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Abstract. A long short-term memory (LSTM) neural net-
work is proposed to predict hurricane-forced significant wave
heights (SWHs) in the Caribbean Sea (CS) based on a dataset
of 20 CS, Gulf of Mexico, and western Atlantic hurricane
events collected from 10 buoys from 2010–2020. SWH now-
casting and forecasting are initiated using LSTM on 0, 3,
6, 9, and 12 h horizons. Through examining study cases
Hurricanes Dorian (2019), Sandy (2012), and Igor (2010),
results illustrate that the model is well suited to forecast
hurricane-forced wave heights much more rapidly at a sig-
nificantly cheaper computational cost compared to numeri-
cal wave models, with much less required expertise. Fore-
casts are highly accurate with regards to observations. For
example, Hurricane Dorian nowcasts had correlation (R),
root mean square error (RMSE), and mean absolute percent-
age error (MAPE) values of 0.99, 0.16 m, and 2.6 %, re-
spectively. Similarly, on the 3, 6, 9, and 12 h forecasts, re-
sults produced R (RMSE; MAPE) values of 0.95 (0.51 m;
7.99 %), 0.92 (0.74 m; 10.83 %), 0.85 (1 m; 13.13 %), and
0.84 (1.24 m; 14.82 %), respectively. In general, the model
can provide accurate predictions within 12 h (R ≥ 0.8) and
errors can be maintained at under 1 m within 6 h of fore-
cast lead time. However, the model also consistently over-
predicted the maximum observed SWHs. From a compari-
son of LSTM with a third-generation wave model, Simulat-
ing Waves Nearshore (SWAN), it was determined that when
using Hurricane Dorian as a case example, nowcasts were far
more accurate with regards to the observations. This demon-
strates that LSTM can be used to supplement, but perhaps
not replace, computationally expensive numerical wave mod-

els for forecasting extreme wave heights. As such, address-
ing the fundamental problem of phase shifting and other er-
rors in LSTM or other data-driven forecasting should receive
greater scrutiny from Small Island Developing States. To im-
prove models results, additional research should be geared
towards improving single-point LSTM neural network train-
ing datasets by considering hurricane track and identifying
the hurricane quadrant in which buoy observations are made.

1 Introduction

Ordinarily, momentum and mechanical energy are trans-
ferred to the ocean’s surface from the overlying atmosphere,
giving rise to the ubiquitous surface gravity waves. Un-
der forcing by tropical cyclones (TCs), these waves become
extreme and pose significant risks to coastal communities.
As such, the study of TC-induced extreme significant wave
heights (SWHs) is at the current forefront of research and
is traditionally accomplished by using an array of numerical
models (Shao et al., 2019; Chao et al., 2020; Hu et al., 2020).
However, although hindcasting, nowcasting, and forecasting
(Alina et al., 2019; Cecilio and Dillenburg, 2020) can be per-
formed using these models, they are all disadvantaged in that
they all require large investments in high-performance com-
puting resources, technical and scientific expertise, and cru-
cially, time. For the Small Island Developing States (SIDS)
and coastal communities of the Caribbean Sea (CS) which
have yet to significantly invest in numerical modeling ca-
pabilities, other computationally cost-effective measures are
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required for wave height predictions. Consequently, alterna-
tives are high priority. Recent research into methodologies
based on artificial intelligence (AI) has shown that these tech-
niques are highly effective at forecasting wave properties
with minor computational expense, even under TC-forced
states (Qiao and Myers, 2020, 2022).

Demonstrating, Chen et al. (2021) constructed a random
forest (RF) supervised learning classifier to generate a sur-
rogate for the Simulating Waves Nearshore (SWAN) third-
generation numerical model and reduced the required com-
putational time by a factor of 100. Wu et al. (2020) con-
sidered a physics-based machine learning model in conjunc-
tion with an artificial neural network for predictions of SWH
and peak wave period for which wind forcing and initial
wave boundary conditions are considered inputs. Campos
et al. (2021) used RF to select wind and wave variables to
enhance wave forecasts. They found that RF was able to
select the best forecast only in very short ranges using in-
puts of SWH, wave direction, and period. However, vari-
able selection for longer forecasts (5 d and above) was much
less certain. Huang and Dong (2021) improved upon the
short-term prediction of SWH by decomposing determinis-
tic and stochastic components using a complete ensemble
empirical-mode decomposition (CEEMD) algorithm and re-
currence quantification analysis. A similar study by Zhou et
al. (2021a) demonstrated that combining EMD and the long
short-term memory (LSTM) network could also reduce SWH
forecasting errors in the CS.

These methods are also effective under TC conditions.
Important for the present study, Chen et al. (2020) applied
a machine learning method to perform probabilistic fore-
casting of typhoon-forced coastal wave heights and found
that the model could, based on wave height data and an ar-
ray of typhoon characteristics, generate the predicted confi-
dence interval that enclosed observed wave heights. Meng et
al. (2021) considered introducing a deep learning method for
long-term predictions of TC-forced nearshore wave heights.
The bidirectional gated recurrent unit network was identified
as an effective model for real-time and 24 h ahead predic-
tions. Wei and Cheng (2020) developed a two-step wind–
wave prediction model to predict wind speed and wave height
under typhoon conditions and compared results with a one-
step approach. It was determined that deep recurrent neural
networks could be used for forecasting in either case, but the
two-step approach was more effective. Zhou et al. (2021b)
used the convolutional LSTM (ConvLSTM) network to pre-
dict TC-induced SWHs in the South China Sea and found
that up to a 12 h forecast horizon, the correlation between
forecasted values and observations could reach 0.94.

Recently, Bethel et al. (2021a) used LSTM to eliminate
gaps in either surface wind speed or SWH by using one vari-
able as a predictand to forecast its counterpart. While mean
states were the focus of that study, one hurricane was used
to demonstrate the methodology’s effectiveness under ex-
treme states. This study continues along that path to gener-

Table 1. List of National Data Buoy Center buoys and their statis-
tics.

Buoy Buoy Latitude Longitude Anemometer Water
no. ID (◦ N) (◦W) height (m) depth (m)

1 42 002 26.055 93.64 3.8 3088
2 41 010 28.878 78.485 4.1 890
3 41 043 21.030 64.790 4.1 5362
4 41 046 23.822 68.384 3.8 5549
5 41 047 27.514 71.494 3.7 5321
6 41 048 31.831 69.573 4.1 5394
7 41 049 27.490 62.938 4.1 5459
8 42 056 19.820 84.945 4.1 4554
9 42 057 16.908 81.422 3.8 377
10 42 058 14.776 74.548 3.8 4100

ate an LSTM-based forecast model exclusively for hurricane-
forced SWHs in the CS using a set of input variables. This
is deemed important for assessing and mitigating the risk of
catastrophic losses of life and economic productivity due to
hurricanes as seen most recently with the 1 September 2019
landfall of Hurricane Dorian in The Bahamas.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the data and methodology employed. Sec-
tion 3 presents the main findings of this study. Sections 4 and
5 provide a discussion and the conclusion, respectively.

