSSS):

∂tpCO2 ≈
∂pCO2

∂DIC
∂tDIC+

∂pCO2

∂ALK
∂tALK

+
∂pCO2

∂SST
∂tSST+

∂pCO2

∂SSS
∂tSSS. (3)

Temporal changes in DIC, ALK, SST and SSS (∂tDIC,
∂tALK, ∂tSST and ∂tSSS) are controlled by surface heat flux,
ocean transport, freshwater fluxes, biological processes and
the air–sea CO2 flux. Using the model results, we further ex-
pand the decomposition to quantify the contribution of these
physical and biological processes (see Liao et al, 2020, for
details about the derivation):

∂tpCO2︸ ︷︷ ︸
pCO2change

≈

(
∂pCO2

∂DIC
∂tDICh +

∂pCO2

∂ALK
∂tALKh +

∂pCO2

∂SSS
∂tSSSh +

∂pCO2

∂DIC
∂tDICv +

∂pCO2

∂ALK
∂tALKv +

∂pCO2

∂SSS
∂tSSSv

)
︸ ︷︷ ︸

circ

+

(
∂pCO2

∂DIC
∂tDICfw+

∂pCO2

∂ALK
∂tALKfw+

∂pCO2

∂SSS
∂tSSSfw

)
︸ ︷︷ ︸

fw

+

(
∂pCO2

∂DIC
∂tDICbio+

∂pCO2

∂ALK
∂tALKbio

)
︸ ︷︷ ︸

bio

+

(
∂pCO2

∂SST

(
∂tSSTh+ ∂tSSTv+ ∂tSSTq

))
︸ ︷︷ ︸

thermal

+

(
∂pCO2

∂DIC
∂tDICCO2flux

)
︸ ︷︷ ︸

CO2flux

,

(4)

where the temporal changes in pCO2 (time tendency called
pCO2 change) are on the left-hand side (LHS) of the equa-
tion and the five terms that control this change in pCO2 are
on the right-hand side (RHS) of the equation. Subscripted
h and v denote the contribution from horizontal (advec-
tion and diffusivity in the meridional and zonal directions)
and vertical (vertical advection and diffusivity) transports
on SST, SSS, DIC, and ALK; “bio” denotes the DIC and
ALK changes induced by biological processes (photosynthe-
sis, respiration, calcium carbonate dissolution and precipita-
tion, denitrification, and nitrification); q denotes the effect of
surface heat flux on SST; “fw” denotes the effect of fresh-
water fluxes (i.e., precipitation, evaporation, river runoff, and
sea ice formation and melting) on SSS, DIC, and ALK; and
the term CO2 flux denotes the DIC change induced by air–sea
CO2 exchange.

Here we examine changes in pCO2 attributed to three
oceanic processes that modify the concentration in dissolved
species (i.e., DIC, ALK and SSS), namely their transport by
oceanic circulation (“circ”, which includes horizontal and
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vertical transport), the effect of dilution and concentration
due to freshwater fluxes (fw), and the effect of biological ac-
tivity (bio), and these processes isolate the thermal influence
tied to SST changes induced by both oceanic transport and
air–sea exchange of heat. Finally, the air–sea CO2 exchange
(CO2 flux) pushes the surface pCO2 concentration towards
its equilibrium with the atmosphere and systematically acts
to offset the pCO2 changes associated with the sum of the
internal oceanic processes (circ, bio, fw and thermal). In this
study, we apply Eq. (4) using averages between the sea sur-
face and the mixed-layer depth (MLD), defined here as the
depth where the water density is 0.01 kg m−3 denser than the
water at the surface (minimum MLD is 5 m). Positive contri-
butions on the RHS would yield an increase in pCO2 (posi-
tive pCO2 response on the LHS). Positive values of the CO2
flux correspond to an ocean CO2 uptake. This method to de-
compose the pCO2 seasonality into controlling processes in
the coastal domain is illustrated in three coastal regions: the
US East Coast, the US West Coast and the Norwegian Basin.

3 Results and discussion

3.1 Annual mean state and seasonal cycle model
evaluation and identification of coastal regions

Figure 1a identifies the coastal regions where the perfor-
mance of MOM6-COBALT is satisfactory for both the an-
nual mean and the seasonal cycle of pCO2. The analysis,
performed at the MARCATS scale (see Fig. 1b for nomencla-
ture), distinguishes regions of low, medium and high agree-
ment between the model and coastal SOM-FFN, the latter
being areas for which our confidence in the identification of
the dominant biophysical drivers of the coastal pCO2 dy-
namics is highest. This figure will be analyzed in detail in
Sect. 3.1.3, but before we do so we first perform a data–
model evaluation according to the following procedure. We
first evaluate the model by comparing simulated fields of
SSS, SST and sea surface nutrients to global and regional ob-
servations (Sect. 3.1.1, Figs. 2 and 3). Second, the ability of
the model to capture the coastal pCO2 annual mean and sea-
sonality is assessed against the SOCATv6 data and the con-
tinuous monthly observation-based pCO2 product (coastal
SOM-FFN, Laruelle et al., 2017; see Sect. 3.1.2 and Figs. 3–
6).

3.1.1 Model evaluation for coastal waters
environmental variables

MOM6-COBALT captures the main spatial patterns of key
environmental parameters (SST, SSS and sea surface nutri-
ents) fairly well in the coastal domain (Fig. 2). The global
SST field simulated by the model reproduces the strong
large-scale tropical to polar SST gradients, with a global
median bias of −0.2 ◦C (Fig. 2a–c), and biases at the scale
of MARCATS regions ranging from 0 ◦C in the NE At-

