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Abstract. This paper assesses the reflectance difference val-
ues between the respective spectral bands in the visible and
near-infrared (VNIR) of Sentinel 2A/2B Multi-Spectral In-
strument (MSI) and Landsat 8/9 Operational Land Imager
(OLI) sensors for seagrass, algae, and mixed species dis-
crimination and monitoring in a shallow marine environment
southeast of Bahrain Island in the Arabian Gulf. To achieve
these, a field survey was conducted to collect samples of sea-
water, underwater sediments, seagrass (Halodule uninervis
and Halophila stipulacea), and algae (green and brown). In
addition, an experimental mode was established in a gonio-
metric laboratory to simulate the marine environment, and
spectral measurements were performed using an Analytical
Spectral Devices (ASD) spectroradiometer. Measured spec-
tra and their transformation using the continuum-removed
reflectance spectral (CRRS) approach were analyzed to as-
sess spectral separability among separate or mixed species
at varying coverage rates. Afterward, the spectra were re-
sampled and convolved in the solar-reflective spectral bands
of MSI and OLI sensors and converted into water vegeta-
tion indices (WVIs) to investigate the potential of red, green,
and blue bands for seagrass and algae species discrimina-
tion. The results of spectral and CRRS analyses highlighted
the importance of the blue, green, and near-infrared (NIR)
wavelengths for seagrass and algae detection and likely dis-
crimination based on hyperspectral measurements. However,
when resampled and convolved in MSI and OLI bands, spec-
tral information loses the specific and unique absorption fea-
tures and becomes more generalized and less precise. There-

fore, relying on the multispectral bandwidth of MSI and OLI
sensors, it is difficult or even impossible to differentiate or
to map seagrass and algae individually at the species level.
Instead of the red band, the integration of the blue or the
green band in WVI increases their power to discriminate
submerged aquatic vegetation (SAV), particularly the water
adjusted vegetation index (WAVI), water enhanced vegeta-
tion index (WEVI), and water transformed difference vege-
tation index (WTDVI). These results corroborate the spec-
tral and the CRRS analyses. However, despite the power of
blue wavelength to penetrate deeper into the water, it also
leads to a relative overestimation of dense SAV coverage
due to more scattering in this part of the spectrum. Fur-
thermore, statistical fits (p<0.05) between the reflectance
in the respective VNIR bands of MSI and OLI revealed ex-
cellent linear relationships (R2 of 0.999) with insignificant
root mean square difference (RMSD) (≤ 0.0015). Important
agreement (0.63≤R2

≤ 0.96) was also obtained between re-
spective WVI regardless of the integrated spectral bands (i.e.,
red, green, and blue), yielding insignificant RMSD (≤ 0.01).
Accordingly, these results pointed out that MSI and OLI sen-
sors are spectrally similar, and their data can be used jointly
to monitor accurately the spatial distribution of SAV and
its dynamic in time and space in shallow marine environ-
ments, provided that rigorous data pre-processing issues are
addressed.

Published by Copernicus Publications on behalf of the European Geosciences Union.



362 A. Bannari et al.: The capabilities of Sentinel-MSI (2A/2B) and Landsat-OLI (8/9)

1 Introduction

Seagrass meadows are identified as an important key for the
characterization of environmental resources in estuarine and
shallow coastal areas, and a fundamental health index al-
lowing the assessment of coastal ecosystems. The compo-
sition and density of their species depend largely on water
depth, temperature, salinity, coastal substrate material, and
light penetration (Dierssen et al., 2015). Adapted to grow in
shallow seawater down to a depth of 20 m, where approxi-
mately only 11 % of surface light reaches the bottom (Duarte
and Gattuso, 2008), they play an essential role in the sus-
tainability of global ecosystem biodiversity in most shallow
nearshore areas around the world (Den-Hartog, 1970; Kon-
stantinos et al., 2016). Moreover, the biodiversity of seagrass
provides secure habitat and food for a wide variety of ma-
rine microorganisms, improves the quality of water, and pro-
tects shorelines against erosion in the middle and lower inter-
tidal and subtidal zones (Roelfsema et al., 2009; Anders and
Lina, 2011; Yang and Yang, 2012; Morrison et al., 2014).
Like other vegetation cover, seagrass beds play an important
role in carbon storage (Novak and Short, 2014), as well as
effective removal of carbon dioxide from the “biosphere–
atmosphere” system, which significantly mitigates the cli-
mate change impacts (Duarte et al., 2013; Lyimo, 2016).
Although they occupy only 0.2 % of the world’s oceans
(Traganos, 2020), seagrass beds can store twice as much per
unit area as forests and sequester around 10 % of the total
carbon received by the oceans (Fourqurean et al., 2012).

Unfortunately, natural and anthropogenic disturbances and
disasters have led to the decline of seagrass around the world
(Green and Short, 2003; Orth et al., 2006; Grech et al., 2012;
Wood, 2012) at local and regional scales. Undoubtedly, these
causes substantially destroy the seagrass beds and biota as-
sociated in such habitats and unbalance the ecological func-
tions of coastal zones. Short et al. (2011) showed that sea-
grass habitat disappeared worldwide at a rate of 110 km2 per
year between 1980 and 2006. Hence, understanding the spa-
tial distribution of seagrass biomass, its extent, condition, and
change over time is essential for its monitoring, management,
and protection (Short and Coles, 2001; Waycott et al., 2009).
Such monitoring provides updated and accurate information
useful for the protection of several ecosystems (Leleu et al.,
2012), conservation (Hamel and Andréfouët, 2010), coastal
risk assessment (Warren et al., 2016), ecological resources
development (Boström et al., 2011), and marine spatial plan-
ning (Saarman et al., 2012; Kibele, 2017). In addition, map-
ping and inventorying the total aboveground biomass of sea-
grass and algae are important for ecosystem health assess-
ment (Short and Wyllie-Echeverria, 1996), alteration and dy-
namics in space–time (Neckles et al., 2012), biomass pro-
ductivity and its contribution to the global biosphere carbon
sink capacity (Waycott et al., 2009), and understanding the
impacts of climate change (Hashim et al., 2014).

In the Arabian Gulf, the extreme environmental condi-
tions combined with major seasonal variations in the ma-
rine environment promote the development of three seagrass
species including Halodule uninervis which is the most dom-
inant species, Halophila stipulacea that is less common, and
Halophila ovalis, which is widely scattered and rarely forms
relatively dense meadows. Along the western coast of the
Arabian Gulf, these three species are reported and several
species of marine algae are described, especially green and
brown algae (Erftemeijer and Shuail, 2012). This natural re-
source is located in shallow waters with depths ranging from
the intertidal zone to 20 m, supporting the second largest
population of dugongs (Dugong dugon) in the world (Preen,
2004); as well as a large population of green turtles (Che-
lonia mydas) and hawksbill turtles (Eretmochelys imbricata)
(Marshall et al., 2020). Unfortunately, these coastal ecosys-
tems are under continuous threats from anthropogenic activi-
ties (Waycott et al., 2009), such as reclamation and dredging
where several coastal developmental projects are constructed
and others under construction (small islands projects devel-
opment), industrial effluents, oil exploration, pipeline lay-
ing, maritime transportation, intensive circulation of com-
mercial fishing boats, pollution and discharges of seawater
desalinization and wastewater into the sea (Onuf, 1994; Dun-
ton and Schonberg, 2002; Burfeind and Stunz, 2006; Naser,
2011; Erftemeijer and Shuail, 2012). Eventually, these ac-
tivities catalyze the degradation and destruction of seagrass
species and related ecosystems. Therefore, the assessment of
seagrass conditions associated with a broad scale of benthic
species should be based on relevant and accurate information
to measure several health indicators of coastal areas to ensure
the sustainable development of these natural resources.

Previously, photo interpretation approaches based on
aerial photography have been adopted to follow seagrass
and algae species development and assessment in space
and time (Ferguson and Wood, 1990; Meehan et al., 2005;
Mount, 2007). Afterward, the first generation of satellite re-
mote sensing was used to investigate the seagrass classes’
composition, differentiation, classification, etc. (Hossain et
al., 2014; Komatsu et al., 2020). Unfortunately, these goals
were difficult to achieve accurately because the radiomet-
ric and spectral resolutions of sensors lacked the sensitivity
to discriminate among different marine vegetation species
and fragmented classes (Mumby et al., 1997; Wicaksono
and Hafizt, 2013). To improve land–water surface reflectiv-
ity and information extraction, recent developments in re-
mote sensing science and technology have led to an improve-
ment of sensors performance in spatial and spectral resolu-
tions, assuming a potential mapping of the marine environ-
ment and aquatic vegetation at the species level; obviously, if
species under investigation have distinct spectral signatures.
For instance, the Multi-Spectral Instrument (MSI) aboard
Sentinel 2A and 2B, as well as the Operational Land Im-
ager (OLI) sensors aboard Landsat 8 and 9 platforms were
designed with a significant improvement of the signal-to-
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noise ratio (SNR) and radiometric performances (Knight and
Kvaran, 2014). The availability of this new generation of
sensors offers innovative opportunities for long-term high-
temporal frequency for Earth surface observation and mon-
itoring (Mandanici and Bitelli, 2016). The free availability
of their data significantly advances the applications of re-
mote sensing with medium spatial resolutions (Roy et al.,
2014; Wulder et al., 2015; Zhang et al., 2018). Thanks to
the improvement of their spectral, radiometric, and tempo-
ral resolutions, they can expand the range of their applica-
tions to several natural resources and environmental domains
for monitoring, assessing, and investigating (Hedley et al.,
2012a, b). Moreover, the orbits of these four satellites’ con-
stellation (Sentinel 2A and 2B and Landsat 8 and 9) are de-
signed to ensure a revisiting interval time of less than 2 d
(Li and Roy, 2017; Li and Chen, 2020), thereby substantially
increasing the monitoring capabilities of the Earth’s surface
and ecosystems (Drusch et al., 2012). Their spectral reso-
lutions and configurations are designed in such a way that
there is a significant match between the homologous spec-
tral bands, i.e., closely related spectral filters position and
bandwidths (Drusch et al., 2012; Irons et al., 2012). How-
ever, depending on the sensitivity of the intended applica-
tion (Flood, 2017), the sensor radiometric drift calibration
(Markham et al., 2016), the atmospheric corrections (Ver-
mote et al., 2016), the surface reflectance anisotropy (Roy
et al., 2017), and the sensors’ co-registration (Skakun et al.,
2017; Yan et al., 2018), it is plausible that the natural sur-
face reflectances recorded by MSI and OLI sensors over the
same target in the marine environment may be different. In
addition, the relative spectral response profiles characteriz-
ing the filters (spectral responsivities) of these instruments
are not perfectly identical between the homologous bands,
so some differences are probably expected over the recorded
land or water surface reflectance values, and therefore their
data cannot be reliably used together (Bannari et al., 2004;
Van-derWerff and Van-der-Meer, 2016; Bannari, 2019). The
importance of these differences depends on the application
(spectral characteristics of the observed target) and on the ap-
proach adopted to perform time-series analyses, mapping, or
change detection exploiting these instruments (Flood, 2017).
For instance, it is plausible that the extraction of seagrass
and/or algae information in time over shallow water areas
using surface reflectances, empirical, semi-empirical, and/or
physical approaches may affect the comparison of the results.