2 Data and methodology

2.1 Observational data

This study employs 10 buoys located throughout the CS,
Gulf of Mexico, and western Atlantic Ocean (Fig. 1; Ta-
ble 1) that are owned and operated by the National Data Buoy
Center (NDBC; https://www.ndbc.noaa.gov/, last access: 10
July 2021). Acquired variables include observations of sur-
face wind speed and SWH. Gaps in buoy observations were
processed using the insertion of WaveWatch III reanalysis
data acquired from the Pacific Islands Ocean Observing Sys-
tem (https://coastwatch.pfeg.noaa.gov/, last access: 10 July
2021). A total of 20 hurricanes identified from 2010–2020
were used and split into LSTM training and test datasets
(Table 2). Hurricane statistics were acquired from the hurri-
cane database maintained by the National Hurricane Center
(https://www.nhc.noaa.gov/, last access: 10 July 2021).

In some cases (e.g., Earl, 2010; Igor, 2010; Dorian, 2019;
Delta, 2020), the same hurricane was observed multiple
times along its track. To increase the total length of the
LSTM training and test sets, these data segments were ar-
ranged into a single time series. Additionally, cases such
as Hurricane Humberto (2019) were explicitly excluded as
swell contamination of the wave field could potentially lead
to poor forecasts despite its classification as a major hurri-
cane, large effects on the marine environment (Avila-Alonso
et al., 2021), and damage to the British overseas territory
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Figure 1. Geographic map of the Caribbean Sea, Gulf of Mexico, and western Atlantic Ocean with the best tracks of each studied hurricane
and National Data Buoy Center (NDBC) buoy locations (black triangles). Best tracks from model training hurricanes are given in black,
while the test best tracks are given in yellow, blue, and green for Hurricanes Dorian, Sandy, and Igor, respectively. Numbered from 1–10, the
NDBC buoys employed are buoys 42 002, 41 010, 41 043, 41 046, 41 047, 41 048, 41 049, 42 056, 42 057, and 42 058, respectively.

of Bermuda. Indeed, when a recently developed empirical
wind–wave model for the CS was applied to Hurricane Hum-
berto (2019) by Bethel et al. (2021b), observations of wind
speed were a very poor predictor of the wave height, and
thus, given that surface wind speed and SWH are being used
jointly here, worsening of LSTM predictions using Hurricane
Humberto (2019) in the training dataset is natural. Unfortu-
nately, it may not be possible to know a priori the existence of
swell that may interfere with linear wind–wave relationships,
and this is a disadvantage of the current model.

3 Methodology

3.1 The long short-term memory network

Originally developed by Hochreiter and Schmidhuber
(1997), the LSTM network belongs to a class of recurrent
neural networks (RNNs). Along with its variants, LSTM has
been widely used in forecasting and data reconstruction stud-
ies (Kim et al., 2020; Bethel et al., 2021; Gao et al., 2021; Hu
et al., 2021; Jörges et al., 2021). It has also been coupled with
other machine learning tools, neural networks, and numeri-
cal models (Choi and Lee, 2018; Ali and Prasad, 2019; Fan
et al., 2020; Guan, 2020). LSTMs have an advantage over
traditional feed-forward neural networks and other RNNs in
that they can selectively remember patterns in data. This is
achieved by a series of forget (ft ), input (it ), and output (ot )
gates. Data passing through these gates are processed using
the sigmoid function (σ ) and the Hadamard product operator

(σ ; Yu et al., 2019). Each gate may be computed as follows.

ft = σ (Wxfxt +Whfht−1+ bf) (1)
it = σ (Wxixt +Whiht−1+ bi) (2)
ot = σ (Wxoxt +Whoht−1+ bo) (3)
gt = tanh

(
Wxgxt +Whght−1+ bg

)
(4)

ct = ft � ct−1+ it � gt (5)
ht = ot � tanh(ct ) (6)

Here, W is each layer’s assigned weight, xt is the input time
step t , b is the bias, c is the cell state, and tanh is a hyperbolic
tangent function.

In sequence, the forget gate is used to delete past informa-
tion, with decisions on which information should be deleted
defined as the value obtained from estimating the sigmoid
following receiving ht−1 and xt . The sigmoid function out-
put ranges from 0 to 1 so that if the value is 0, information on
the previous state is completely deleted, and if 1, information
is completely preserved. The input gate saves current infor-
mation and is processed alongside ht−1 and xt before being
applied to the sigmoid function. The resulting information is
then processed with the hyperbolic function and Hadamard
product operator before being sent out of the input gate. The
strength and direction of information storage in the current
cell are represented by it and gt , which respectively range
from 0 to 1 and −1 to 1.

LSTM is set up with four layers that correspond to a time
step of four. The recursive linear unit (ReLu) was used as the
activation function to maximize the model’s ability to cap-
ture nonlinearities. The adaptive moment estimation (Adam)
optimizer is used to compute adaptive learning rates. The
number of epochs was set to 100 and the batch size set to

https://doi.org/10.5194/os-18-419-2022 Ocean Sci., 18, 419–436, 2022



422 B. J. Bethel et al.: Forecasting hurricane-forced significant wave heights with an LSTM network

Table 2. Formation and dissipation dates, minimum air pressures, and maximum wind speeds of the 20 hurricanes used in this study.