lantic (M17) to 1.3 ◦C on the US East Coast (M10, Fig. 3a
and Table S1). With a global median bias value of 0.2, the
model also correctly reproduces the observed SSS patterns
that are mainly regulated by evaporation and freshwater in-
puts from precipitation, riverine runoff and ice melt, with
lower SSS values in polar regions and along the coasts of
Southeast Asia and higher SSS values along the coasts of
evaporation basins such as in the Arabian Sea or the Mediter-
ranean Sea (Fig. 2d–f). The SSS analysis at the MARCATS
scale reveals absolute SSS biases that are generally less than
or close to 1, except for five MARCATS regions where ab-
solute biases exceed 2. These MARCATS regions are mainly
located in marginal seas (the Baltic Sea, M18; the Black Sea,
M21; and the Persian Gulf, M29) but also include one po-
lar region (the Canadian Archipelago, M13) and one tropi-
cal region (Tropical West Atlantic, M7; see Fig. 3b and Ta-
ble S1). Similar to SSS, largest the model–data discrepancies
for nutrients are mostly found in marginal seas (Fig. 3c–e
and Table S1). For instance, the largest PO4 and SiO4 bi-
ases are encountered in the Black Sea (M21, absolute bi-
ases of 3 and 75 µmol kg−1, respectively). The Peruvian Up-
welling Current (M4), the Bay of Bengal (M31) and the NE
Pacific (M1) also present large biases in NO3 and PO4 (e.g.,
NO3 bias of 8 µmol kg−1 for M4). However, the global me-
dian nutrients biases are much smaller, reaching 0.3, −0.2
and −0.4 µmol kg−1 for nitrate (NO3, Fig. 2i), phosphate
(PO4, Fig. 2l) and silicate (SiO4, Fig. 2o), respectively.

The model–data seasonal evaluation reveals that MOM6-
COBALT reproduces the global SST and SSS amplitudes re-
markably well (median absolute bias of 0.1 ◦C and 0.0, re-
spectively; see Table S2 in the Supplement). Some excep-
tions can nevertheless be diagnosed, such as in the marginal
Black Sea (M21), where the bias in SST seasonal ampli-
tude reaches −1.3 ◦C, and in three MARCATS regions (Bay
of Bengal, M31; tropical West Atlantic, M7; and Siberian
shelves, M43) where the SSS seasonal biases are larger
than 0.4. The model–data comparison also reveals that the
phasing of the SST and SSS seasonal cycles are in very
good agreement (Pearson correlation close to 1) for all 45
MARCATS regions, with the exception of four for which
significant deviations in SSS are found, i.e., two marginal
seas (Hudson Bay, M12, and the Red Sea, M28) and along
the Californian Current (M2) and Brazilian Current (M6).
The nutrients analysis shows absolute global median bi-
ases in seasonal amplitude of 0.1, 0.0 and 0.7 µmol kg−1

for NO3, PO4 and SiO4, respectively. Seven MARCATS re-
gions present absolute biases larger than 1.5 µmol kg−1 that
are mainly located in marginal seas (Baltic Sea, M18; Sea
of Japan M40; and Sea of Okhotsk, M41) but also in po-
lar (Siberian, M43, and Antarctic, M45, shelves) and sub-
polar (NE Pacific, M1) regions and in the Bay of Ben-
gal (M31). The model–data comparison sometimes shows
significant phase shifts in their seasonal signal (Pearson co-
efficient < 0.5), such as for MARCATS regions located in
Indian and tropical margins, marginal seas, and EBCs.

Ocean Sci., 18, 67–88, 2022 https://doi.org/10.5194/os-18-67-2022



A. Roobaert et al.: A framework to evaluate and elucidate the driving mechanisms of... 75

Figure 2. Observed (center) and modeled (left) spatial distributions of the annual mean state of SST (◦C), SSS (no unit), nitrate (NO3,
µmol kg−1), phosphate (PO4, µmol kg−1) and silicate (SiO4, µmol kg−1) and model annual mean bias (right). Observational SST and SSS
fields are from the NOAA OI SST V2 (Reynolds et al., 2007) and the EN4 SSS (Good et al., 2013). Observational nutrients are from the
World Ocean Atlas version 2018 (Garcia et al., 2019). The bias is the difference between MOM6-COBALT and observed values (red indicates
regions where the simulated variables by MOM6-COBALT exceed observed values).

3.1.2 Model evaluation for coastal pCO2

The spatial distribution of the annual mean pCO2 simulated
by MOM6-COBALT is in good agreement with the observa-
tional pCO2 values extracted from the SOCATv6 database
with generally low pCO2 values (blue colors) in temperate
and high latitudes and high pCO2 values (yellow and red
colors) in tropical and sub-tropical regions (Fig. 4a–c). The
model–data pCO2 evaluation at the regional scale shows that
33 of the 45 MARCATS present absolute biases lower than
20 µatm (Table S1). The regions where the bias exceeds this
threshold include two EBCs (the Californian Current, M2,
and the Peruvian Upwelling Current, M4), two marginal seas
(Sea of Japan, M40, and Sea of Okhotsk, M41), and one polar
region (Antarctic shelves, M45), a subpolar region (NW Pa-
cific, M42) and the tropical East Atlantic (M23) shelf. Note

that in some MARCATS regions, in particular in marginal
seas and Indian seas, there are no SOCATv6 observations to
perform the comparison (e.g., the Bay of Bengal, M31; see
Fig. 4b and Table S1). Hence, we also evaluate the perfor-
mance of MOM6-COBALT against the continuous coastal
SOM-FFN pCO2 product, which uses a neural network inter-
polation method to fill data gaps and resolve the spatiotem-
poral coastal pCO2 variability globally.