The main objectives of this research focus on the anal-
ysis of Sentinel-MSI and Landsat-OLI homologous visi-
ble and near-infrared (VNIR) bands’ ability to distinguish
and discriminate among seagrass (Halodule uninervis and
Halophila stipulacea), algae (green and brown), and any
probable case of mixed species of seagrass and algae sampled
from the southeast area of Bahrain national water. To achieve
these, the following specific steps are considered. (1) The
first step is examination of spectral signatures in VNIR wave-
lengths and their continuum-removal transformations for po-

tential differentiation among the considered seagrass and al-
gae species and their mixture submerged in seawater at dif-
ferent coverage rates, as well as considering the sediment
substrate with bright and dark colors. (2) The second step in-
volves comparison and analysis of the difference between the
resampled and convolved reflectances in the VNIR homolo-
gous bands of MSI and OLI sensors considering all examined
samples. (3) The third step is the comparison between MSI
and OLI sensors in terms of converting the reflectances over
the considered samples at different coverage rates into sev-
eral water vegetation indices (WVIs). Finally, (4) the last step
involves the efficiency and accuracy analysis of the exam-
ined WVI to discriminate between species (seagrass, algae,
and mixed) by integrating the green and blue bands instead of
the red band. Further, according to these analyses’ results, it
will be clear whether it is possible for these sensors to differ-
entiate between seagrass and algae effectively and precisely
at the species level or simply and generally to discriminate
among submerged aquatic vegetation (SAV) cover at differ-
ent density classes. Moreover, to place this research in the
international context, the following section reviews the use
of remote sensing (sensors and methods) for the detection,
discrimination, and mapping of different seagrass and algal
species in many coastal locations around the world.

2 Remote sensing of seagrass and algae detection and
mapping: a review

Traditional seagrass in situ surveys require time and inten-
sive field sampling, which generally lack the spatial cover-
age and precision that are required to detect changes before
they become irreversible or are very difficult to maintain year
after year (Peterson and Fourqurean, 2001; Yang and Yang,
2012). Over the recent decades, remote sensing science and
sensor technology have played an essential role in seagrass
mapping and monitoring (Dean and Salim, 2013; Dierssen
et al., 2015). According to the literature, the mapping of the
characteristics and properties of seagrass and algae in the ma-
rine environment occurs over relatively small areas with lim-
ited variations in water depth and clarity using satellite, air-
borne, and drone remote sensing sensors (multispectral and
hyperspectral). Moreover, field and laboratory in situ mea-
surements have been conducted for calibration and valida-
tion in several environments around the world (Larkum et
al., 2006; Roelfsema et al., 2009; Hossain et al., 2014; Duffy
et al., 2018; Komatsu et al., 2020).

Under laboratory conditions using spectral measurements,
Thorhaug et al. (2007) demonstrated the near similarity in the
shape and form of the spectral signatures of three different
seagrass species with a very slight difference and pointed out
subtle differences between marine algae (green and brown)
and seagrass. On the central west coast of Florida in the US,
Pu et al. (2012) used in situ hyperspectral measurements in
the field and laboratory to analyze the spectral behavior and
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the potential discrimination among several seagrass species
according to their spatial extent and abundance, water depths,
and substrate types. They highlighted that the discrimination
of seagrass species and the percentage of SAV coverage are
affected by water depth and substrate on the measured spec-
tra. Moreover, Wood (2012) demonstrated the potential of
the synergy between the field spectra and hyperspectral data
for seagrass sensing and mapping in Redfish Bay, Texas,
in the US. Exploiting modeled and simulated data, Hedley
et al. (2012a) demonstrated that Sentinel-MSI has an im-
proved capability to detect and discriminate the marine envi-
ronment compared to Satellite pour l’Observation de la Terre
(SPOT)-4 and Landsat-ETM+. Furthermore, Fyfe (2003) re-
ported that the spectral signatures measured on harvested wet
leaves (out of water) of different seagrass species were spec-
trally distinct. However, the real marine environment condi-
tions are different from wet leaves due to water column con-
stituents including phytoplankton, suspended organic and in-
organic matter, water depth variability, and optical properties
of the underlying sediments (Pu et al., 2012).

Otherwise, NASA’s Landsat program is the earliest and
most commonly used over the past five decades. It con-
sists of a series of nine satellite missions using four types
of multispectral sensors including MSS, TM, ETM+, and
OLI (Bannari and Al-Ali, 2020). These sensors have been
used by many scientists to detect and map seagrass beds at
local and regional scales (Phinn et al., 2008; Knudby and
Nordlund, 2011; Lyons et al., 2012, 2013; Kovacs et al.,
2018). Exploring a time series of 23 annual images acquired
over the eastern banks of Moreton Bay in Australia, Lyons
et al. (2013) demonstrated how TM and ETM+ data time-
series analysis enabled seagrass spatial distribution to be ap-
propriately assessed spatiotemporally. Moreover, a regional-
scale mapping of seagrass habitat in the wider Caribbean
region was achieved with acceptable accuracies using a to-
tal of 40 scenes acquired with TM and ETM+ sensors,
and applying different images processing methods (Wab-
nitz et al., 2008). In Cam Ranh Bay in Vietnam, Chen et
al. (2016) investigated the temporal changes of seagrass beds
over 20 years (1996 to 2015) by exploiting multi-temporal
Landsat data acquired with TM, ETM+, and OLI sensors.
Dekker et al. (2005) demonstrated that TM and ETM+ in-
struments did not have sufficient spectral and radiometric
resolutions to discriminate among three seagrass species in
a shallow coastal Australian lake. Contrariwise, Dahdouh-
Guebas et al. (1999) reported the utility of TM data associ-
ated with ground truth measurements to map accurately the
distribution of seagrass and algae on the Kenyan coast. In
addition to the Landsat sensor series, the European satellites
such as SPOT-HRV were also used in combination with in
situ spectroradiometric measurements and quantitative semi-
empirical models to assess the changes in the spatial distribu-
tion of seagrass biomass in the Bay of Bourgneuf in France
over 14 years (Barillé et al., 2010). Likewise, the potential of
the Indian satellite (IRS-ID LISS-III) has been demonstrated

for mapping the seagrass meadows extent in the Gulf of Man-
nar Biosphere Reserve in India (Umamaheswari et al., 2009).

Furthermore, the first generation of commercial satel-
lites operated by the private remote sensing industry with
very high spatial resolution and narrow spectral resolutions,
such as IKONOS, Quickbird, WorldView, etc., offers com-
plementary technology for seagrass sensing and mapping.
This new technology provides an excellent compromise be-
tween spatial and spectral resolutions for information ex-
traction. In clear water seagrass habitat in the Moreton Bay
(Australia), the spatial and temporal dynamics of seagrasses
(cover, species, and biomass) have been studied from the
leaf to patch scales between 2004 and 2013 integrating nine
high-spatial-resolution images acquired with WorldView-
2, IKONOS, and Quickbird-2 and applying object-image
processing approach (Roelfsema et al., 2014). The results
showed the utility of this new spatial technology for time-
series analysis and the derivation of seagrass products that
are very useful in marine ecology management. More-
over, Knudby and Nordlund (2011) highlighted the util-
ity of IKONOS data for multi-species seagrass detection in
a patchy environment around Chumbe Island in Zanzibar
(Tanzania). Along Zakinthos Island in Greece, Pasqualini et
al. (2005) demonstrated that the SPOT-5 data with 2.5 and
10 m spatial resolutions are suitable for seagrass class clas-
sification according to the overall accuracies. In shallow wa-
ters of Moreton Bay in Australia, Phinn et al. (2008) have
shown that the spatial and spectral resolutions of multispec-
tral (Quickbird and Landsat-TM) and hyperspectral (airborne
CASI) data affect the precision of seagrass biomass differen-
tiation at the species level; i.e., when the pixel size increases,
the error gets higher. Contrary to these findings, in the Capo
Rizzuto area in Italy, Dattola et al. (2018) reported the po-
tential of the high spatial resolution of WorldView-2 com-
pared to the medium resolution of MSI and OLI for different
seagrass species characterization. In addition, to identify the
spatial distribution of seagrass beds in Xincun Bay (Hainan
province in China), Yang and Yang (2009) demonstrated that
Quickbird data are more accurate than those of TM and
CBERS (China-Brazil Earth Resources Satellite data) sen-
sors.