Dataset Hurricane Formation Dissipation Minimum air Maximum wind
(YYYY) date (MM/DD) date (MM/DD) pressure (hPa) speed (m s−1)

Training set Earl (2010) 8/25 9/5 927 63.8
Irene (2011) 8/21 8/30 942 54.16
Katia (2011) 8/29 9/12 942 61.1
Ernesto (2012) 8/1 8/10 973 43
Cristobal (2014) 8/23 9/2 965 38.8
Gonzalo (2014) 10/12 10/20 940 63.8
Bertha (2014) 8/1 8/16 998 36.1
Joaquin (2015) 9/28 10/15 931 69.4
Matthew (2016) 9/27 10/7 934 75
Jose (2017) 9/5 9/25 938 69.4
Maria (2017) 9/16 10/2 908 77
Irma (2017) 8/30 9/14 914 79.16
Florence (2018) 8/31 9/18 937 66.6
Nana (2020) 9/1 9/4 994 33.3
Teddy (2020) 9/12 9/24 945 66.1
Delta (2020) 10/4 10/12 953 61.1
Isaias (2020) 7/30 8/5 986 41.6

Test set Dorian (2019) 8/24 9/7 910 82.7
Sandy (2012) 10/22 11/2 940 51.38
Igor (2010) 9/8 9/23 924 69.4

Figure 2. Architecture of the long short-term memory neural net-
work cell.

three. Throughout each experiment, the operating parame-
ters were held constant. These settings were chosen after
experiments (not shown) as they produced the best results
while avoiding overfitting. Similar settings can be found in
Bethel et al. (2021a) and Zhou et al. (2021a, b). The data
were partitioned along a 70/30 split into training and valida-
tion datasets. For clarification, here, and only here, the word
“dataset” should be interpreted as a given test hurricane (the
test set hurricanes in Table 2). A general model is trained us-
ing the training set hurricanes in Table 2, but the model is
specified to a given test set hurricane using 70 % of its time
series, and the remaining 30 % is used to validate the fore-
cast.

3.2 Wind speed extrapolation

As seen in Table 1, no buoy measured wind speed at the stan-
dard 10 m height, and thus wind speeds were adjusted to this
height using the logarithmic wind profile:

U10 = Ux
ln(10/Z0)

ln(x/Z0)
, (7)

where Ux is the wind speed measured at a given buoy’s
anemometer height, x is a given buoy’s anemometer height,
and Z0 is the roughness length (0.0002; Golbazi and Archer,
2019).

3.2.1 Performance indicators

Three commonly used statistical metrics are used to as-
sess forecast efficacy: correlation coefficient (R), root mean
square error (RMSE), and mean absolute percentage error
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(MAPE). Their equations are as follows.

R = 1−

Ni∑
i=1
(xi − xi)(ẋi − ẋi)√

Ni∑
i=1
(xi − xi)2

Ni∑
i=1
(ẋi − ẋi)2

RMSE=

√√√√√ Ni∑
i=1
(xi − ẋi)

2

Ni

MAPE=
1
Ni

Ni∑
i=1

∣∣∣∣ |xi − ẋi |xi

∣∣∣∣× 100% (8)

Here, xi and ẋi are the observed and forecasted SWH (m),
respectively. Ni is the total number of observations, and the
overbar denotes averages.

4 Results

4.1 Time series analysis

To evaluate forecast efficacy, time series of the observed
and LSTM-forecasted, hurricane-forced SWHs for Hurri-
canes Dorian, Sandy, and Igor are given in Figs. 3–5, re-
spectively. Due to the lack of nearshore buoy observations
within The Bahamas, no observations were made when Hur-
ricane Dorian made landfall on Abaco island on 1 September
2019. NDBC buoy 41 010 nevertheless observed the growth
of SWH under the influence of the hurricane several hundred
kilometers away. In Fig. 3, the time series of observed SWH
is compared with the nowcast (0 h, Fig. 3a; 3, 6, 9, and 12 h
forecasts, Fig. 3b–e, respectively). In Fig. 3a, it can be ob-
served that there is an extremely tight fit between the fore-
casts and observations of SWHs forced by Hurricane Do-
rian at the start of wave growth from ∼ 3.5 m to just un-
der 7 m. However, at closer inspection, it can also be seen
there are periods (e.g., at 42 h after 15:00 UTC 1 Septem-
ber) during which the LSTM nowcast is unable to capture
the extremely fine details. This is because in addition to er-
rors introduced by LSTM’s computations, there are also far
too few examples of high-frequency components of the sig-
nal that the model could learn from and reproduce. Even
following preprocessing using empirical-mode decomposi-
tion, high-frequency components of original SWH signals
remain a challenge for LSTM (Zhou et al., 2021a). Never-
theless, this represents a discrepancy of far less than 1 m and
is thus of very little importance when considering estimates
of the wave state. When forecasts are performed on a 3 h
horizon, however, discrepancies between observations and
the forecast grow significantly larger; at different times, fore-
casted SWHs both underestimate and overestimate the obser-
vations. This phenomenon is especially noticeable at the 40
and 50 h marks after 15:00 UTC on 1 September. At the 40 h

mark, SWHs were observed by buoy 41 010 at approximately
5.5 m, but LSTM predicted a height of only approximately
4.2 m. The difference between the two clearly exceeds 1 m.

As total wave energy (P) is extremely sensitive to SWH
(i.e., P ∝H 2

s Tp, whereHs is the SWH and Tp is the wave pe-
riod), even minor underestimations of the wave height would
lead to radically different energy output. Similarly, at the
50 h mark, SWH was measured at approximately 5.6 m, but
LSTM forecasted a wave height of approximately 6.5 m. This
overestimation would produce the same radically different
energy output as the observations. The same phenomenon
can still be observed for the 6, 9, and 12 h forecast hori-
zons respectively presented in Fig. 6c–e, but at a significantly
exacerbated scale. In each case, at the tail end of the fore-
casts (35+ h after 15:00 UTC 1 September), the distance be-
tween the observations and forecasts widened as the maxi-
mum wave height increased.

Identical to Hurricane Dorian, nowcasts of Hurricane
Sandy were most efficient at reproducing the observations
(Fig. 4a). Interestingly, though there are some slight differ-
ences, LSTM was still able to capture fine-scale increases or
decreases in SWH. As the forecast horizon is extended to 3 h
in Fig. 4b, however, those fine-scale details were increasingly
missed, though the general wave growth and decay trends
were captured. In Fig. 4c for the 6 h forecast horizon and be-
fore the 40 h mark after 20:00 UTC on 10 September, LSTM
nearly consistently underestimated wave heights. Following
this point at the peak of the storm, LSTM virtually captured
the observed SWH, although fine-scale details were com-
pletely missed. During the wave height decay stage, LSTM-
forecasted wave heights overestimated the observations, but
this discrepancy hovered at ∼ 0.5 m and were therefore not
as extreme as the discrepancies seen during Hurricane Do-
rian at the same 6 h forecast horizon (Fig. 3c). In Fig. 4d and
e where the 9 and 12 h forecast horizons are compared with
observations, the differences between them is significantly
larger than as compared to the 0 h nowcast or the 3 and 6 h
forecast horizons of Fig. 4a–c.