Our results show that MOM6-COBALT reproduces the
main spatial features of the annual mean pCO2 field cap-
tured by the coastal SOM-FFN product, as revealed by the
relatively low globally averaged bias of 2.5 µatm (Fig. 4a and
d). In both the model and the SOM-FFN product, low coastal
pCO2 values are consistently found in temperate and high-
latitude regions in both hemispheres, while high pCO2 val-
ues are largely limited to (sub-)tropical regions. The largest
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Figure 3. Comparison between observed and simulated annual
mean fields in the 45 MARCATS regions: (a) SST (◦C), (b) SSS
(no unit), (c) NO3 (µmol kg−1), (d) PO4 (µmol kg−1), (e) SiO4
(µmol kg−1) and (f) pCO2 (µatm). Observational datasets are as
follows: SST and SSS are from the NOAA OI SST V2 (Reynolds
et al., 2007) and the EN4 SSS (Good et al., 2013), nutrients are
from the World Ocean Atlas 2018 (Garcia et al., 2019), and pCO2
is from the coastal SOM-FFN product (Laruelle et al., 2017). Col-
ors correspond to the seven major MARCATS classes (see Fig. 1b).
In panels (d) and (e), the Black Sea (M21) is not represented and
has xy coordinates of (0.2; 3.5 µmol kg−1) in panel (d) and (10.3;
83.1 µmol kg−1) in panel (e). The Antarctic shelf (M45) is also not
represented in panel (e) (55.0;49.1 µmol kg−1).

discrepancies (Fig. 4e) are found at high latitudes (poleward
of 60◦ N and 60◦ S, negative bias), along the Peruvian and
Namibian upwelling systems (high positive bias) and more
locally close to the mouth of some large rivers (e.g., the
plume of the Amazon or the Rio de la Plata, high nega-
tive bias). We note, however, that these regions are poorly
sampled in the SOCATv6 dataset (Fig. 4b) and are thus
likely weakly constrained in the coastal SOM-FFN product
(Fig. 4d).

At the regional scale, differences in annual mean pCO2
between MOM6-COBALT and coastal SOM-FFN are lower
than 20 µatm in 35 MARCATS (Table S1, Fig. 3f), which
partly is a reflection of the low annual mean biases ob-
served in the environmental driver variables in these regions
(see Sect. 3.1.1). In EBC, WBC and subpolar coastal re-
gions, the model tends to overestimate the regional mean
pCO2 compared to coastal SOM-FFN (positive bias), except
along the US East Coast (M10), in the East China Sea and
Kuroshio (M39), and in the NE Atlantic (M17, Table S1).
In polar regions, the model generally underestimates the
mean pCO2 compared to coastal SOM-FFN, except around
S Greenland (M15). In Indian, marginal, and tropical coastal
regions, no general trend can be identified regarding the sign
of the bias, which can be positive or negative.

Quantitatively, the 10 MARCATS regions with absolute
biases > 20 µatm are mainly located in regions for which
very limited or no observational data have been compiled in
the SOCATv6 database (Table S1) and/or for which large dis-
crepancies can already be identified at the level of the master
environmental variables (Sect. 3.1.1). These regions mainly
belong to EBCs (three out of the six EBC MARCATS re-
gions) and marginal seas (three out of the nine marginal seas
MARCATS regions), with the remaining four being either
polar (the Canadian Archipelago, M13, and the N Green-
land, M14), subpolar (NW Pacific, M42) or Indian margins
(the Bay of Bengal, M31). The largest biases are found in
the Peruvian Upwelling Current (M4), SW Africa (M24),
the Californian Upwelling Current (M2) and the Canadian
Archipelago (M13), with biases of 106, 79, 35 and−53 µatm,
respectively.

Our analysis reveals that the seasonal amplitudes simu-
lated by MOM6-COBALT are systematically larger than the
ones estimated by the coastal SOM-FFN product (Fig. 5a–
b, red colors in Fig. 5c and positive biases in Table S2) for
all coastal regions belonging to EBC, WBC, and Indian and
tropical margins. For the majority of the polar and subpo-
lar margins and for some marginal seas, the model simu-
lates lower seasonal pCO2 amplitudes (blue colors in Fig. 5c
and negative biases in Table S2). Quantitatively, absolute bi-
ases between the modeled and coastal SOM-FFN amplitudes
do not exceed 20 µatm, except for in marginal seas where
larger discrepancies are calculated (six of the nine marginal
MARCATS regions, Table S2). The monthly mean pCO2
seasonal cycle simulated by MOM6-COBALT is also well
in phase (Pearson correlation coefficients > 0.5) with the
one extracted from coastal SOM-FFN in 34 out of the 45
MARCATS regions (Fig. 5d and Table S2). The agreement
is especially good in the best-monitored MARCATS regions
(MARCATS where > 50 % of the area is covered by SO-
CATv6 observations, Table S1). For instance, in regions with
good data coverage, such as along the US East Coast (M10),
the Norwegian Basin (M16), the Californian Current (M2),
the Leeuwin Current (M33) or the Brazilian Current (M6),
the Pearson correlation coefficient is higher than 0.9 (Ta-
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ble S2). In contrast, the seasonal pCO2 cycle simulated
by MOM6-COBALT substantially diverges from that of the
coastal SOM-FFN in four poorly monitored marginal seas
and in a few of regions of EBCs, Indian margins, subpo-
lar margins, and tropical margins (Pearson correlation coef-
ficient < 0.5, Table S2 and Fig. 5d).

The model pCO2 seasonal evaluation against SOCATv6
is only performed in 11 MARCATS regions, namely the Cal-
ifornian Current (M2), tropical E Pacific (M3), the Gulf of
Mexico (M9), the US East Coast (M10), S Greenland (M15),
Norwegian Basin (M16), NE Atlantic (M17), Iberian up-
welling (M19), Moroccan upwelling (M22), China Sea and
Kuroshio (M39), and New Zealand (M36). The modeled
seasonal cycle is in good agreement with the one derived
from SOCATv6 (Fig. 6b–l, Table S2) with absolute biases
< 20 µatm for all of the 11 selected MARCATS and Pearson
correlation coefficients close to 0.5 or higher except for the
Iberian Upwelling (M19, Pearson value of 0.2) and on the
New Zealand shelf (M36, value of 0.3). We did not perform
the SOCATv6 model seasonal evaluation for the other MAR-
CATS regions because the vast majority of grid cells only
include data for less than 4 climatological months (Fig. 6a).
However, we also evaluated the simulated pCO2 seasonality
against SOCATv6 in regions where this evaluation is not pos-
sible to be performed at the MARCATS scale. To do so, we
selected four sites of smaller spatial extent than MARCATS
for which we calculated climatological seasonal pCO2 sig-
nals from the SOCATv6 dataset and compared them with
the model pCO2. These sites are located off the Antarctic
Peninsula, on the Queensland Plateau in NE Australia, in
coastal waters of Papua New Guinea and off Terra Nova in
Antarctica (see black boxes in Fig. 6a). In those regions, the
absolute biases of the seasonal amplitude between MOM6-
COBALT and SOCATv6 (Fig. 6m–p) are less than 20 µatm,
and the phase in the seasonal cycles presents a good agree-
ment with a Pearson correlation coefficient value of 0.8, ex-
cept for the Papua New Guinea data (value of 0.5). Note
that the model SOCATv6 seasonal evaluation for Terra Nova
presents a good agreement, but the MARCATS scale (Sea
of Labrador, M11) evaluation to which this region belongs
to reveals a low agreement, showing that a poor agreement
between coastal SOM-FFN and the model does not equate
to poor model skill when these regions are undersampled by
SOCATv6.