In addition to remote sensing sensor technologies, a va-
riety of image processing methods has been employed in
mapping seagrass spatial distribution and coverage. For in-
stance, Marcello et al. (2018) demonstrated the good perfor-
mance of support vector machine (SVM) approach compared
to spectral angle mapper (SAM) and maximum likelihood
for seagrass classification; moreover, they pointed out the
greater aptitude of hyperspectral compared to multispectral
data. Likewise, Peneva et al. (2008) reported that the max-
imum likelihood classification produced the highest overall
accuracy, while SAM yielded the lowest accuracy due to
the predominant influence of water column optical proper-
ties on the apparent spectral characteristics of seagrass and
sand bottom in the northern Gulf of Mexico. For Posidonia
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oceanica mapping in the Mediterranean region, the random
forests method gives more accurate results than SVM ap-
proaches when compared with in situ observations (Bakir-
man and Gumusay, 2020), whereas using a high spatial reso-
lution of WorldView-2 imagery acquired over a coastal area
in Florida, the neural network classifier performed better than
SVM for seagrass mapping (Perez et al., 2020). According to
Uhrin and Townsend (2016), linear spectral mixture analysis
(LSMA) can be used with photo interpretation to generate
spatially resolved maps suitable for seagrass spatial distri-
bution and provide improved estimates of seagrass classes.
Nevertheless, Chen et al. (2016) revealed the difficulty and
limitation of LSMA for mapping the fraction of scattered
and heterogeneous seagrass patches that are smaller than the
pixel size. At Ritchie’s archipelago within the Andaman and
Nicobar group of islands, Bayyana et al. (2020) showed that
Sentinel-MSI data can detect and map submerged benthic
habitat and seagrass beds present at a depth of 21 m using
random forest, SVM, and k-nearest neighbor classification
algorithms. Besides, linear regressions were established be-
tween the field truth measurements and several vegetation
indices derived from SPOT-XS, Landsat-TM, and CASI Hy-
perspectral airborne to measure the density of seagrass in the
tropical western Atlantic (Mumby et al., 1997).

Since the emergence of remote sensing as a new scien-
tific discipline in the early 1970s, vegetation indices (VIs)
were involved as radiometric measurements of the spatial
and temporal distribution of photosynthetically active land
vegetation. They use the red and near-infrared (NIR) bands,
the normalized difference vegetation index (NDVI) was pro-
posed by Rouse et al. (1974) at the dawn of remote sensing.
Since these two spectral bands are generally present on Earth
observation and meteorological satellites, and often contain
more than 90 % of the information relating to vegetation
canopy (Bannari et al., 1995), the NDVI had taken a privi-
leged place in the NASA/NOAA Pathfinder project (James
and Kalluri, 1994). Thus, it was derived daily from NOAA-
AVHRR data at the Earth scale. Subsequently, it was also
derived every day from MODIS and SPOT-Vegetation data
to produce time-series products for global vegetation assess-
ment and monitoring at the regional and global scales. Due to
this glorious history and its simplicity, the NDVI has become
the most widely used to assess vegetation canopy. Then, this
index was improved in a new version named soil adjusted
vegetation index (SAVI) by Huete (1988) to minimize the ar-
tifacts caused by soil background on the estimation of vege-
tation cover fraction by incorporating a correction factor “L”.
To overcome the limitations of linearity and saturation, to re-
duce the noise of atmospheric effects, and to remove the arti-
facts of soil optical properties, the enhanced vegetation index
(EVI) was proposed also by Huete et al. (2002). Likewise,
the transformed difference vegetation index (TDVI) was de-
veloped by Bannari et al. (2002) to describe the vegetation
cover fraction independently of the background artifacts, to
reduce the saturation problem, and to enhance the vegetation

dynamic range linearly. These indices (NDVI, SAVI, EVI,
and TDVI) were used to establish a close relationship be-
tween radiometric responses and land vegetative cover den-
sities, and they were implemented in the ENVI image pro-
cessing system.

In marine applications, several scientists tested these in-
dices for seagrass and algae discrimination and mapping.
The NDVI extracted from SPOT-HRV images coupled with
in situ spectroradiometric data provided satisfactory results
for spatiotemporal change of seagrass beds in the Bay of
Bourgneuf in France (Barillé et al., 2010). Using hyperspec-
tral data, Dierssen et al. (2015) reported the potential of
NDVI for SAV classes’ discrimination. Similarly, Zoffoli et
al. (2020) demonstrated the capability of NDVI derived from
Sentinel-MSI data in seagrass percent cover estimation and
leaf biomass mapping to characterize its seasonal dynamics
along the European Atlantic coast. However, although VNIR
bands are generally available in optical remote sensing satel-
lites, it is well known that only the visible bands can pene-
trate ocean water deeper than NIR which is largely absorbed
by the water surface (Kirk, 1994). Thus, regardless of the
concentrations of suspended sediments and/or organic mat-
ter, the visible wavelengths are used to map the marine en-
vironment. Indeed, the blue penetrates deeper (∼ 37 m) than
any other wavelengths, followed by green (∼ 30 m), then red
(∼ 7 m), and NIR (Fig. 1) penetrates the least, being attenu-
ated in the shallowest depths around 2.5 m (Komatsu et al.,
2020). Accordingly, blue, green, and red are the most suitable
for sensing seagrass and SAV (Silva et al., 2008). Thereby,
when vegetation indices are applied in the marine environ-
ment (Davranche et al., 2010; Zhao et al., 2013), always the
red band is substituted by that of blue or green. Then, dis-
cussion was initiated on WVI or aquatic vegetation indices
(AVIs). For instance, when the red was replaced by the green
in NDVI (Yang and Yang, 2009) and by the blue in SAVI
(Villa et al., 2013), these versions were named, respectively,
the normalized difference aquatic vegetation index (NDAVI
or WNDVI) and water adjusted vegetation index (WAVI).
These two new versions were found more sensitive to sea-
grass LAI and percentage cover density, and they discrim-
inated better among species of seagrass (Yang and Yang,
2009; Villa et al., 2013). To separate and map vegetation fea-
tures over some lake ecosystems in Italy, the NDAVI and the
WAVI performed suitably (Villa et al., 2014). As well, for
open-water feature delineation, Mcfeeters (1996) replaced
the difference between “NIR and red” in the NDVI with that
between “green and NIR”, and he baptized this new com-
bination the normalized difference water index (NDWI). In
the Taihu and Duck lakes in China, NDVI and NDWI were
used for wetland and SAV pattern delineation and classifica-
tion (Lin et al., 2010; Zhao et al., 2013). Likewise, the visible
atmospherically resistant index (VARI) was proposed by Gi-
telson et al. (2002a) to estimate the green vegetation fraction,
while the triangular greenness index (TGI) was developed
by Hunt et al. (2013) based on the chlorophyll absorption
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Figure 1. Vertical penetration of electromagnetic spectrum in
shallow water (adapted from Morris, 2019, https://commons.
wikimedia.org/wiki/Category:Visible_spectrum_illustrations, last
access: 5 November 2020).

features. The capabilities of VARI and TGI were examined
by Li (2018), who highlighted the advantage of VARI com-
pared to TGI for seagrass biomass mapping in Core Banks in
North Carolina in the US. Proposed by Richardson and Wie-
gand (1977), the difference vegetation index (DVI) provided
satisfactory results for mangrove cover and carbon stock es-
timation in the estuary and marine environment (Candra et
al., 2016). Moreover, the difference index between the blue
and the green bands (Diff(G-B)) showed the best fits be-
tween observed and predicted SAV, as reported by Mumby
et al. (1997).

3 Materials and methods

Figure 2 illustrates the followed methodology, which is based
on a field survey to collect samples including seawater, sed-
iments, seagrass (Halodule uninervis and Halophila stipu-
lacea), and algae (green and brown) from shallow marine
environments at different depths (0.50 to 7 m) off southeast
Bahrain Island. To simulate the marine environment, an ex-
perimental mode was established in a goniometric labora-
tory and spectral measurements were performed using an
Analytical Spectral Devices (ASD) spectroradiometer over
each separate and mixed species at different coverage rates
(0 %, 10 %, 30 %, 75 %, and 100 %), as well as simulating the
seabed with dark and bright colors. To assess the spectral sig-
natures variability that can be found among each separate or
mixed species at varying coverage rates, all measured spectra
were analyzed and transformed using continuum-removed
reflectance spectral (CRRS) approach (see Sect. 3.4). Then,
the spectra were resampled and convolved in the solar-
reflective spectral bands of MSI and OLI sensors using the

Canadian Modified Simulation of a Satellite Signal in the
Solar Spectrum (CAM5S) (Teillet and Santer, 1991) based
on Herman radiative transfer code (RTC), and the relative
spectral response profiles characterizing the filters of each
instrument in the VNIR bands. Afterward, convolved spectra
were converted into several WVI integrating the red, green,
and blue bands. For comparison and sensor differences quan-
tification, statistical fits were conducted using linear regres-
sion analysis (p<0.05) between reflectances in homologous
bands and between the examined homologous WVI derived
from the two sensors’ data considering all samples, i.e., sea-
water, sediments, seagrass, and algae species (individually
and mixed at the considered coverage rates). The coeffi-
cient of determination (R2), difference values, and root mean
square difference (RMSD) were calculated for reflectances
and all versions of investigated WVIs.

3.1 Study site

The area under investigation in this research is the water
boundary of the Kingdom of Bahrain (25◦32′ to 26◦00′ N,
50◦20′ to 50◦50′ E), which is a group of islands located in the
Arabian Gulf, east of Saudi Arabia and west of Qatar (Fig. 3).
The archipelago comprises 33 islands, with a total area of
8269 km2; 9 % of it is a land area (778.4 km2). Along the
southeast coast of Bahrain, the continental plateau extends
for kilometers with a depth of less than 1 or 2 m. The main is-
land of Bahrain is surrounded by shoal areas named “fashts”
where depths do not exceed 10 m (Bannari and Kadhem,
2017). These areas generally support a variety of species
of seagrass, algae, coral, and fishes. Moreover, they play
an important role in the hydrodynamic regime, which sup-
ports diverse biological ecosystems. Figure 3 also illustrates
the reclamation and dredging operations that have occurred
in the study area over the past three decades where several
coastal developmental projects are constructed, and others
are in progress. These anthropogenic activities strongly con-
tribute to the degradation and even to the destruction of sea-
grass species and associated coastal ecosystems.