At its most extreme, the difference between the forecasted
(∼ 6 m) and observed (∼ 9 m) SWH reached a staggering 3 m
at the 32 h mark after 20:00 UTC on 24 October. However,
8 h later at the peak of the storm, LSTM was once again able
to predict the observed SWHs more adequately. Although
LSTM was able to capture the general decrease, it largely
overestimated the SWH as wave heights began to decrease
with the passing of the storm. This overestimation was mea-
sured at approximately 2 m at the 90 h mark after 20:00 UTC
on 24 October.

Although Hurricanes Dorian and Sandy, like Hurricane
Igor, were extremely powerful systems, Igor spent most of
its time in the Atlantic Ocean far away from any landmasses.
Perhaps, then, the maximum wave height was allowed to
grow to just under 11 m as an extremely long, uninterrupted
fetch and duration would have been conducive for this wave
growth. This is, of course, tempered by wind energy trans-
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Figure 3. Time series of Hurricane Dorian observed and LSTM-forecasted SWH (m) at the (a) 0, (b) 3, (c) 6, (d) 9, and (e) 12 h horizons
measured at buoy 41 010.

Figure 4. Same as Fig. 3, but for Hurricane Sandy (2012) measured at buoy 42 058.

fer rates and energy saturation of the wave field (Liu et al.,
2008; Hwang and Fan, 2017; Babanin et al., 2019), in ad-
dition to balancing and decay by dissipative forces (Allah-
dadi et al., 2019; Rollano et al., 2019; Tamizi et al., 2021).
In Fig. 5, similar to the previous two examples, the LSTM
nowcast (Fig. 5a) produced exceptionally accurate results for
Hurricane Igor (2010) with regards to the observations.

This is even true at the peak of the storm at the 50 h
mark after 07:00 UTC on 18 September when wave heights
reached a maximum of just under 10 m. As the forecast hori-
zon increased, however, the same pattern of forecast qual-
ity deterioration could be observed: in Fig. 5b at the 3 h
horizon. Although LSTM was able to capture the general

trend throughout the time series, LSTM’s predictions were
slightly out of phase with the observations in its estimation
of the point at which the storm generated its maximum wave
height (50 h after 07:00 UTC on 18 September). This phe-
nomenon becomes increasingly apparent in the 6 h (Fig. 5c),
9 h (Fig. 6d), and 12 h (Fig. 5e) forecast horizons. Neverthe-
less, at the tail end of the time series, regardless of the fore-
cast horizon, LSTM produced highly accurate predictions of
SWH under forcing by Hurricane Igor (2010).

As the problem is most noticeable here, the problem of
LSTM phase shifting during its time series forecasting will
be discussed. From Fig. 3, it should be clear that there are
lags in forecasts compared to the observation for Hurricane
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Figure 5. Same as Fig. 3, but for Hurricane Igor (2010) measured at buoys 41 048 and 41 049.

Figure 6. Estimated lags due to phase shifting of forecasted time
series for Igor (blue) and Sandy (red).

Igor. This is also observable, but to a much smaller degree,
in Fig. 4 for Hurricane Sandy. Consequently, autocorrelations
between time series were estimated and with lag results are
presented in Fig. 6. Hurricane Dorian is not shown as its lags
were all 0 for each forecast horizon. There, it can be observed
that for Hurricane Sandy, the lags increased from 0 h at the
nowcast (0 h) and 3 h forecast to 1 h at the 6 h forecast and
continued to increase to 4 h at the 12 h forecast. Similarly,
for Hurricane Igor, there was also no lag between the time
series from the nowcast (0 h) and 3 h forecast, but over time,
lags gradually increased from 2 h at the 6 h forecast horizon
to up to 7 h at the 12 h forecast horizon. This occurs because
the further in time predictions are made, errors at each time
step build upon the previous prediction error, thus shifting
forecast values.

Curiously, the problem of phase shifting and increasing
lags over forecast horizon time may also be related to the
length of the time series for a given hurricane event. During

experiments, it was noted that as the number of wave height
events recorded by a buoy during a hurricane increased, the
severity of phase shifting also increased alongside observed
lags. Data-driven methods such as LSTM, while they can
learn and reproduce the relationships of a variety of climate
variables and are therefore suitable for forecasting, are prone
to phase shift errors, oscillations, and failures (Kaji et al.,
2020; Morgenstern et al., 2021). Hurricane Igor possessed
the longest time series, and as such, its phase shift errors
were most severe, leading to the largest lags between SWH
forecast and observation time series. Unfortunately, this and
other errors are inherent to LSTM and may require additional
experimentation in modifying the input time series as Mor-
genstern et al. (2021) noted that structural changes to LSTM
by the usage of encoder–encoder architectures or offsetting
the start of forecasts to the forecast horizon of interest pro-
duced no noticeable positive change. While phase shifts and
lags represent rather large disadvantages for this model as
it will not be able to accurately predict the timing of, for
example, maximum wave heights, this appears to only be a
problem at extended forecast horizons (i.e., 6 h and beyond).
Nevertheless, the lags are all well within 12 h, and thus, al-
though this model should not be depended upon to the ex-
clusion of other forecasting methods, it can still give sev-
eral hours of advance warning to coastal communities and
regional governments to make minor changes to hurricane
protection plans.

4.2 Histogram analysis

Precise and not merely accurate estimates of hurricane-
forced SWHs have the potential to enhance risk assessments
and mitigation strategies as these systems make landfall or
approach offshore structures (Hatzikyriakou and Lin, 2017;
Marsooli and Lin, 2018; Masoomi et al., 2018; Guo et al.,
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Figure 7. Histograms of Hurricane Dorian observed (red) vs. forecasted (blue) SWH (m) at the (a) 0, (b) 3, (c) 6, and (d) 12 h forecast
horizons. Results for the 9 h forecast are presented in Fig. S1.

2020; Song et al., 2020). This first section investigates the
distribution of forecasted SWHs in comparison with obser-
vations for hurricanes Dorian, Sandy, and Igor. In Fig. 7,
histograms of observed and forecasted SWHs under forcing
by Hurricane Dorian are presented. In Fig. 7a, it can be ob-
served that for the 0 h SWH nowcast, the model nearly ex-
actly matched observations at the 3–4 m bin but minutely un-
derestimated the observations at the subsequent 4–5 m bin.
Alternating overestimations and underestimations occurred
for the 5–6 and 6–7 m bins, but unfortunately, overestima-
tions were most severe at the > 8 m bin. There were no ob-
served occurrences of wave heights over 8 m, but the model
incorrectly predicted their existence.