3.1.3 Identifying coastal regions of high model to
coastal SOM-FFN agreement

Overall, the pCO2 spatiotemporal analysis model–data eval-
uation shows that out of 45 MARCATS regions, 29 have an
absolute bias for their annual mean < 20 µatm when MOM6-
COBALT-coastal SOM-FFN, MOM6-COBALT-SOCATv6
and coastal SOM-FFN-SOCATv6 are compared (Table S1).
Together, these 29 MARCATS regions represent 65 % of the
global coastal ocean surface area. For the 11 MARCATS re-

gions that are best covered by observations (MARCATS re-
gions where > 50 % of the surface area is covered by SO-
CATv6 observations, Table S1), absolute biases for the an-
nual mean are always < 20 µatm for the three product in-
tercomparison, except in the Californian Current (M2), in
the Baltic Sea (M18) and along the NE Pacific (M1). The
seasonal MOM6-COBALT against coastal SOM-FFN eval-
uation also reveals that 39 of the 45 MARCATS regions
have pCO2 seasonal amplitude biases < 20 µatm and that
34 MARCATS regions have a Pearson correlation coefficient
> 0.5 (Table S2).

Based on this evaluation, we attribute for each MAR-
CATS region a level of confidence in the model to coastal
SOM-FFN agreement (“high”, “medium” and “low”; see
Table 1 and Fig. 1a). Out of the 45 MARCATS regions,
25 are labeled with high agreement, meaning that they ful-
fill the following criteria regarding the annual mean and
the seasonality (Table 1 and dotted MARCATS regions in
Fig. 1a): a bias < 20 µatm in the annual mean pCO2 between
MOM6-COBALT and coastal SOM-FFN, a bias < 20 µatm
in the magnitude of the seasonal pCO2 cycle, and a sea-
sonal phase characterized by a Pearson correlation coeffi-
cient > 0.5. Note that the some MARCATS regions, i.e.,
the Siberian shelf (M43), the Antarctic shelf (M45), the NE
Pacific (M1), the tropical E Atlantic (M23) and the trop-
ical W Indian Ocean(M26), also present an annual mean
pCO2 bias < 20 µatm in the MOM6-COBALT-SOCATv6
and coastal SOM-FFN-SOCATv6 comparisons (Table S1).
In addition, seven high-agreement MARCATS regions also
show a data density > 50 % (this comes to 13 MARCATS
regions if we lower the data coverage to > 30 %, Fig. 1a).
These 7 MARCATS regions are located in contrasted coastal
environments, i.e., three EBCs (Iberian upwelling, M19; Mo-
roccan upwelling, M22; and the Leeuwin Current, M33),
one WBC (US East Coast, M10), one Polar region (Norwe-
gian Basin, M16), one subpolar region (NE Atlantic, M17)
and one marginal sea (Gulf of Mexico, M9). These seven
high-agreement MARCATS regions could also result from
the very good correspondence between the data–model an-
nual mean and seasonal patterns in environmental fields (Ta-
ble S1 and Table S2, except M22, M33 and M9 for the nu-
trient phasing) and are therefore excellent potential candi-
dates for an analysis of the processes controlling the coastal
pCO2 dynamics. A total of six additional MARCATS re-
gions fulfill the criteria related to the seasonal pCO2 eval-
uation, but they fail to fulfill the annual mean pCO2 bias
threshold of 20 µatm. These medium-agreement regions (Ta-
ble 1 and dashed regions in Fig. 1a) include two EBCs (Cal-
ifornian Current, M2, and SW Africa, M24), one marginal
sea (Sea of Okhotsk, M41), two polar regions (Canadian
Archipelago, M13, and N Greenland, M14) and one subpolar
region (NW Pacific, M42) shelves. The majority of marginal
seas are systematically associated with large biases relating
to either pCO2 or the main environmental variables. These
regions fulfill only one criterion (or none of them) regard-

https://doi.org/10.5194/os-18-67-2022 Ocean Sci., 18, 67–88, 2022



78 A. Roobaert et al.: A framework to evaluate and elucidate the driving mechanisms of...

Figure 4. Spatial distributions of the annual mean pCO2 (µatm) generated by (a) MOM6-COBALT and (b) extracted from the SOCATv6
database, (c) model bias given as the difference between panels (a) and (b) (in µatm; red and blue colors correspond to regions in which the
pCO2 simulated by MOM6-COBALT is higher and lower than SOCATv6, respectively). (d) Spatial distribution of the annual mean pCO2
from the coastal SOM-FFN product (Laruelle et al., 2017). (e) Model bias given as the difference between panels (a) and (d).