3.2 Field sampling

Seagrass and algae samples were collected on 4 May 2017
from different meadow locations, which are characterized
by a depth range from 0.5 to 7 m in the south and south-
east waters of Bahrain (Fig. 4a). Some locations were dom-
inated with Halodule uninervis (HU), others were scattered,
and others were densely mixed between HU and Halophila
stipulacea (HS). HU is the most dominant species (Fig. 4b);
it occurs as dense or scattered meadow patches along the
shoreline (Erftemeijer and Shail, 2012). This species is like
grass with narrow leaves (around 3 mm in width and 25 cm
in length), whereas HS (Fig. 4c) has darker green leaves
reaching 10 cm in length and it is widely present in the Ara-
bian Gulf. The brown (BA, Fig. 4d) and green (GA, Fig. 4e)
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Figure 2. Methodology flowchart.

algae were accessible near the shores and shallow water
in general. In addition to the sediments (Fig. 4f) and pure
seawater samples, which were collected separately, samples
of each seagrass and algae species were selected and har-
vested in healthy and fresh conditions from several stations
within the study area. Then, they were stored separately in
non-translucent plastic bags with seawater and immediately
placed in a cooler for transportation from the field to the lab-
oratory. This was done to prevent structural and leaf pigment
damages due to the delay between sampling time and spec-
troradiometric measurements in the goniometric laboratory.

3.3 Spectroradiometric measurements

Spectroradiometric measurements were acquired in a dark
bidirectional reflectance factor (BRDF) goniometric labora-
tory above each sample separately, then above mixed sam-
ples, using an ASD spectroradiometer (ASD, 2015). This
instrument is equipped with two detectors, as presented

in Fig. 5, operating in the VNIR and shortwave-infrared
(SWIR) ranges, between 350 and 2500 nm. It acquires a con-
tinuous spectrum with a 1.4 nm sampling interval from 350
to 1000 and 2 nm from 1000 to 2500 nm. The ASD resamples
the measurements in 1 nm intervals, which allows the acqui-
sition of 2151 contiguous hyperspectral bands per spectrum.
The sensor is characterized by the programming capacity of
the integration time, which allows an increase of the SNR
and stability. The data were acquired at nadir with a field
of view (FOV) of 25◦ and a solar zenith angle of approxi-
mately 5◦ by averaging 40 measurements. The ASD was in-
stalled on a BRDF goniometric system with a height of ap-
proximately 65 cm over the target, which makes it possible
to observe a surface of ∼ 830 cm2. A laser beam was used to
locate the center of the ASD FOV. The reflectance factor of
each sample was calculated as the ratio of target radiance to
the radiance obtained from a calibrated “Spectralon panel”
according to the method described by Jackson et al. (1980).
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Figure 3. Study site (Kingdom of Bahrain), with photos illustrating landfill operations (a, b), and satellite images of the south part of Bahrain
before (c) and after (d) artificial island construction.

Moreover, the corrections were applied for the wavelength
dependence and non-Lambertian (i.e., uneven light distribu-
tion in all directions) behavior of the panel (Sandmeier et
al., 1998; ASD, 2015; Ben-Dor et al., 2015). The measure-
ments were carried out above each collected sample includ-
ing seawater, sediments, seagrass, and algae species as well
as mixed species (seagrass and algae) considering different
coverage rates (0 %, 10 %, 30 %, 75 %, and 100 %). Each
sample was placed and measured twice in black and bright
(yellow) large bowls, considering two sedimentary substrates
(dark and bright) underlying the seagrass and algae samples
that were submerged by seawater, i.e., simulating the aquatic
environment. Since the remote sensing of benthic aquatic
vegetation is mostly limited to the VNIR ranges (Fig. 1), only
the wavelengths interval between 400 and 1000 nm are con-
sidered in our analyses.

3.4 Continuum-removed reflectance spectral (CRRS)
transformation

Spectral signatures are processed and transformed using nu-
merous approaches to retrieve information about change in
absorption features (position, depth, width, and asymme-
try) of a particular target over a specific bandwidth be-
tween 350 and 2500 nm (Van-Der-Meera, 2004). To empha-
size these absorption features, many approaches were pro-
posed including relative absorption-band depth (Crowley et
al., 1989), spectral feature fitting technique, and Tricorder
and Tetracorder algorithms (Clark et al., 2003). These ap-
proaches work on the so-called CRRS approach, thus rec-
ognizing that the absorption in a spectrum has a continuum
and individual absorption features (Clark et al., 1987; Van-
Der-Meera, 2004; Clark et al., 2014). Proposed by Clark and
Roush (1984), CRRS transformation and analysis allow the
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Figure 4. Diver for sampling operation (a) and underwater photos of the considered seagrass and algae species: HU (b), HS (c), BA (d),
GA (e), and bright sediments (f).

Figure 5. Dark goniometric laboratory for ASD measurements.

isolation of individual absorption features in the hyperspec-
tral signature of a specific target under investigation, analy-
sis, and comparison. It normalizes the original spectra and
helps to compare individual absorption features from a com-
mon baseline (Clark et al., 1987). The continuum is a convex
hull fit over the top of a spectrum under study using straight-
line segments that connect local spectra maxima. The first
and last spectral data values are on the hull; therefore, the
first and last bands in the output continuum-removed data
file are equal to 1.0. In other words, after the continuum is
removed, a part of the spectrum without absorption features

will have a value of 1, whereas complete absorption would
be close to 0, with most absorptions falling somewhere in
between. The CRRS approach was used for discriminating
and mapping rock mineralogy (Clark et al., 1990; Clark and
Swayze, 1995), land vegetation cover (Kokaly et al., 2003;
Huang et al., 2004; Manevski et al., 2011), and seagrass and
SAV (Barillé et al., 2011; Bargain et al., 2012; Wicaksono
et al., 2019; Indayani et al., 2020). In this study, the contin-
uum algorithm implemented in the ENVI image processing
system was used (ENVI, 2012).

3.5 Spectral sampling and convolving in MSI and OLI
spectral bands

Since 1972, the Landsat scientific collaboration program
between NASA and USGS has constituted the continuous
record of the Earth’s surface reflectivity from space. Indeed,
the Landsat satellites series support five decades of a global
medium-spatial-resolution data collection, distribution, and
archive of the Earth’s surfaces (Bannari et al., 2004; Love-
land and Dwyer, 2012) to support research, applications, and
climate change impacts analysis at the global, regional, and
local scales (Roy et al., 2014, 2016; Wulder et al., 2015).
Benefiting from the acquired space-engineering experience,
from the heritage of Landsat instruments, and the advanced
development of technology during the last five decades, the
fourth generation of Landsat is composed of two similar sen-
sors with very high spectral and radiometric sensitivities:
OLI-1 and OLI-2 (Markham et al., 2016; Li and Chen, 2020).
OLI-1, carried aboard Landsat-8, was launched on 11 Febru-
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ary 2013, and OLI-2, aboard Landsat-9, was launched on
27 September 2021 (NASA, 2019, 2021). The OLI sensors
collect land-surface reflectivity in the VNIR, SWIR, and
panchromatic wavelengths with a FOV of 15◦ covering a
swath of 185 km with 16 d time repetition at the Equator. The
band passes are narrower to minimize atmospheric absorp-
tion features (NASA, 2014), especially the NIR spectral band
(0.865 µm). Two new spectral bands have been added: a deep
blue visible shorter wavelength (band 1: 0.433–0.453 µm) de-
signed specifically for water resources and coastal zone in-
vestigation and a new SWIR band (9: 1.360–1.390 µm) for
the detection of cirrus clouds. Moreover, compared to previ-
ous TM and ETM+ sensors using only 8 bits, the OLI de-
sign results in more sensitive instruments with a significant
improvement of the SNR radiometric performance quantized
over a 12-bit dynamic range (Level 1 data), and raw data are
delivered in 16 bits. The high performance of SNR associ-
ated with improved radiometric and spectral resolutions pro-
vides a superior dynamic range of radiance by reducing satu-
ration problems and therefore enables better characterization
of land and water surface conditions (Knight and Kvaran,
2014), especially with orbit reflective radiometric calibration
better than 3 % (Markham et al., 2014; Gascon et al., 2017).
Table 1 summarizes the effective bandwidth characteristics
of OLI-1 and OLI-2 sensors.

Otherwise, the Sentinel-2 mission is the result of close
collaboration between the European Space Agency, the Eu-
ropean Commission, industry, service providers, and data
users. It is composed of two satellites, Sentinel 2A and 2B,
that were launched in June 2015 and March 2017, respec-
tively. Both satellites are equipped with identical MSI sen-
sors to provide continuity to the SPOT missions and to im-
prove the Landsat-OLI temporal frequency (Drusch et al.,
2012). The synergy between the four sensors (MSI-2A, MSI-
2B, OLI-1, and OLI-2) significantly increases the temporal
resolution (around 2 d), offering new opportunities for sev-
eral environmental and natural resource applications, such as
the vigor of vegetation cover, emergency management, water
quality, seagrass meadows, and climate change impact anal-
ysis at local, regional, and global scales. The MSI images
the Earth’s surface reflectivity with a large FOV (20.6◦) in
13 spectral bands with several spatial resolutions from 10
to 60 m; four bands with 10 m (blue, green, red, and NIR-
1), six bands with 20 m (red edge, NIR-2, and SWIR), and
three bands with 60 m (coastal, water vapor, and cirrus). The
swath of each scene is 290 km, permitting global coverage of
the Earth’s surface every 10 d. The MSI radiometric perfor-
mance is coded in 12 bits, ensuring radiometric calibration
accuracy of better than 3 % and an excellent SNR (Markham
et al., 2014; Li et al., 2017). Table 1 summarizes the effective
bandwidth characteristics of MSI-2A and MSI-2B sensors.