In Fig. 7b, there is relatively good agreement between
the forecasted and observed SWHs, but discrepancies be-
tween them become increasingly apparent. Though at the
0 h forecast in Fig. 7a forecasted and observed SWHs ex-
actly matched, LSTM underestimated the frequency of 3–4 m
wave heights but exactly matched the frequency of slightly
higher (4–5 m) waves. LSTM underestimations continued
through the 6–8 m bins, but again, the model overestimated
the frequency of waves higher than 8 m. This trend remains
consistent at the 6 and 9 h forecasts in Figs. 7c and S1, but at
the 12 h forecast in Fig. 7d, excluding the 6–7 and> 8 m bins
wherein LSTM respectively exactly matched and overesti-
mated the observations, underestimations of the frequency
of other wave heights occurred at all other bins.

Likewise, Fig. 8 presents histograms of observed and now-
casted or forecasted SWHs as forced by Hurricane Sandy. In
Fig. 4a, while the maximum wave heights forced by Hur-
ricane Sandy (∼ 9 m) exceeded those of Hurricane Dorian
(∼ 8 m), LSTM was still able to adequately predict the wave
height distribution. However, alternating patterns of under-
estimations and overestimations of the frequency of wave
heights can still be observed. In Fig. 8a, the 0 h nowcast un-
derestimated the observations from the 2–3 m up to the 4–5 m
bins before abruptly overestimating all remaining bins, with
> 8 m being the most severe case.

In Fig. 8b at the 3 h forecast horizon, results are largely im-
proved over the 0 h nowcast, but underestimations through-
out most of the wave height bins continue. The exception to
this remains the overestimation of the frequency of the high-
est (i.e., > 8 m) wave heights. The case remains the same for
Figs. 8c–d and S3 at the 6, 9, and 12 h forecast horizons.

Results for Hurricane Igor are presented in Fig. 9. Here,
Igor produced SWHs that exceeded either Hurricane Dorian
or Sandy, but interestingly, regardless of the forecast horizon,
LSTM was able efficiently (but still imperfectly) forecast the
wave height distribution, even at wave heights up to 9–10 m.
However, identical to the previous hurricane cases, the fre-
quency of maximum wave height predictions greater than
10 m is overestimated. Throughout the forecast horizons, nat-
urally, the 0 h forecast produced the best results (Fig. 9a). De-
terioration of the forecasted wave height frequency and mag-
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Figure 8. Same as Fig. 7, but for Hurricane Sandy. Results for the 9 h forecast are presented in Fig. S3.

nitude increased steadily from the 3, 6, 9, and 12 h forecast
horizons as shown in Figs. 9b–d and S6.

Consistent features of the model are its apparent underes-
timations and overestimation of both the frequency of wave
heights and their magnitudes (Figs. S2, S4, and S6). Specif-
ically, the model can underestimate wave heights anywhere
by 0.5−∼ 2 m in the cases of Dorian (Fig. S2) and Sandy
(Fig. S6) but also overestimate heights by 2–3.5 m. With re-
gards to Igor, this phenomenon is even more severe with
underestimations ranging from 0.5−∼ 3 m and overestima-
tions reaching ∼ 4 m. With regards to the overestimations,
this may indicate that the training dataset contains too many
examples of very high wave heights, which thus necessitates
the inclusion of less powerful hurricanes for model training.
Though counterintuitive, this is deemed required as wave
growth under hurricane forcing is not merely a function of
the maximum wind speed. Indeed, an array of factors which
include, but are certainly not limited to, the specific tracks,
translation speed and environment (e.g., obstacles reducing
fetch and duration), or modulating factors (e.g., surface cur-
rents) all have an impact on wave growth, maintenance, and
decay (Drost et al., 2017; Zhang and Oey, 2018; Hegermiller
et al., 2019). Thus, if less powerful hurricanes are considered
in the training dataset as a control (i.e., minimizing the max-
imum wind speeds available to grow surface waves, regard-
less of environment or surface-wave-modulating factors), the
probability of preferentially populating the training set with
large waves can be decreased. An added benefit would be the

inclusion of low wave heights to aid in minimizing underes-
timation errors.

4.2.1 Total model performance

Overall forecast quality can be assessed through the statisti-
cal metrics of R, RMSE, and MAPE, with results for each
hurricane illustrated graphically in Fig. 10. The full range
of statistics is available in Table 3. In Fig. 10, it can be ob-
served that regardless of hurricane, model forecast effective-
ness (R) hovered near a perfect 1 but naturally deteriorated
over time. By the 3 h horizon, the three cases diverged from
one another in reflectance of each hurricane’s characteristics.
By the 12 h horizon, the model was able to maintain accura-
cies above 0.8 in the majority of cases, which demonstrates
that the model remained highly effective at predictions over
a 12 h time frame. Errors are also minimal: within a 6 h fore-
cast, RMSEs in all cases can be maintained under 1 m, but
this increases to just under 1.6 m after a further 6 h. Thus,
it is suggested that short-range 0–6 h forecasts be prioritized
over 12 h when precision rather than accuracy is required.
Moreover, out of the hurricane cases, Hurricane Sandy’s R
performance decreased more rapidly than either Hurricane
Dorian or Igor. This may be related to the hurricane’s track
through the central Caribbean Sea (Fig. 1). There, both the
Caribbean low-level jet (CLLJ) and Caribbean Current flow
in the atmosphere and ocean, respectively.

It is thought that rather than Sandy’s induced wave prop-
erties being affected by CLLJ, which would have its nor-
mal zonal (with the main axis at 15◦ N) flows disrupted
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Figure 9. Same as Fig. 7, but for Hurricane Igor (2010). Results for the 9 h forecast are presented in Fig. S4.

Figure 10. LSTM model forecast performance in terms of R (blue) and RMSE (red) compared with the observations for Hurricanes Dorian,
Sandy, and Igor.

by the hurricane itself, the Caribbean Current would un-
doubtedly have changed hurricane-induced wave properties.
Wave–current interactions have been widely demonstrated to
change surface wave properties in a variety of scenarios in-
cluding, but not limited to, tidal flows (Hopkins et al., 2015),
large-scale current structures such as the Loop Current, and
eddies (Romero et al., 2017), as well as hurricane-induced
wave interactions with large-scale currents (Sun et al., 2018;
Hegermiller, et al., 2019), which is relevant for this discus-
sion,. Unfortunately, as NDBC buoy 42 058 that measured

the passing of Sandy does not possess surface current infor-
mation, this hypothesis cannot be tested using the available
dataset, nor can possible wave–current effects on hurricane
wave field prediction be quantified. The rapid decrease in
R observed for Sandy could possibly be related to surface-
current-induced changes in the wave field not accounted for
by the dual usage of wind speed and wave height as LSTM
predictors for the wave height predictand.