Figure 5. Seasonal variability in ocean pCO2 (µatm). Seasonal amplitude (a) simulated by MOM6-COBALT model and (b) in the coastal
SOM-FFN product, and (c) bias between the model and coastal SOM-FFN seasonal amplitude (red indicates that simulated amplitude
exceeds coastal SOM-FFN). The seasonal amplitude is expressed as the root mean square of the monthly climatology pCO2 anomalies
(rmspCO′2

, µatm). (d) Pearson correlation coefficient of the regression between the seasonal pCO2 cycles calculated by MOM6-COBALT
and coastal SOM-FFN. A value of 1 indicates that both signals are perfectly in phase with one another, while a value of −1 represents a
complete phase shift.
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Figure 6. (a) SOCATv6 temporal coverage evaluated as the number of months (1 to 12) where at least one pCO2 measurement is available
(see details in Sect. 2). Seasonal pCO2 cycle (µatm) derived from SOCATv6 (bar in gray) and coastal SOM-FFN (in blue) and simulated by
MOM6-COBALT (in red) for several MARCATS regions (b–l) and four coastal sites of smaller spatial extent than a MARCATS region (m–
p). The location of the four coastal sites is represented by black boxes in panel (a). Month 1 corresponds to January. For consistency in the
y axis between panels, the value of 276 µatm is not represented in panel (p) for month 5 for the SOCATv6 data.

https://doi.org/10.5194/os-18-67-2022 Ocean Sci., 18, 67–88, 2022



80 A. Roobaert et al.: A framework to evaluate and elucidate the driving mechanisms of...

ing the pCO2 seasonality, and they are hence labeled as low-
agreement regions (Table 1, Fig. 1a). Other low-agreement
regions include one EBC (Peruvian Upwelling Current, M4),
one Indian region (Bay of Bengal, M31), two tropical regions
(tropical E Pacific, M3, and SE Asia, M38), two subpolar re-
gions (Sea of Labrador, M11, and New Zealand, M36) and
one WBC region (Brazilian Current, M6).

3.1.4 Methodological limitations

While our results show a relatively good agreement between
MOM6-COBALT and coastal SOM-FFN regarding the spa-
tial and temporal pCO2 distribution over the global coastal
ocean, the comparison remains challenging for several rea-
sons.

First, while the climatology of Laruelle et al. (2017,
coastal SOM-FFN) is currently the best available product for
a model–data comparison, it has its own limitations. For in-
stance, in some regions, particularly for coastal upwellings
such as the Moroccan (M22) and Peruvian (M4) upwellings,
the pCO2 fields generated by the coastal SOM-FFN do not
reproduce the high and variable pCO2 values measured in
situ well (see, e.g., Friederich et al., 2008; McGregor et al.,
2007). Such poor performance of the coastal SOM-FFN al-
gorithm in these types of systems has already been identi-
fied by Laruelle et al. (2017). Indeed, upwelling regions are
still relatively poorly monitored and expand partly beyond
the coastal domain used by Laruelle et al. (2017), leading
to locally skewed calibration of the SOM-FFN. Deficiencies
in the observation-based product can thus partly explain the
large model–data bias (106 µatm, the largest of all MAR-
CATS regions) calculated in the Peruvian upwelling region.
Moreover, although the Surface Ocean CO2 Atlas database
(SOCAT) has expanded significantly over the past few years,
some regions are still poorly monitored. In the coastal re-
gions where no observational data exist (e.g., in the Black
Sea, the Sea of Okhotsk, the Bay of Bengal, Fig. 4b) in the
SOCAT database used here (SOCATv6, Bakker et al., 2016),
it is difficult to evaluate the performance of the SOM-FFN
and thus of an Oceanic General Circulation Model (OGCM)
in reproducing the pCO2 field. In addition, for certain re-
gions subjected to complex dynamic biogeochemical settings
(e.g., upwelling, seasonal cover of sea ice, influenced by
rivers, marginal seas), the pCO2 field reconstructed by the
SOM-FFN suffers from poor performance, which can partly
be explained by the lack of observational data. This lack
of observations could partly explain why MOM6-COBALT-
coastal SOM-FFN pCO2 biases exceed 20 µatm in these
regions. The seasonal model evaluation against SOCATv6
is limited at the MARCATS scale and mainly performed
against coastal SOM-FFN due to the very few coastal regions
that contain a continuous climatological seasonal pCO2 cy-
cle (Fig. 6a) in the SOCATv6 database. This study highlights
the regions (Fig. 1a, e.g., Indian ocean margins, the Peruvian
upwelling, marginal seas) where new observational data are

most urgently needed, specifically those collected during pe-
riods of the year that are currently not covered, to improve
our understanding of the CO2 exchange between coastal re-
gions and the atmosphere at the regional and global scales.
In addition, only one global continuous pCO2 climatology
derived by the SOM-FFN method currently exists for the
coastal ocean. It would therefore be beneficial for the com-
munity to develop other observation-based climatologies re-
lying on other interpolation techniques, as is currently the
case for the open ocean.

Second, the model–data comparison should also be ana-
lyzed in the light of the current limitations in the model it-
self. OGCMs have been designed for global ocean applica-
tions, and the coarse spatial resolution of these models, on
the order of 0.5◦ in the present study, cannot accurately re-
solve mesoscale and sub-mesoscale processes and tidal mix-
ing in shelf regions even with a model configuration includ-
ing parameterizations for these processes. The coastal cur-
rents are also not always well resolved because of the coarse
resolution of the shelf bathymetry. These small-scale hydro-
dynamic features are known to affect the spatiotemporal vari-
ability of pCO2 and the air–sea CO2 exchange (Bourgeois et
al., 2016; Kelley et al., 1971; Lachkar et al., 2007; Laruelle
et al., 2010). Therefore, although MOM6-COBALT runs at
0.5◦, discrepancies between coastal SOM-FFN and MOM6-
COBALT in narrow EBCs such as the Peruvian Upwelling
Current (M4) and along SW Africa (M33) could also be ex-
plained by the limited spatial resolution of the model. More-
over, OGCMs such as MOM6-COBALT have a relatively
simple representation of biogeochemistry that does not fully
capture some of the important processes of the carbon dy-
namics in coastal waters, such as sea ice temporal dynam-
ics (Adcroft et al., 2019), neritic calcification (O’Mara and
Dunne, 2019), or terrestrial and marine organic matter de-
composition and burial (Lacroix et al., 2021a, b). Moreover,
the largest biases observed in marginal seas can partly be
explained by large fluvial inputs and oceanic water flows
through fine-scale topography (e.g., straits) that are poorly
represented in global OGCMs.