As discussed above, the measured BRDF with the ASD
has a 1 nm interval, allowing the acquisition of 2151 contigu-
ous hyperspectral bands per spectrum. However, most mul-
tispectral remote sensing instruments measure integrated re-

flectance over broad bands (Eq. 1). Consequently, the aver-
age of 40 spectra measured with the ASD over each sample
was resampled and convolved to match the solar-reflective
spectral response functions characterizing the optics and
electronics of MSI and OLI instruments in the VNIR spectral
bands (Fig. 6). In this step, the resampling procedure consid-
ers the nominal width of each spectral band (Table 1). Then,
the convolution process was executed using the CAM5S
transfer radiative code (Teillet and Santer, 1991). This fun-
damental step simulates the signal received by the consid-
ered sensors at the top of the atmosphere from a surface
reflecting solar and sky irradiance at sea level, considering
the filter of each band (Fig. 6), and assuming ideal atmo-
spheric conditions without scattering or absorption (Zhang
and Roy, 2016). Accordingly, the equivalent convolved re-
flectance (ρ (λi, λs) i) over each sample was generated at the
satellite orbit altitude in homologous VNIR spectral bands of
each sensor (Slater, 1980):

ρ(λi, λs)i =

∫ λs
λi
R(λ) · S(λ)i · d(λ)∫ λs
λi
S(λ)i · d(λ)

, (1)

where ρ (λi, λs) i is the equivalent convolved reflectance of
the band “i” of each sensor, λi to λs are the spectral wave-
length ranges of the band “i” of each sensor, R(λ) is the cor-
responding reflectance at wavelength “λ” measured by the
ASD, and S(λ)i is the corresponding spectral responsivity
value of the spectral response function of the band “i” of
each sensor (Fig. 6). It is important to note that the MSI-NIR-
2 broadband (band 8: 785–900 nm) is not considered in this
study because it is not a real homologous band of OLI-NIR,
and it has a greatest reflective band difference with the OLI-
NIR (851–879 nm). The OLI-NIR spectral response function
intersects with only 20 % of the MSI-NIR-2 response func-
tion. Moreover, the MSI red-edge bands were not considered
as they are not acquired by the OLI sensor.

3.6 Data processing

In addition to remote sensing sensor technologies’ improve-
ment and innovation, a variety of processing methods has
been applied for spectral data for mapping and monitoring
seagrass and habitats in shallow coastal waters. They were
applied to highlight the seagrass and algae species’ com-
position, leaf area index estimation, percentage cover map-
ping, etc. They include matched filtering approach (Li et al.,
2012), object-based image analysis (Roelfsema et al., 2014),
adaptive coherence estimator and constrained energy mini-
mization (Li et al., 2012), artificial neural network model
(Perez et al., 2020), linear spectral mixture analysis (Uhrin
and Townsend, 2016; Chen et al., 2016), spectral angle map-
per (Peneva et al., 2008; Li et al., 2012; Marcello et al., 2018;
Wicaksono et al., 2019), classification tree analysis (Wicak-
sono et al., 2019), random forests (Bayyana et al., 2020), sup-
port vector machines (Marcello et al., 2018; Bakirman and
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Table 1. The Sentinel-MSI and Landsat-OLI effective bandwidths and characteristics (λ indicates wavelength, SNR is signal to noise ratio,
Lref(λ) indicates reference radiance, E0(λ) indicates extra-atmospheric irradiance).

Spectral bands Sentinel-MSI Landsat-OLI

λ center 1λ Pixel size SNR Lref(λ) λ center 1λ Pixel size SNR E0(λ)

(nm) (nm) (m) (w m−2 sr−1 m−1) (nm) (nm) (m) (w m−2 m−1)

Coastal 443 20 60 129 129 443 16 30 130 1895.6
Blue 490 65 10 154 128 482 60 30 130 2004.6
Green 560 35 10 168 128 561 57 30 100 1820.7
Red 655 30 10 142 108 655 38 30 90 1549.4
NIR-2 865 20 20 72 52.5 865 28 30 90 951.2
SWIR-1 1609 85 20 100 4 1609 85 30 100 247.6
SWIR-2 2201 187 20 100 1.5 2201 187 30 100 85.5

Figure 6. Sentinel-MSI and Landsat-OLI relative spectral response profiles characterizing the filters of each spectral band in the VNIR.

Gumusay, 2020; Perez et al., 2020; Bayyana et al., 2020), and
machine learning regression (Traganos, 2020; Bakirman and
Gumusay, 2020). Undeniably, these sophisticated and com-
plicated methods require extensive training information and
field endmember measurements. However, the simplicity of
empirical and semi-empirical methods based on vegetation
indices are easier to transfer between sensors and can be used
as a robust alternative compared to the complex processing
methods, because these methods are based on the knowledge
of spectral absorption features that characterize specifically
the target under investigation. Moreover, these methods have
the advantage of being reproducible, easily transferable, and
applicable in other geographic regions. Each method has ad-

vantages and limitations, especially in shallow water. In this
study, after the spectral analysis and CRRS transformation,
the capabilities and comparison of the VNIR homologous
spectral bands of MSI and OLI sensors were investigated for
seawater, sediments, seagrass, algae, and mixed species dis-
crimination at different coverage rates. Then, although the lit-
erature refers to more than 50 vegetation indices for land veg-
etation cover monitoring and characterization (Bannari et al.,
1995), only the most popular indices that have been used for
seagrass and SAV in different marine environments around
the world were retained in this study. After spectral data pre-
processing, sampling, and convolving, the TGI, VARI, and
Diff(G-B) indices were implemented and tested respecting
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their original equations, while the NDVI, SAVI, EVI, TDVI,
NDWI, and DVI indices were calculated in three versions by
integrating the red, blue, and green bands. The equations of
the considered indices are as follows:

NDVI=(ρNIR− ρRed)
/
(ρNIR+ ρRed)

(Rouse et al., 1974) (2)

SAVI=1.5 · (ρNIR− ρRed)
/
(ρNIR+ ρRed+ 0.5)

(Huete, 1988) (3)

TDVI=1.5 · (ρNIR− ρRed)
/(√(

ρ2
NIR+ ρRed+ 0.5

))
(Bannari et al., 2002) (4)

NDWI=(ρGreen− ρNIR)
/
(ρGreen+ ρNIR)

(McFeeters, 1996) (5)

EVI=2.5 · (ρNIR− ρRed)
/

(ρNIR+ 6 · ρRed − 7.5 · ρBlue+ 1)
(Huete et al., 2002) (6)

DVI=ρNIR− ρRed

(Richardson and Wiegand, 1977) (7)

VARI=(ρGreen− ρRed)
/
(ρGreen+ ρRed − ρBlue)

(Gitelson et al., 2002a) (8)

TGI=ρGreen− 0.39 · ρRed− 0.61 · ρBlue

(Hunt et al., 2013) (9)

−Diff(G-B)=ρBlue− ρGreen

(Mumby et al., 1997) (10)

The wavelength ranges of the used VNIR bands for
Sentinel-MSI and Landsat-OLI are summarize in Table 1.

3.7 Statistical analyses

As discussed previously, the respective MSI and OLI spectral
response profiles characterizing the filters of each spectral
band differ somewhat (Fig. 6). To examine the impact of this
difference, statistical analyses were computed using Statis-
tica software. The relationships between the product values
(reflectances and WVIs) derived from MSI against those ob-
tained from OLI were analyzed between homologous bands
using a linear regression model (p<0.05). As well, the R2

was used to evaluate the strength of this linear relationship.
For this process, the resampled and convolved spectra of all
samples’ reflectance data were used, and the homologous
values in VNIR bands of MSI and OLI were compared us-
ing the 1 : 1 line. Ideally, these independent variable values
should have a correspondence of 1 : 1. Additionally, the root
mean square difference (RMSD) between both sensors was

derived (Willmott, 1982; Zhang et al., 2018):

RMSD=

√∑n
i

(
vOLI
i − vMSI

i

)2
n

, (11)

where RMSD is between corresponding Landsat-OLI and
Sentinel-MSI variable values (reflectances and WVIs), “vi”
is the variable under analysis, and “i” is its index (i = 1 to
n).

4 Results analysis

4.1 Spectral and CRRS analyses

Spectral signatures of seagrass and algae species are mea-
sured separately and mixed in black and yellow large bowls
using two sedimentary substrates (dark and bright). They are
presented separately for the examined coverage rates, namely
10 %, 30 %, 75 %, and 100 % (Fig. 7a–d). Overall, the re-
flectance signatures of seagrass and algae samples are simi-
lar to those of healthy vegetation canopy. These reflectance
signatures exhibit slight absorption features near 450 nm and
others stronger between 650 and 700 nm with a minimum at
670 nm caused by the chlorophyll, as well as a significant re-
flection between 520 and 600 nm due to carotenoid pigments
and high reflectance in the NIR attributed to internal tissue
structure (700 to 900 nm). Differently from land vegetation,
the red edge is not well developed (very weak) particularly
for non-dense seagrass and algae due to high red and NIR
absorption by water molecules as shown in Fig. 1. Generally,
absorption or reflection of pigmentations between species oc-
curs in different wavelengths but the strength of absorption
gradually increases in the red as the coverage rate increases.

For scattered and low coverage (∼ 10 %), the shapes of all
spectra are similar, without the possibility to identify specific
absorption features or to separate among species according
to their spectra in the visible domain (Fig. 7a). The highest
reflectance values vary between 10 % and 15 % across NIR
wavelengths, and a difference reflectance (1ρNIR) around
5 %, while in the visible all the reflectance values are below
5 % with 1ρvisible are also < 5 %. For this low and sparse
cover, it is observed that the reflectance is influenced by spec-
tral properties of the underlying sediments, fragments of veg-
etation, light shading, etc., thus contributing to the confusion
between spectral signatures. Definitely, under such condi-
tions, it is a challenge to distinguish between seagrass and/or
algae species based only on their spectral signatures, whereas
the measurements acquired over somewhat denser coverage
rates (∼ 30 %) show analogous spectral behavior and pat-
terns with overlap among spectra in visible wavelengths (400
to 700 nm), but a slight separability between species is rela-
tively apparent in NIR (Fig. 7b).