In Fig. 11, the MAPE for each of the hurricanes is
given. There, it can be observed that Hurricane Dorian had
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Figure 11. Mean average percentage error (%) for Hurricanes Do-
rian (red), Sandy (blue), and Igor (black).

MAPE values of 2.6 % at the 0 h nowcast and values of
7.99 %, 10.83 %, 13.13 %, and 14.82 %, respectively, at the
3, 6, 9, and 12 h forecast horizons. By contrast, Hurri-
cane Sandy (Igor) had MAPE values of 3.41 % (3.36 %),
9.15 % (9.53 %), 13.34 % (13.78 %), 17.55 % (17.70 %), and
22.08 % (21.88 %) at the 0, 3, 6, 9, and 12 h forecast horizons.
Both Hurricanes Sandy and Igor had MAPE values approxi-
mately 67 % higher than that of Hurricane Dorian at the 12 h
horizon.

The difference in MAPE, in addition to the R and RMSE,
may be due to the nature of Hurricane Dorian’s time series of
wave heights as the system approached NDBC buoy 41 010
(Figs. 1 and 3). Unlike Sandy or Igor for which wave heights
gradually grew to a peak and then declined, Hurricane Do-
rian’s profile was far more gradual, allowing LSTM to learn a
comparatively much simpler pattern for forecasting. Indeed,
unique to Hurricane Dorian, waves induced by the system
were only observed after they would have affected and been
affected by The Bahamas’ continental shelf and its north-
ern islands. As is well understood, islands induce extensive
modulation of the oceanic wave field. The presence of is-
lands may cause modifications to wave spectra, reductions in
wave heights, and triggering of wave diffraction (Cao et al.,
2018; Björkqvist et al., 2019; Passaro et al., 2021; Violante-
Carvalho et al., 2021). Additionally, as seen for Hurricane
Joaquin (2015) by Sahoo et al. (2018), nonlinear wave setup
and set-down processes occurred when the system interacted
with The Bahamas’ varying coastal bathymetry, slope, and
arching coastlines; these, in conjunction with Hurricane Do-
rian’s inherent properties (i.e., its extremely slow translation
speed of ∼ 1.4–2 m s−1), may have all played varying roles
in the significantly lower variability in the pattern of wave
growth at NDBC buoy 41 010.

4.3 LSTM model comparison

Under the influence of climate change, TCs are widely ex-
pected to occur more frequently and with greater ferocity
(Chen et al., 2020; Kossin et al., 2020; Geiger et al., 2021).

For the CS, the most recent and striking example of this phe-
nomenon occurred during the 1 September 2019 landfall of
Hurricane Dorian in The Bahamas (Zegarra et al., 2020), for
which, in addition to damage caused by extremely strong
winds and storm surge, hurricane-forced SWHs more than
likely added to the damage. Thus, predicting these and other
hurricane-forced wave events is of extreme importance, but
for Caribbean and other SIDS around the world, these pre-
dictions should be of the highest accuracy and, where pos-
sible, precise, timely, and with minimum required computa-
tional expense and expertise (Bethel et al., 2021b). In Fig. 12,
a comparison is made between the LSTM-nowcasted (0 h)
SWH from Fig. 3a with SWAN simulations of the same pe-
riod of time (for model description, see Bethel et al., 2021a)
and the observations. Top left and bottom right insets present
the position and wind speed of Hurricane Dorian at the start
and end of the time series, respectively.

Primarily, the most significant feature in the comparison
between SWAN-simulated and LSTM-nowcasted SWHs is
that, with regards to the observations, LSTM nowcasts are far
more accurate at reproducing the time series than SWAN. At
the start of the time series (up to ∼ 30 h after 15:00 UTC on
1 September 2019), the discrepancy between the LSTM now-
cast and observations is minimal, while SWAN simulations
suggest wave heights of just under 2 m, though observations
are just over 3 m. This is remarkable, as at that time, the storm
was briefly stalled over The Bahamas but waves radiating out
could still grow the SWH kilometers away at NDBC buoy
41 010. With wind speeds reaching and exceeding 80 m s−1,
wave heights were just over twice the climatological mean.
Following training by past hurricanes, LSTM nowcasts of
Hurricane Dorian were very efficient at recreating the ob-
served time series, but at this juncture, SWAN was very no-
tably unable to do so. This may be potentially caused by the
usage of low-spatial-resolution (0.5◦× 0.5◦) WaveWatch III
reanalysis to fill in gaps in buoy data (the “observations”),
thus leading to wide deviations from the SWAN-simulated
SWH that possesses a significantly higher spatial resolution
(0.2◦×0.2◦). This phenomenon, however, should not be used
to suggest that SWAN simulations are inaccurate. Indeed,
after the 30 h mark following 15:00 UTC on 1 September,
as Hurricane Dorian had migrated away from The Bahamas
and decreased in intensity, SWAN’s capability to simulate
SWHs dramatically increased, just as wave heights began
to increase when the system’s distance (and maximum wind
speeds) from buoy 41 010 decreased. Though SWAN nev-
ertheless overestimated wave height observations from 30–
50 h after the start of the time series. Again, LSTM did a
much better job at recreating the observations, but interest-
ingly, after this point, LSTM and SWAN exactly match one
another, though they both overestimate the observations. This
is a common feature between the data- and physics-driven
approaches at this time, and to resolve them, two different
approaches are required. Firstly, as previously identified, the
LSTM data-driven approach would require a few more exam-
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Table 3. LSTM forecast performance for Hurricanes Dorian, Sandy, and Igor.

R RMSE (m) MAPE (%)

Forecast hour Forecast hour Forecast hour

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

Dorian (2019) 0.99 0.95 0.92 0.85 0.84 0.16 0.51 0.74 1.00 1.24 2.6 7.99 10.83 13.13 14.82
Sandy (2012) 0.99 0.94 0.89 0.81 0.70 0.25 0.63 0.92 1.19 1.51 3.14 9.15 13.34 17.55 22.08
Igor (2010) 0.99 0.96 0.93 0.88 0.82 0.29 0.66 0.95 1.23 1.52 3.36 9.53 13.78 17.70 21.88

ples of weaker storms to provide lower wave heights in the
training dataset, and this may have a beneficial effect on min-
imizing overestimations. The physics-based SWAN model,
by contrast, could be improved by advancing model-guiding
physics (e.g., Aydoğan and Ayat, 2021), a better represen-
tation of the wind field (Christakos et al., 2020), or online
coupling with an atmospheric model such as the Weather Re-
search and Forecasting (WRF) model (Lim Kam Sian et al.,
2020). It should be readily noted at this point that improving
physics-based models require far greater computational re-
sources and expertise than optimizing training sets for data-
driven methods such as LSTM.