Finally, the annual mean and seasonal pCO2 biases be-
tween the coastal SOM-FFN and MOM6-COBALT can also
be traced back to divergences in the environmental fields sim-
ulated by the model compared to observations (Tables S1 and
S2). For instance, in most marginal seas, the model poorly re-
solves the annual mean and seasonal cycle of SSS and nutri-
ents compared to the observations. These discrepancies im-
pact the simulated pCO2 via the controls of the SSS on the
CO2 solubility and of nutrients on the biological pump and
CO2 uptake. In the tropical W Atlantic (M7), which is un-
der the influence of the Amazon River, the model simulates
lower annual mean SSS (and therefore lower pCO2) than the
observations. In the tropical E Pacific (M3) and in South-
east Asia (M38), the poor agreement between simulated and
observed seasonal pCO2 cycle could be explained by signif-
icant biases in the nutrient seasonal cycles (low Pearson cor-
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relation coefficient). Interestingly, some regions reveal sig-
nificant biases in the major environmental fields but not in
the pCO2 (e.g., the tropical W Atlantic, M7), while in other
regions the reverse is observed (e.g., the Mediterranean Sea,
M20; W Arabian Sea, M27; and in New Zealand, M36). In
addition, for some regions biases in environmental fields do
not affect the pCO2 as expected. For instance, along the
US East Coast (M10), MOM6-COBALT simulates larger
SST compared to observations, while the simulated pCO2
is lower compared to coastal SOM-FFN on an annual mean.
This clearly shows that biases in environmental fields are not
sufficient to fully explain the biases in pCO2 diagnosed be-
tween MOM6-COBALT and coastal SOM-FFN.

3.2 Processes governing the seasonal pCO2 variability

Our second objective is to examine the drivers of the pCO2
seasonality in three well-sampled and contrasted coastal re-
gions where the model to coastal SOM-FFN agreement
is satisfactory: the US East Coast (M10), the Norwegian
Basin (M16) and the Californian Current (M2). The US East
Coast is a sink of atmospheric CO2 that has been exten-
sively studied over the past decade (e.g., Fennel et al., 2019;
Laruelle et al., 2015; Shadwick et al., 2010, 2011; Signorini
et al., 2013). The pCO2 spatiotemporal dynamics in this
MARCATS region are particularly well captured by MOM6-
COBALT (high agreement, Fig. 1a), despite an annual mean
SST bias of 1.3 ◦C in the data–model comparison in this re-
gion (Table S1). Because the SST amplitude and seasonal
phasing are in agreement between the model and data (Ta-
ble S2), the bias in the mean SST does not impact the sea-
sonal pCO2 cycle (Pearson correlation coefficient > 0.5 and
bias < 20 µatm in the seasonal pCO2 amplitude, Table 1). We
also selected the Californian Current because it is a source of
CO2 to the atmosphere and because, similar to the US East
Coast, it ranks among one of the best-monitored coastal re-
gions in the world (e.g., Evans et al., 2011; Fennel et al.,
2019; Hales et al., 2012; Turi et al., 2014). In this region,
the model is classified as medium agreement (Table 1 and
Fig. 1a). Indeed, the simulated seasonal cycle of pCO2 is in
relatively good agreement with coastal SOM-FFN (Figs. 5–6,
and Table 1) despite biases in the annual mean pCO2 com-
pared to observations (Fig. 3f) and a phase shift in the sea-
sonality of SSS and nutrients (Pearson correlation coefficient
< 0.5). However, the Californian Current is also one of the
few coastal regions where an analysis of the processes con-
trolling the pCO2 seasonality has already been performed
using a regional biogeochemical model and sequential sim-
ulation removing processes one after the other (Turi et al.,
2014), which can hence be compared to our analysis. Finally,
the choice of the Norwegian Basin is motivated by the good
performance (high agreement) of the model and the intense
atmospheric CO2 sink that occurs in this contrasted region.

3.2.1 Seasonality along the US East Coast

The seasonal evolution of pCO2 averaged over the US East
Coast (M10) is represented in Fig. 7a. Ocean pCO2 is at a
minimum in winter (February–March∼ 331 µatm), increases
through spring and peaks in summer (August, ∼ 400 µatm)
before decreasing again in autumn. Figure 7b reveals the
complex interplay of the four ocean internal processes (ther-
mal and biological processes, ocean circulation, and fresh-
water flux) on the seasonal pCO2 variability that can either
act in synergy or oppose each other.

The thermal effect (thermal, red line in Fig. 7b) increases
pCO2 from early spring to summer by decreasing the solu-
bility of CO2. In contrast, the solubility of CO2 increases in
autumn and winter, inducing a decline in pCO2. The largest
changes in pCO2 associated with the change in SST oc-
cur during spring (29 µatm per month in June) and autumn
(−26 µatm per month in November). This thermal effect was
already identified by Signorini et al. (2013) in their obser-
vational study and further confirmed by Cai et al. (2020).
These authors highlighted that lowest pCO2 was generally
reported in winter or at the beginning of spring and high-
est pCO2 in summer or autumn, despite significant temporal
and spatial heterogeneity between the different sub-regions
of the US East Coast (Scotian shelf, the Gulf of Maine, the
Georges Bank and Nantucket shoals, the Middle Atlantic
Bight, and the South Atlantic Bight). The effect of biolog-
ical processes above the mixed-layer depth (bio, green line)
reduces pCO2 throughout the year, revealing that primary
production exceeds organic matter degradation in the sur-
face layer all year long. The largest pCO2 decrease asso-
ciated with biological processes is observed in early spring
(values of −68 µatm per month in April), which is well doc-
umented (e.g., Shadwick et al., 2010, 2011; Signorini et al.,
2013). The transport of chemical species by ocean circulation
(circ, blue line) increases pCO2 and tends to oppose biolog-
ical processes year-round except at the end of autumn and
beginning of winter. This pCO2 increase induced by the cir-
culation term is at its maximum in April (26 µatm per month).
Throughout the year, the contribution of freshwater fluxes
(fw, pink line) remains minor compared to the other terms
(maximum absolute value of 9 µatm per month in January).
For each month and season, the air–sea CO2 exchange term
(CO2 flux, black line) counteracts change in pCO2 associ-
ated with ocean internal processes taking place in surface
seawater (sum of bio, circ, thermal and fw). The CO2 flux
term increases pCO2 at the sea surface (acting as an atmo-
spheric CO2 sink) throughout the year, except during sum-
mer (between July and September) where it decreases sea
surface pCO2 and releases CO2 towards the atmosphere (act-
ing as an atmospheric CO2 source). This year-round simu-
lated atmospheric CO2 uptake (except for the summer sea-
son) is also in agreement with previous literature (Fennel et
al., 2019; Laruelle et al., 2015; Signorini et al., 2013). The
study of Laruelle et al. (2015) has nevertheless shown that
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Figure 7. Processes controlling the ocean pCO2 seasonal cycle. Mean seasonal sea surface pCO2 (dashed line) and atmospheric pCO2 (black
line; in µatm) simulated by MOM6-COBALT and detrended over (a) the US East Coast (M10), (c) the Norwegian sea (M16) and (e) the
Californian current (M2). Spatially averaged contributions (in µatm month−1) from biological activity (bio, green), temperature changes
(thermal, red), transport of chemical species (circ, blue), freshwater flux (fw, pink) and the CO2 air–sea flux (CO2 flux, black) controlling the
pCO2 temporal change (pCO2 change, cyan) for the three regions (b, d, f). A positive value corresponds to an increase in sea surface pCO2.
Winter corresponds to the months of January, February and March, and summer corresponds to the months of July, August and September.