Furthermore, unlike scattered or less dense cover
(≤ 30 %), the analysis of the dense and very dense coverage
rates (75 % and 100 %) showed that the optical properties
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Figure 7. Spectral signatures of seagrass and algae samples at different coverage rates (a: 10 %, b: 30 %, c: 75 %, and d: 100 %) and their
CRRS transformations with the filters of Sentinel-MSI VNIR bands presented in Fig. 6.
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(darkness or brightness) of the underlying substrate do not
have a significant effect on the measured spectra. For these
coverage ranges, the clear and normal behavior of vegetation
cover spectra are observed. The absorption feature is weak in
the blue (450–480 nm) but more accentuated in red (670 nm),
the reflection peak is more highlighted in green (550 nm), and
the reflectance values increase notably and gradually in NIR
with the increase of the coverage rate. Although the seagrass
has a distinct spectral response compared to the algae, espe-
cially in the green and NIR regions of the spectrum, signifi-
cant spectral differences are noted for the HU with the high-
est reflectance, followed by GA, HS, and BA. This order is
probably controlled by the leaf structures that are specific for
each type of seagrass or algae. The reflectance values in the
visible are controlled by the absorption of chlorophyll pig-
mentations in blue and red wavelengths and by the carotenoid
pigmentations in the green band. In addition, compared to HS
and BA spectra, HU and GA showed relatively strong ab-
sorption by chlorophyll in red wavelengths. This difference
is due to the nature of chlorophyll in each species. Indeed,
brown algae contain accessory pigments “fucoxanthin” and
chlorophyll “c” (Johnsen and Sakshaug, 2007), while sea-
grasses are flowering plants, and their leaves contain chloro-
phyll “b” (Cummings and Zimmerman, 2003). It is observed
also that the BA carotenoid pigments (fucoxanthin) are char-
acterized by spectral features at 630 and 650 nm that are not
present in the spectra of HS, HU, and GA (Fig. 7). However,
despite all these spectral characteristics the difference in re-
flectance values among all species (individual and mixed) is
≤ 6 % in the visible and≤ 13 % in NIR for a very dense cover
(100 %). Therefore, these results suggest that it is probably
possible for the blue, green, and NIR wavelengths to discrim-
inate among the considered seagrass and algae species if they
are homogeneous with high or very high densities.

Otherwise, the CRRS transformations are presented in
Fig. 7e–h with Sentinel-MSI relative spectral response pro-
files characterizing the filters of VNIR bands. The lower
CRRS values indicate the greatest potential spectral sepa-
rability, which means the identification of the appropriate
wavelengths to discriminate among the considered classes
of investigated species. As shown in Fig. 7e–h, the CRRS
significantly enhances the spectral separability among the
seagrass and algae classes, especially in the visible bands.
Two main absorption features are highlighted in the blue
(485–498 nm) and red (∼ 670 nm) regardless the species.
In the green, one major reflection peak is observed around
544 nm for HU and GA, one around 530 nm for HS, and three
peaks are well distinguished for BA at 578, 595, and 640 nm
(Fig. 7h). These differentiation features become clearer as
the coverage rates increase especially in blue and NIR wave-
lengths. For a low coverage rate (∼ 10 %), the strongest ab-
sorption depth is that of GA (0.46), followed by HU (0.58),
HS (0.74), and BA (0.78) in the blue (Fig. 7e). Meanwhile
in the red, CRRS pointed out that regardless of the cover-
age rate, a strong similarity is observed between HU and

GA due to their high content of chlorophyll pigmentation
with a depth of absorption around 0.29, followed by HS and
BA that are characterized by less absorption depth (∼ 0.50).
In these two waveband domains (blue and red), the absorp-
tion features become deeper with increasing coverage den-
sity. Likewise, when the cover rate of all species becomes
denser (100 %), similar absorption characteristics are exhib-
ited in the red band between HU and GA species, as well as
between HS and BA (Fig. 7h). Meanwhile in the blue and
NIR wavelengths, the CRRS highlights the distinction and
differentiation between species. On the other hand, as the
coverage increases from 10 % to 100 %, the reflection peak
in the green waveband becomes less pronounced due to the
high content of carotenoid pigment; also a strong similarity
is observed between HU and GA. Moreover, the curves of
CRRS of the mixed species occupy an intermediate position
of absorption features between the homogeneous samples,
and therefore the differentiation between absorption charac-
teristics becomes very slight. Accordingly, the discrimina-
tion between pure and mixed species becomes very diffi-
cult or even impossible. Overall, spectral and CRRS anal-
yses highlighted the importance of the blue, green, and NIR
wavelengths for seagrass and algae detection and probable
discrimination based on hyperspectral measurements. These
results corroborate the physical concept presented in Fig. 1
that the blue and green electromagnetic radiation penetrates
a deeper vertical column of water, while despite its lim-
ited penetration, the NIR shows a certain sensitivity to the
biomass density and its spatial distribution.

4.2 Resampling and convolving in OLI and MSI bands

Figure 8 illustrates the scatterplots between the resampled
and convolved reflectance values in the VNIR homologous
bands of the MSI and OLI sensors. Simulated at the top of
the atmosphere using all considered samples (seawater, sedi-
ments, seagrass, algae, and mixed species of both seagrass
and algae at varied coverage rates), they allow the analy-
sis of the difference in reflectance values (1ρ) and RMSD
due exclusively to dissimilarities in spectral response func-
tion between homologous bands. These scatterplots reveal
a near-perfect fit with 1 : 1 line expressing an excellent co-
efficient of determination (R2 of 0.999) between homolo-
gous bands with the slopes and intercepts very close to unity
and zero, respectively. Thus, the derived 1ρ values are null
for VNIR homologous bands for seawater and are insignif-
icant for dark and bright substrate sediments in all bands
(i.e., 0.009 for green and 0.002 for the coastal, blue, red, and
NIR bands). Meanwhile, for seagrass and algae (HS, HU,
GA, and BA), 1ρ varies between 0.003 and 0.02 regardless
of the coverage rate or the considered spectral band. More-
over, the achieved overall RMSD in reflectance between MSI
and OLI homologous bands considering all samples is in-
significant (≤ 0.0015) for blue, green, and red bands, and
null for coastal and NIR bands. It is also observed that all
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the bands are insensitive to the variation of the colors of
the bowls and the sedimentary substrate optical properties.
These results pointed out that MSI and OLI sensors are spec-
trally similar and can be used jointly for high temporal fre-
quency to monitor seagrass and algae dynamics in time and
space. Therefore, due to this near-perfect spectral similarity
between these instruments, our analysis in the following sec-
tions will focus only on the MSI sensor.

Figure 9 illustrates the reflectances of seagrass, algae,
and seawater resampled and convolved in VNIR bands of
MSI or OLI sensors considering each species separately
and all species at different coverage rates. Compared to the
measured hyperspectral signatures (Fig. 7), these broadband
spectra are more generalized and less precise because these
spectra lost the specific and unique absorption features of
seagrass and/or algae species caused by pigmentations as
discussed above. However, such broadband spectra retain
the same spectral pattern as the original spectra. Regardless
of the species, the graphics summarized in Fig. 9 exhibit a
similar shape and pattern but with a slight difference in re-
flectance values between species in the visible bands. If we
consider the species separately (HS, HU, GA, and BA) in dif-
ferent coverage rates (10 %, 25 %, 75 %, and 100 %), the re-
flectance difference values (1ρ) are ≤ 0.02 and insignificant
(1ρ ≤ 0.002) for pure seawater and sediments in all VNIR
bands. Hence, these species are not spectrally distinguishable
particularly in the visible whatever the coverage. Meanwhile,
if we consider all samples (seagrass, algae, and mixed) in
all coverage rates (Fig. 9e), the 1ρ values are equal to 0.03
in coastal and blue bands, 0.05 in green, 0.035 in red, and
0.21 in NIR. Except for the NIR, the calculated 1ρ values
in the visible are approximately identical to the accuracies
achieved from radiometric calibration and atmospheric cor-
rections. Therefore, relying on the multispectral bandwidth
of OLI and MSI sensors, it is difficult or even impossible to
differentiate or to map seagrass and algae individually at the
species level. Accordingly, SAV classes’ discrimination and
mapping will be discussed.

4.3 Vegetation indices’ analysis

In this third part, the NDVI, SAVI, EVI, TDVI, NDWI, and
DVI indices were implemented and analyzed in three ver-
sions each by integrating the red, blue, and green bands,
while the indices TGI, VARI, and Diff(G-B) were calcu-
lated and tested respecting their original equations. In total,
21 combinations of indices were calculated for each sensor.
The statistical analyses (p<0.05) focus on the similarity or
dissimilarity between MSI and OLI homologous indices and
their potential for seagrass and algae discrimination. Except
for the TGI and VARI indices, the results revealed an ex-
cellent linear relationship (R2 of 0.999) between MSI and
OLI products regardless of the compared index and the in-
tegrated spectral bands (red, green, and blue). Overall, the
scatterplots presented in Fig. 10 depict a very good fit to the

1 : 1 line with the slopes and intercepts very close to unity
and zero, respectively. However, despite its near-perfect lin-
earity and insignificant RMSD between MSI and OLI val-
ues (0.001), the TGI show a very weak and limited spatial
variability with a range between 0.0 for pure seawater and
0.05 for a very dense coverage (100 %) of seagrass or al-
gae (Fig. 10e). This range cannot allow the differentiation
among the marine environment classes, because this index
was not developed for biomass sensing but was designed for
crop nitrogen requirement detection. Likewise, although the
scatterplot of VARI shows an excellent coefficient of deter-
mination (R2 of 0.99), estimates of this index with the MSI
sensor exceed those from OLI, resulting in the data not fit-
ting the 1 : 1 line very well (Fig. 10f). Moreover, the differ-
ence values of VARI derived from MSI and OLI data vary
between 0.0 and 0.14 depending on the sample species and
its coverage rate, with an overall RMSD of 0.03. This result
can be explained by the fact that the VARI uses only the vis-
ible ranges of the spectrum and does not consider the NIR
band, which is the most informative about the biomass den-
sity. In addition, it was developed particularly for very dense
(100 %) wheat crops; moreover, it was designed principally
for coarse data acquired by the SeaWiFS, MODIS, MISR,
and MERIS sensors. According to Gitelson et al. (2002b),
many factors potentially decrease the accuracy of the VARI
(e.g., vegetation cover species, canopy architecture, and Sun
illumination geometry). For wheat and corn species, this in-
dex yielded RMSE of around 10 % (Gitelson et al., 2002a).
Therefore, the weaknesses raised for these two indices (TGI
and VARI) are not caused by the impact due exclusively to
the dissimilarities in spectral response function between ho-
mologous bands of MSI and OLI sensors but are due to their
mathematical concepts that are intended for a single and spe-
cific application.