Demonstrating, a comparative analysis between LSTM
and SWAN for SWH modeling is presented from the per-
spectives of required model training, spin-up, and run times,
in addition to their system and expertise requirements (Ta-
ble 4). It can be noted that model training for LSTM took
approximately 10 min, while for SWAN, model spin-up took
just over half an hour. From there, LSTM forecasts took
under a second to complete in a personal-computer-based
Python-language integrated development environment (Py-
Charm), while the full run of SWAN took 3 h on two Xeon
Gold 6152 CPU processors using a modest 56 cores. The
SWAN run must also be understood in the context of the
time and expertise needed for preprocessing (i.e., preparing
input wind fields, bathymetry, and boundary conditions), in
addition to considerations of further modeler skill and ex-
perience for processing and postprocess. Though SWAN al-
lows real-world physics to be considered and can thus pro-
vide a far greater array of variables to a high degree of ac-
curacy with regards to observations, the CS and other SIDS
around the world largely do not have either the required com-
putational resources or human resources to use these and
other numerical models. Data-driven methods such as LSTM
should therefore be used to supplement existing forecasting
tools considering their ease of use, accuracy, and low exper-
tise and computational resource requirements.

This study presented a 1D case, but the work here is eas-
ily extended to a 2D case as shown by Zhou et al. (2021b).
Therein, a ConvLSTM model was used on a GeForce RTX
2080 Ti graphics card for hurricane-forced SWH training and
forecasting. Very high accuracies with regards to a Wave-
Watch III baseline were achieved. Crucially, the ConvLSTM

model training took only 2 h and forecasting took just un-
der 20 s, which easily outperforms SWAN (here) in terms of
speed and could thus be a viable alternative to the pure us-
age of numerical wave models under both mean and extreme
(i.e., TC-forced) wave conditions.

5 Discussion

Forecasting hurricane activity and its properties remains
a daunting task for the scientific community, but great
strides have been made in the development of statistical–
probabilistic methods, numerical models, and, as presented
in this study, AI techniques. The results of this study are in
strong agreement with those observed by Meng et al. (2021)
and Wei (2021) that each found that AI was highly effective
at predicting hurricane-induced SWHs. However, although
contemporary applications of AI in the forecasting of both
mean and extreme (i.e., TC-forced) wave states have relied
traditionally on singular inputs of SWH (Ali and Prasad,
2019; Zhao and Wang, 2018; Zhou et al., 2021a, b), a grow-
ing body of literature has demonstrated that the addition of
other variables such as wind speed (as done here), wind di-
rection, and other variables improves forecast effectiveness
(Kaloop et al., 2020; Zubier, 2020; Raj and Brown, 2021;
Wang et al., 2021). Uncertainties in variable selection have
also stimulated research into how to best identify predictors
for the SWH or other predictands (Li and Liu, 2020; Li et
al., 2021). These results nevertheless remain consistent with
the findings of Chen and Wang (2020) wherein the introduc-
tion of meteorological data could improve wave forecasts,
but longer forecast horizons led to underestimations of ex-
treme wave heights.

Moreover, discrepancies in forecasting outcomes between
hurricanes in this study are slight but noticeable. This may
reflect differences in LSTM training and test hurricane prop-
erties. These include hurricane wind field, translation speed,
approach angle, and track, which have been demonstrated
to be essential factors in governing wave evolution (Zhang
and Oey, 2018; Zhang and Li, 2019; Wang et al., 2020). For
example, as a hurricane translated through the study area,
wave properties in any of the four quadrants could have been
measured by the chance intersection of the hurricane and its
observing buoy (Zhang and Oey, 2018; Tamizi and Young,
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Figure 12. Comparison of SWH observations (blue), LSTM nowcast (red), and SWAN simulations (black) during (top left inset) and after
(bottom right inset) Hurricane Dorian’s landfall in The Bahamas. Red dots indicate the location of Hurricane Dorian in either case.

Table 4. Model comparative analysis.

Model Training/spin-up Model run Utilized Expertise
time (h) time (h) processor requirements

LSTM 1/6 � 1/60 Intel Core i7-10510U Minor
SWAN 1/2 3 Xeon Gold 6152 CPU Major

2020; Tian et al., 2020; Collins et al., 2021). Thus, the model
may have learned too much information from a particular
quadrant. Consequently, when encountering a different quad-
rant in a forecasted hurricane, its results would naturally be
poorer than if the model was trained solely on SWHs from
quadrant A in training sets and forecasted quadrant A in the
test set. Further experimentation would be required to iden-
tify the difference, if any, and magnitude of using data from
a particular quadrant for a hurricane in the prediction of a
different quadrant for a future hurricane. Another variable to
consider, especially in the case of hurricanes in the CS given
its numerous islands, is the morphology of the islands as they
can have a strong influence on local ocean dynamics (Cheri-
ton et al., 2021). For those hurricanes that made landfall in
The Bahamas, additional consideration should be given to the
nonlinear interactions that hurricane waves and storm surge
have on the archipelago’s narrow and steep carbonate shelf
as well as its variability due to elongated coastlines (Sahoo
et al., 2019). These can perhaps be dealt with by the special
application of a combination of a high-order spectral method
with Krylov subspace techniques as pioneered by Köllisch
et al. (2018). Another set of examples comes from Puerto
Rico and the US Virgin Islands (Joyce et al., 2019), as well
as the shallow continental shelf between India and Sri Lanka
(Sahoo et al., 2021). Consequently, training and test datasets
certainly contain data from any of a hurricane’s four quad-

rants or, in the case of Hurricanes Joaquin (2015) and Dorian,
data recorded along The Bahamas’ vulnerable, easternmost,
Atlantic Ocean facing islands. In these terms, the effect of
training data selection on overall forecast quality has yet to
be quantified and should be assessed. Following this, fine-
scale LSTM-based hurricane-forced SWH forecast models
for a given CS country or territory could potentially benefit
from increased discrimination in selecting hurricane training
data.