in spring the southern part of the US East Coast is quasi-
neutral and that in autumn some regions, such as the Gulf of
Maine or the Georges Bank, act as a CO2 source. The tempo-
ral change of pCO2 (pCO2 change, cyan line) is the result of
the non-perfect balance between the internal processes and
the air–sea CO2 flux.

We evaluate the rate of change tied to each process
during the marked peak-to-peak pCO2 increase observed
between winter and summer (from 331 µatm in Febru-
ary to 400 µatm in August, Fig. 7a). A positive rate of
change (in µatm per month) indicates that the process con-
tributes to an increase in pCO2 between winter and sum-
mer (February–August). This process-based analysis reveals
that the winter-to-summer pCO2 increase on the US East
Coast (M10) mainly results from thermal (rate of change
=+5 µatm per month) and ocean circulation (rate of change
=+4 µatm per month) influences combined with a large
reduction of the biological CO2 uptake (rate change of
+7 µatm per month, Fig. 7b). The importance of the ther-
mal and circulation effects and the presence of a strong bi-
ological drawdown are in line with results from past studies
(e.g., Laruelle et al., 2015; Shadwick et al., 2010, 2011; Sig-
norini et al., 2013; and Cai et al., 2020). Our results iden-
tify the reduction of biological carbon uptake as a key con-
trol of pCO2 seasonality and thus agree with the studies of
Shadwick et al. (2010, 2011) but slightly diverge compared
to those of Signorini et al. (2013) or Laruelle et al. (2015),
which found that the thermal effect was the dominant driver.
This difference is largely explained by the different levels
of details in the decomposition method. While most model
studies, including ours, use seasonal change in SST, SSS,
DIC and ALK, observational approaches cannot isolate the

compounding changes tied to biological activity from those
of ocean transport.

3.2.2 Seasonality in the Norwegian basin and in the
Californian Current

The pCO2 seasonal cycle in the Norwegian Basin (M16) and
the Californian Current (M2) simulated by MOM6-COBALT
are represented in Fig. 7c and e, respectively. The Norwe-
gian Basin shows a near-constant pCO2 value (∼330 µatm)
throughout the year, except in spring when it drops by
30 µatm (minimum pCO2 value of 300 µatm in June). The
phasing of the seasonal pCO2 cycle in the Californian Cur-
rent is similar to that along the US East Coast, with a mini-
mum pCO2 value of 366 µatm in March followed by an in-
crease that reaches a maximum pCO2 value of 433 µatm in
August and then decreases again at the beginning of autumn.

The decomposition of the seasonal cycle into different
processes for both the Norwegian Basin and the Califor-
nian Current (Fig. 7d and f) reveal patterns that are quali-
tatively similar to those already diagnosed for the US East
Coast (Fig. 7b). For both shelf regions, the biological and
circulation effects remain negative and positive, respectively,
throughout the year, while the thermal effect increases pCO2
in spring and summer but decreases pCO2 in autumn and
winter. The freshwater term is also minor compared to the
other terms. Quantitatively, however, the amplitude of the
different terms points to different first-order control in the
pCO2 seasonality for each region. The amplitudes are calcu-
lated here using the marked peak-to-peak change in pCO2,
which occurs between February and June in the Norwegian
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basin and between March and August in the Californian Cur-
rent.

In the Norwegian basin, the strong winter to summer
pCO2 decreases (43 µatm, Fig. 7c) are mainly associated
with the large and rapid CO2 uptake associated with the
spring phytoplankton bloom (biological rate of change =
−45 µatm per month on average between February and June,
with a maximum pCO2 uptake of −175 µatm per month
in June, Fig. 7d). This biological drawdown is only
partly compensated for by the supply of high pCO2 wa-
ter masses from the ocean circulation (rate of change =
+24 µatm per month). These dynamics are consistent with
the fact that the Norwegian Basin is one of the most pro-
ductive regions of the world and is characterized by a
well-documented, intense spring bloom (e.g., Findlay et
al., 2008). In addition, the effect of thermal changes only
plays a comparatively minor role here (rate of change =
+7 µatm per month).

In contrast to the US East Coast and the Norwegian Basin,
the analysis performed in the Californian Current reveals that
circulation is the main driver of the winter-to-summer pCO2
increases (68 µatm, Fig. 7e). The upwelling of high-pCO2
waters increases year-round surface pCO2. However, its in-
fluence is weaker in winter than in summer, thereby explain-
ing the pCO2 increase observed between February and Au-
gust (rate of change =+12 µatm per month, Fig. 7f). This
large contribution from circulation is consistent with the sim-
ulations of Turi et al. (2014), who identified the ocean trans-
port associated with upwelling in the Californian Current as
the dominant process, and the higher intensity of the sum-
mer upwelling and its impact on pCO2 were also reported
in prior work (e.g., Evans et al., 2015; Fiechter et al., 2014;
Turi et al., 2014). In this region, biological processes also
oppose the effect of ocean circulation, with upwelled deep
water bringing nutrients to the surface and stimulating phy-
toplankton productivity (e.g., Evans et al., 2015; Fiechter et
al., 2014; Turi et al., 2014). However, it plays a minor role in
the pCO2 increase (rate of change ∼ 0 µatm per month) and
the thermal effect (rate of change =+4 µatm per month).