Furthermore, the scatterplots presented in Fig. 10a–d show
examples of certain indices including NDWI, WAVI, water
enhanced vegetation index (WEVI), and water transformed
difference vegetation index (WTDVI). Overall, the indices
fit the 1 : 1 line very well with R2 of 0.99, slopes very close
to unity, and intercepts to zero. The indices show that the de-
rived WVI from MSI and OLI data gives similar estimates
of seagrass and algae species in a shallow marine environ-
ment. Considering all investigated samples in this study, the
interval difference values between homologous indices vary
between 0.0 and 0.01 for all versions of WTDVI, WAVI,
WDVI, and Diff(G-B), while they vary between 0.0 and 0.04
for NDWI, WEVI, and NDWI. These difference values are
satisfactory and remain equal to or less than the combined
inaccuracies of atmospheric corrections and sensor radiomet-
ric calibration. Moreover, the achieved RMSD values be-
tween MSI and OLI homologous indices are insignificant
(RMSD≤ 0.01) for all indices (Table 2) regardless of the in-
tegrated spectral band. These analyses pointed out that MSI
and OLI sensors can be combined for high temporal fre-

https://doi.org/10.5194/os-18-361-2022 Ocean Sci., 18, 361–388, 2022



376 A. Bannari et al.: The capabilities of Sentinel-MSI (2A/2B) and Landsat-OLI (8/9)

Figure 8. Scatterplots of reflectances sampled and convolved in MSI and OLI homologous spectral bands.

quency to monitor the dynamic of biophysical products in
time and space in a shallow marine environment.

Figure 11 summarizes the linear regressions (p<0.05) be-
tween the best indices and the reflectances in NIR consider-
ing all samples, i.e., seawater, sediments, seagrass, algae, and
mixed species classes with different coverage rates (10 %,
30 %, 75 %, and 100 %). The computed indices (NDVI,
SAVI, EVI, TDVI, NDWI, and DVI) with the blue, green,
and red bands are the most relevant for SAV differentiation
and mapping. Firstly, it is observed that the indices NDVI
and NDWI provided similar results with opposite signs, i.e.,
symmetrically opposed concerning the x axis. Indeed, what-

ever the integrated band, the NDWI results are always sym-
metrical compared to those of NDVI but with negative val-
ues. However, such results are not showing the truth because
negative values are automatically reset to zero by the image
processing system, and therefore it is probable that the re-
sults will be inaccurate. Furthermore, when the red and blue
bands are implemented in the NDVI equation, insignificant
fits (R2 of 0.40) were achieved, whereas improved results
are obtained with the integration of the green band (R2 of
0.63) and the index is named the normalized difference water
vegetation index (NDWVI). Analogous results are obtained
by Diff(G-B) and VARI indices with R2 of 0.63 (Table 2)
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Figure 9. Seagrass, algae, and seawater reflectances resampled and convolved in VNIR bands of Sentinel-MSI (or Landsat-OLI): HS (a),
HU (b), GA (c), BA (d), and all samples (e).

when all samples are considered. Luckily, the statistical fits
of these three indices (NDWVI, Diff(G-B), and VARI) be-
come significantly improved when unique species are con-
sidered, such as only seagrass or only algae (R2 of 0.85),
whereas, in addition to its weakness and limited sensitivity
to the spatial variability of seagrass and algae, the TGI was
irrelevant for SAV discrimination, yielding a very low fit (R2

of 0.20) whatever the considered species.
As discussed previously, when integrating the blue and

green bands, the WDVI, WAVI, WEVI, and WTDVI indices
outperformed all examined indices regardless of the species
(seagrass, algae, or mixed), yielding a very significant coeffi-

cient of determination for mixed species (0.89≤R2
≤ 0.96)

(Fig. 11a–d and Table 2). Calculated with blue, green, or
red bands, the DVI (denoted as WDVI) discriminated among
SAV classes significantly (R2

≤ 0.92), but it underestimates
the SAV as shown in Fig. 10d. However, WAVI, WEVI,
and WTDVI offer similar trends regardless the considered
species (R2

≤ 0.92 for mixed or seagrass only, and R2 of
0.82 for algae only). Overall, instead of the red band, the
integration of blue and green bands in vegetation indices
increases their discriminating power for SAV (Table 2).
These results corroborate the spectral analysis and the CRRS
transformations; the blue and green electromagnetic radia-
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Figure 10. Scatterplots of homologous WVI derived from MSI and OLI simulated data.

tion penetrates deeper through the water allowing more de-
tails and information about marine vegetation discrimination.
This finding is consistent with Wicaksono and Hafizt (2013)
and Villa et al. (2014), where the blue band better separates
and maps aquatic vegetation features over some lake ecosys-
tems in Italy. However, the summarized R2 in Table 2 shows
that the indices WAVI, WEVI, and WTDVI provided very
close results when integrating the blue or green bands. Nev-
ertheless, the scatterplots in Fig. 11a, b, and c illustrate that
when the green band is considered instead of the blue, the
majority of sampled points are located closer to 1 : 1 line,
especially when the coverage rate becomes denser. This can
be explained by the fact that despite the power of blue wave-

lengths to penetrate deeper into the water, this band also leads
to an overestimation of indices’ values due to its higher scat-
tering (Fig. 11), mainly in turbid environments.

5 Discussion

Seagrass and algae species showed similar spectral signature
curves but with subtle differences between species. In gen-
eral, some relevant wavelengths are observed for the char-
acterization of the considered species of seagrass and algae
including those at or near 450, 500, 520, 550, 600, 620, 640,
670, and 700 nm. They are related to the absorption features
and reflection peaks due to photosynthetic pigmentations of
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Table 2. R2 (p < 0.05) between vegetation indices integrating red, blue, and green bands and the reflectances in NIR for all considered
samples, and the RMSD between indices derived from MSI and OLI sensor data.

Index Used R2 RMSD∗ Index Used R2 RMSD∗ Index Used R2 RMSD∗

band in % band in % band in %

NDVI R 0.40 1.0 TDVI R 0.90 0.3 DVI R 0.92 0.2
G 0.63 0.5 G 0.92 0.2 G 0.93 0.1
B 0.43 1.0 B 0.93 0.2 B 0.95 0.1

SAVI R 0.85 0.3 EVI R 0.89 0.9 NDWI R 0.40 1.0
G 0.89 0.2 G 0.92 0.3 G 0.63 0.5
B 0.90 0.2 B 0.96 0.3 B 0.43 1.0

TGI 0.20 0.1 Diff(G-B) 0.63 0.1 VARI 0.63 3.0

∗ indicates the RMSD between indices derived from MSI and OLI simulated data. The bold type highlights the significant R2 values.

HU, HS, GA, and BA. Spectral and CRRS analyses high-
lighted the importance of the blue, green, and NIR wave-
lengths for probable differentiation between the considered
seagrass and algae types. However, the magnitude of the 1ρ
values among species is an indicator of the strength of the ab-
sorption feature depths and therefore of their discriminating
power between species. For instance, the highest 1ρ value
among all considered samples (seagrass, algae, and mix of
both) is ≤ 5 % across the visible wavelengths and around
10 % to 15 % in NIR. Likewise, the CRRS transformations of
all spectra of homogeneous and mixed samples show that the
absorption characteristics become all very similar, and thus
the discrimination between pure and mixed species becomes
difficult or even impossible. These results are in agreement
with other findings that have been conducted in many geo-
graphic locations worldwide and have considered many sea-
grass and algae types. Considering nine tropical species of
seagrass, Wicaksono et al. (2019) showed that even hyper-
spectral data will not improve discrimination between sea-
grass and algae at the species level in pixels or subpixels due
to the subtle difference in absorption features among them. In
addition, Phinn et al. (2008) confirmed that the hyperspectral
data are unable to map seagrass biomass at the species level
in shallow waters of Moreton Bay in Australia. Using field
and laboratory hyperspectral measurements over several sea-
grass species on the west coast of Florida, Pu et al. (2012)
reported also that the VNIR wavelengths have relatively low
accuracies to discriminate among seagrass community com-
position.