Accompanying increased scrutiny in building LSTM train-
ing datasets to improve predictions, the usage of physics-
based, informed, and/or infused versions of LSTM and other
artificial intelligence and machine learning algorithms (Kar-
niadakis et al., 2021; Zhang et al., 2021) may help to bridge
the gap in forecasting efficacy between physics-based third-
generation numerical wave models such as WaveWatch III
or SWAN. Crucially, this will ensure that forecasting re-
mains significantly computationally cheaper than the sole
usage of wave models. These methods have been success-
fully applied to solving differential equations in engineer-
ing (Niaki et al., 2021; Zobeiry and Humfeld, 2021), an-
alyzing blood flow (Arzani et al., 2021), and chaotic sys-
tems (Khodkar and Hassanzadeh, 2021). Relevant for the
current discussion, these methods are also finding use in
weather and climate modeling (Kashinath et al., 2021). Con-
sidering the large physical complexities in wave evolution
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under TC forcing (Tamizi et al., 2021) and the many non-
linearities that govern crucial processes (Yim et al., 2017;
Constantin, 2018; Sharifineyestani and Tahvildari, 2021), in-
corporating physics-informed or knowledge-guided machine
learning should improve and lengthen forecast efficacy and
horizons, respectively.

6 Conclusions

Precise, computationally cheap, and rapid SWH forecast-
ing under hurricane forcing is of immense value to safe-
guard lives, property, and economic development in coastal
communities, especially SIDS. This study used surface wind
speed and SWH forced by 17 hurricanes as input to the
LSTM neural network to nowcast and forecast SWHs in
the CS. Three hurricanes, Dorian (2019), Sandy (2012),
and Igor (2010), were used as test cases. Results illustrated
that the model was highly accurate at reproducing observed
hurricane-forced wave height distributions in terms of both
magnitude and frequency. However, there were discrepancies
between observations and predictions. This was most easily
observable from the comparison of observed and forecasted
SWH time series for the three test cases.

In all cases, although the nowcasts naturally produced
the best results, instances of slight underestimations and
overestimations could nevertheless be observed for many
fine-scale details. These underestimations and overestima-
tions became more severe with increasing forecast horizon
length. It has been demonstrated that wave height nowcast-
ing (i.e., a forecast horizon of 0 h) is very effective; in the
test cases of Hurricanes Dorian (2019), Sandy (2012), and
Igor (2010), R (RMSE) was measured at 0.99 (0.16 m),
0.99 (0.25 m), and 0.99 (0.29 m), respectively. Correspond-
ing values of MAPE for Dorian, Sandy, and Igor were mea-
sured at 2.6 %, 3.14 %, and 3.36 %, respectively. For forecast
horizons of 3, 6, 9, and 12 h, with regards to observations,
Dorian predictions produced R (RMSE; MAPE) values of
0.95 (0.51 m; 7.99 %), 0.92 (0.74 m; 10.83 %), 0.85 (1 m;
13.13 %), and 0.84 (1.24 m; 14.82 %), respectively. Simi-
larly, with regards to observations, Sandy predictions pro-
duced R (RMSE; MAPE) values of 0.94 (0.63 m; 9.15 %),
0.89 (0.92 m; 13.34 %), 0.81 (1.19 m; 17.55 %), and 0.70
(1.51 m; 22.08 %), respectively. Igor predictions produced
R (RMSE; MAPE) values of 0.96 (0.66 m; 9.53 %), 0.93
(0.95 m; 13.78 %), 0.88 (1.23 m; 17.70 %), and 0.82 (1.52 m;
21.88 %), respectively. In general, the model can provide
forecasts with errors of 1 m within 6 h of lead time and an
accuracy of greater than 80 % up to 12 h.

LSTM forecasts were also compared with a widely used
third-generation model, SWAN, in terms of model accuracy,
computational expense, and difficulty of usage. Using Hur-
ricane Dorian as an example, the data-driven LSTM model
was, over the short-range nowcast, far more accurate than
SWAN. This is a trend widely observed in the literature (see

Reikard and Rogers, 2011, for an excellent treatment on the
subject). SWAN nevertheless was capable of simulating ob-
served SWHs at the peak of the storm and achieved parity
here with LSTM for a brief period of time, demonstrating
that within narrow windows, LSTM can provide accurate es-
timations of hurricane-forced wave fields, but crucially at a
much faster pace and cheaper computational costs. Despite
this, the study is limited in four significant ways.

Firstly, identical to Meng et al. (2021), this study fo-
cused on forecasting hurricane-forced SWHs rather than
mean states. Although a large number of hurricanes occurred
over the study period, only a minority of these hurricanes
were observed by buoys. Thus, the LSTM training datasets
were severely limited in hurricane cases. This would have a
significant effect on reducing forecast horizons and overall
forecasting efficacy. A significantly expanded array of obser-
vational platforms in the Caribbean (i.e., both in situ buoys
and remote sensing high-frequency coastal radars) would in-
crease the likelihood of crucial hurricane wind–wave prop-
erties being observed at sufficiently high resolutions to make
future research such as this possible. Secondly, and perhaps
more importantly, as TCs and their properties rapidly evolve
in space and time (Leroux et al., 2018; Bhalachandran et al.,
2019; Chen et al., 2021), they naturally have great impli-
cations for the properties of waves they excite (Haryanto et
al., 2021). If these properties change rapidly enough, LSTM
alone would be unable to capture their characteristics. A re-
cent study by Zhou et al. (2021b) demonstrated that an in-
tegrated EMD–LSTM model is more effective at forecasting
rapidly evolving and large wave heights, but whether this re-
mains true for hurricane-forced waves remains to be seen.
Future research should investigate the efficacy of the EMD–
LSTM model in forecasting hurricane-forced wave heights,
and a ConvLSTM model fed with high-resolution wave
data should be employed for two-dimensional hurricane-
forced SWH. Thirdly, the selection of training and test sets
would have an extremely strong impact on forecasting re-
sults. Specifically, Hurricanes Dorian, Sandy, and Igor were
are all far more powerful than hurricanes within the training
set. These were chosen as it is expected that due to climate
change, hurricanes will not only become more frequent, but
also more intense. The present method demonstrates that the
model overestimates the highest SWHs of even those systems
and should continue to be effective if hurricanes become
even more extreme (and thus, the degree by which the cur-
rent model overestimates maximum SWHs should decrease).
However, if future systems are weaker than the test set (as
it is now), the problem of overestimation would be exacer-
bated. Thus, a second model that is trained with hurricanes
even weaker than the training set would be prudent and run in
parallel to ensure both scenarios are considered in future dis-
aster aversion strategies. Fourthly, LSTM phase shifting of
forecasted time series and resultant lags, seen most notably
in Hurricanes Sandy and Igor, are a problem that needs to be
rectified before the model can be used in real-world, opera-
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tional TC wave forecasting applications. Extensive research
into the mathematical principles underlying LSTM should be
conducted by SIDS in the CS and around the world to realize
low-cost but high-accuracy forecasts.
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