4 Conclusions

In this study, an OGCM (MOM6-COBALT) that is primarily
designed for the open ocean was used to examine sea surface
pCO2 seasonality in the coastal domain. We first evaluated
the ability of the model to reproduce the spatial and temporal
dynamics of key environmental variables, such as SST, SSS
and sea surface nutrients, against in situ observations. The
spatiotemporal variability of coastal pCO2 was also evalu-
ated using direct coastal pCO2 observations from the SO-
CAT database (SOCATv6, Bakker et al., 2016) and a global
observational continuous monthly pCO2 climatology avail-
able at high spatial resolution (coastal SOM-FFN, Laruelle
et al., 2017).

Our model–data comparison showed a relatively good
agreement on the environmental variables spatiotemporal
distribution except for some coastal regions mainly located
in marginal seas. Our results also revealed a relatively good
agreement, both in time and space, between pCO2 from
MOM6-COBALT, coastal SOM-FFN and SOCATv6, and
most of the discrepancies between the three products are
found in regions with poor data coverage, such as in the Bay
of Bengal, the Sea of Okhotsk or Hudson Bay (Fig. 1a). This
study highlights the regions (Fig. 1a, e.g., Indian Ocean mar-
gins, Peruvian upwelling, marginal seas) where new obser-
vational data are most urgently needed, specifically data col-
lected during different periods of the year that are currently
missing to improve our understanding of the CO2 exchange
between coastal regions and the atmosphere at the regional
and global scales. From the model–data evaluation, we iden-
tified regions where the MOM6-COBALT model shows the
highest agreement in reproducing the spatial and seasonal
pCO2 variability, and where the different processes govern-
ing the pCO2 dynamics can be examined with reasonable
confidence (high- and medium-agreement regions in Table 1
and Fig. 1a).

We also adapted a novel method to quantify the contribu-
tions of the different physical and biological processes gov-
erning the sea surface pCO2 seasonality in the coastal do-
main. This method goes one step further than past coastal
studies (e.g., Signorini et al., 2013; Turi et al., 2014) where
the processes attribution was only based on the seasonal
changes in DIC, ALK, SST and SSS and/or combined with
a series of sequential simulations isolating one term after the
other. In particular, our simulations are non-sequential and
allow us to account for the co-variations between the differ-
ent variables impacted by each process and how their simul-
taneous evolution modulates pCO2 dynamics in quantitative
terms. Our approach, which is illustrated in three coastal re-
gions (the US East Coast, the California Current and the Nor-
wegian Basin), allows to decipher the complex interplay be-
tween ocean transport of chemical species (DIC, ALK and
SSS), biological drawdown, freshwater fluxes (dilution and
concentration effects) and thermal changes (air–sea fluxes
and transport of temperature) on the pCO2 dynamics. De-
pending on the season and region, these terms can reinforce
or oppose each other and act to strengthen or dampen the
amplitude of pCO2 seasonal variations that control the air–
sea CO2 exchange. Along the US East Coast and in the Cal-
ifornian Current, pCO2 increases from winter to summer.
In the former region, this increase is controlled by a sub-
tle balance between biological drawdown, thermal changes
and ocean circulation, while in the Californian Current the
circulation due to the upwelling (supplying pCO2-rich wa-
ters to the surface) drives the increase in pCO2. In contrast,
in the Norwegian Basin biological drawdown dominates the
marked spring pCO2 decrease observed in the region. These
differences in the quantitative controls of pCO2 dynamics
from one region to another support our proposed analysis at
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the broad scale of the 45 MARCATS regions that together
compose the global coastal ocean.

A handful of observation-based studies have analyzed the
seasonal variability of pCO2 in the global coastal ocean (Cao
et al., 2020; Chen and Hu, 2019; Laruelle et al., 2017). The
mechanistic understanding of seasonal pCO2 variations was
and remains limited by the amount of available observations.
The modeling approach tailored for the coastal ocean pre-
sented in this paper complements observational studies and
helps to improve our quantitative understanding of the un-
derlying physical and biological drivers of coastal pCO2
dynamics. The comparison of the model performance to a
state-of-the-art coastal pCO2 database and continuous pCO2
data product also lends confidence to our model results for a
large fraction of the global coastal domain. The coastal ocean
is under tremendous anthropogenic pressure (e.g., climate,
land-use change, agriculture, pollution, urbanization; see,
e.g., Mackenzie et al., 2005; Regnier et al., 2013; Seitzinger
et al., 2005). Understanding the interplay between physi-
cal, biological and thermal processes and how they control
coastal pCO2 worldwide will be key to assessing how their
future changes impact air–sea CO2 exchange in coastal envi-
ronments.
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international effort, endorsed by the International Ocean Carbon
Coordination Project (IOCCP), the Surface Ocean Lower Atmo-
sphere Study (SOLAS) and the Integrated Marine Biosphere Re-
search (IMBeR) program, to deliver a uniformly quality-controlled
surface ocean CO2 database. The many researchers and fund-
ing agencies responsible for the collection of data and qual-
ity control are thanked for their contributions to SOCAT. Ev-
ery previous version of the SOCAT database can also be ac-
cessed from the following page: https://www.socat.info/index.php/
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SST and SSS used for the evaluation the model were extracted
from the NOAA OI SST V2, available at: https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html (last access: March 2021)
(Reynolds et al., 2007) and the EN4 SSS, available at: https://www.
metoffice.gov.uk/hadobs/en4/ (last access: March 2021) (Good et
al., 2013), respectively. Nutrients data were extracted from the
World Ocean Atlas 2018, available at: https://www.ncei.noaa.gov/
products/world-ocean-atlas (last access: June 2021) (Garcia et al.,
2019). The delineation and description of the MARCATS segmen-
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