Otherwise, the resampled and convolved spectra in VNIR
bands of MSI and OLI sensors are similar in all cases, con-
sidering each species separately or the totality of samples at
different coverage rates. These spectra are more generalized
and less precise due to the loss of absorption features caused
by pigmentations. Hence, regardless of the coverage rates, if
uniform and homogeneous species are considered, the 1ρ is
≤ 0.02 in the visible and ≤ 0.22 in NIR. Meanwhile, if all
mixed samples and species are considered at the investigated

coverage rates,1ρ is≤ 0.05 in visible bands and remains sta-
ble (1ρ ≤ 0.22) in NIR. These very small values do not allow
spectral distinction among species, particularly in the visible
wavebands. Therefore, based on the multispectral bandwidth
of OLI and MSI sensors, it is difficult to differentiate seagrass
and algae individually at the species level. Indeed, it is im-
portant to remember that these simulations were conducted
in a goniometric laboratory using close-range measurement
protocol and supervising rigorously all measured samples,
i.e., homogeneous or mixed. Moreover, in this controlled
environment, the atmospheric scattering and absorption are
absent; errors related to the sensor radiometric calibration
are also absent, with no wave variation, no residual clouds
contamination, no Sun glint (specular effects), no variabil-
ity in water depth, and no BRDF impact. However, the re-
sults obtained are not entirely conclusive and do not pro-
vide a clear and satisfactory distinction among the spectral
signatures of the investigated species. The difference among
spectral signatures is surely reduced in the real world when
seagrasses and algae are embedded in sediments and over-
laid by the water column and constituents including phyto-
plankton, suspended organic and inorganic matter, variability
in water depth, and remote sensing problems (internal and
external). Additionally, the acquired images with Sentinel-
MSI (2A and 2B) and Landsat-OLI (8 and 9) sensors are
coded radiometrically in 12 and 16 bits, respectively. These
images cover dissimilar pixels surfaces of 100 m2 for MSI
and 900 m2 for OLI, where SAV information can be easily
mixed within pixels. Besides, the FOV of these instruments
are different, OLI’s FOV is 15◦ covering a swath of 185 km,
while the MSI is characterized by a large FOV of 20.6◦ cov-
ering a swath of 290 km, which requires the adjustments to
reduce differences caused by BRDF effects (acquisition and
Sun illumination geometries). Data quality may also change
due to the sensor’s radiometric performance, SNR, and atmo-
spheric interferences (diffusion and absorption). Despite cor-
rections of all these anomalies before the information extrac-
tion, biases still occur generated by error propagation, which
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Figure 11. Linear regressions (p<0.05) between WVI and reflectance in NIR considering all samples, and integrating the red, green, and
blue bands.

affect the recorded signal at the sensor level and, therefore,
the precision of discrimination between seagrass and algae at
the species level. For instance, if we consider the published
RMSE regarding each source of error separately, the calcu-
lated total RMSE based on error propagation theory (Eq. 12)
will be approximately 0.08 to 0.10 (reflectance unit). There-
fore, this total RMSE is greater than the achieved difference
between reflectance values (1ρ ≤ 0.05), especially in the vis-
ible bands. Accordingly, it is impossible to differentiate be-
tween seagrass and algae at the species level. Likewise, this
total RMSE is solely due to the limitations of remote sens-
ing methods, but it can also be amplified by environmental

aspects of seagrass habitat, as discussed above and reported
by Wicaksono and Hafizt (2013).

RMSETotal =

[
(σSensor drift)

2
+
(
σAtmosphere

)2
+
(
σSun glint

)2
+ (σBRDF)

2

+ (σWater column)
2
]0.5

, (12)

where σsensor drift: sensor radiometric calibration accuracy,
± 0.03 (Markhman et al., 2014, 2016), σatmosphere: atmo-
spheric corrections accuracy, mostly around± 0.03 to± 0.05
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in the visible bands (Vermote et al., 2016), σSun glint: Sun glint
correction accuracy,± 0.05 (Zorrilla et al., 2019), σBRDF: ac-
curacy of BRDF correction for MSI, ± 0.05 to ± 0.08 (Roy
et al., 2017), and σwater column: accuracy of water column cor-
rection, ± 0.04 (Zoffoli et al., 2014).

The results of this research accomplished in the Arabian
Gulf species based on spectroradiometric measurements are
consistent with other research carried out in many geograph-
ical regions worldwide. Barillé et al. (2009) showed the
degradation of spectral features when resampled into SPOT-
HRV visible bands, and therefore seagrass species could no
longer be discriminated in these wavelengths. This statement
is also in agreement with Wicaksono et al. (2017), who re-
ported that resampled spectra in MSI and OLI bands do not
have sufficient spectral information for seagrass species dis-
crimination for accurate classification. Using MSI and OLI
data with, respectively, 10 and 30 m pixel sizes (i.e., each
OLI pixel is represented by 9 MSI pixels), Lyons et al. (2011)
reported relatively accurate discrimination between seagrass
meadow spots that are very large with homogenous composi-
tion and distinct boundaries between species. Meanwhile, the
differentiation becomes impossible when the analyzed spots
are composed of diverse species and scattered without clear
boundaries.

Furthermore, to analyze the impact of differences in re-
flectance exclusively due to dissimilarities in spectral re-
sponse function between homologous spectral bands, the
scatterplots between MSI and OLI simulated surface re-
flectance values at the top of the atmosphere revealed a very
good linear relationship (R2 of 0.999) between VNIR ho-
mologous bands. The slopes and intercepts are nearly equal
to unity and zero, respectively. It is also observed that in-
dependently of the sediment substrate (dark and bright) or
the color of used bowls (black or yellow), the 1ρ values be-
tween VNIR homologous bands vary in the range of 0.003
to 0.02, regardless of the observed species (seagrass, algae,
and mixed) or the coverage rate. Moreover, the achieved
overall RMSD in reflectance values is very small (≤ 0.0015)
for all VNIR bands, i.e., smaller than the uncertainty of the
radiometric calibration process (0.03), as demonstrated by
Markham et al. (2016). In other respect, all the derived ho-
mologous WVI values fit near perfectly with the 1 : 1 line,
expressing an excellent coefficient of determination (R2 of
0.99), a slope of 0.99, and intercept equal to zero. Moreover,
the achieved RMSD values between MSI and OLI homolo-
gous indices are insignificant (RMSD≤ 0.01) for all indices
regardless of the integrated spectral band (red, green, and
blue). These results corroborate the finding of Wicaksono et
al. (2019), who reported that MSI and OLI had similar re-
sults for tropical seagrass species analysis using simulated
reflectance spectra and imagery data. Moreover, using sim-
ulated data and images acquired simultaneously with MSI
and OLI over a wide variety of land cover types including
open shallow water, Mandanici and Bitelli (2016) showed
a very high coefficient of determination (R2 of 0.98) be-

tween homologous bands. Therefore, these results pointed
out that the examined sensors, MSI aboard Sentinel-2A/2B
and OLI aboard Landsat-8/9, can be combined for the ma-
rine environment and SAV detection, mapping, and monitor-
ing during shorter time intervals or for consecutive observa-
tions. However, rigorous pre-processing issues (sensors cal-
ibration, atmospheric corrections, Sun glint corrections, and
BRDF normalization) must be addressed before the joint use
of acquired data with these sensors. Furthermore, we demon-
strated that blue and green bands are better than red for sea-
grass and algae biomass discrimination, providing the best
R2 and the most insignificant RMSD for the investigated in-
dices. Green rather than blue band integration is preferable
due to its better sensitivity to pigment content within seagrass
and algae tissues, for its ability to penetrate water, and for its
low sensibility to atmosphere and water column scattering.

6 Conclusions

The MSI sensors aboard Sentinel satellites 2A/2B and the
OLI instruments installed on Landsat 8/9 satellites are de-
signed to be similar in the perspective that their data can be
used together to support global Earth surface reflectance cov-
erage for science and development applications at medium
spatial resolution and near-daily temporal resolution. How-
ever, relative spectral response profiles characterizing the fil-
ter’s responsivities of these instruments are not identical be-
tween the homologous bands, so some differences are prob-
ably expected in the recorded shallow water reflectance val-
ues for seagrass, algae, and mixed species differentiation and
mapping. Based on spectral analysis and CRRS transforma-
tion, the results of the present research pointed out subtle
spectral differences between seagrass (HU and HS), algae
(green and brown), or mixed species, particularly in the blue,
green, and NIR wavelengths. However, once resampled and
convolved in MSI and OLI homologous VNIR bands, simi-
lar patterns to the original spectra are observed but with se-
vere generalization and loss of specific absorption features.
Therefore, mapping seagrass and/or algae at the species level
in shallow marine waters is a very difficult if not impossible
task, either using multispectral bandwidth of MSI and OLI
sensors or even hyperspectral data. Moreover, different from
these ideal simulations in a controlled environment, the map-
ping would be more difficult in a real marine habitat where
various species are mixed and interleaved with each other,
as well as the propagation of internal and external errors re-
lated to remote sensing data. Hence, it is recommended to
discuss SAV rather than mapping seagrass or algae at the
species level.

Furthermore, instead of the red band, the integration of
the blue and green bands in WVI increases their discrimi-
nating power and ability to map SAV, particularly the WAVI,
WEVI, and WTDVI indices. These results corroborate the
spectral analysis and the CRRS transformations showing that
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the blue and green electromagnetic radiation allows better
marine vegetation differentiation. Nevertheless, despite the
power of blue wavelength to penetrate deeper into the water,
it also leads to a relative overestimation of dense SAV cover-
age due to the higher scattering in this part of the spectrum,
particularly in the turbid environment. Furthermore, statisti-
cal fits between MSI- and OLI-simulated surface reflectance
over the considered samples reveal an excellent linear rela-
tionship (R2 of 0.999) between all homologous VNIR bands.
The achieved RMSD values are extremely small between the
NIR homologous bands and insignificant for the other bands
(≤ 0.0015). Moreover, independently of the analyzed sam-
ples, homogeneous (seagrass or algae) or mixed (seagrass
plus algae), good agreement (0.63≤R2

≤ 0.96) was also ob-
tained between homologous WVI regardless of the integrated
spectral bands (i.e., red, green, and blue), yielding insignif-
icant RMSD (≤ 0.01). These achieved RMSD values for re-
flectances or WVIs are less than the combined errors re-
lated to sensor radiometric calibration and atmospheric cor-
rections. Accordingly, these results pointed out that MSI and
OLI sensors are spectrally similar and can be combined for
high temporal frequency to accurately monitor the SAV and
its distribution in time and space in the shallow marine en-
vironment. However, rigorous pre-processing issues such as
sensors calibration, atmospheric corrections, BRDF normal-
ization, Sun glint, and water column corrections must be ad-
dressed before the joint use of acquired data with these sen-
sors.
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