

Supplement of

Dimethyl sulfide cycling in the sea surface microlayer in the southwestern Pacific – Part 2: Processes and rates

Alexia D. Saint-Macary et al.

Correspondence to: Alexia D. Saint-Macary (alexia.stmac@gmail.com) and Cliff S. Law (cliff.law@niwa.co.nz)

The copyright of individual parts of the supplement might differ from the article licence.

Variables	<i>p</i> value	Variables	<i>p</i> value	Variables	<i>p</i> value
Diatom	0.38	Bact. abundance	0.81	k _{DMS ir}	0.14
Dinoflagellate	0.09	<10 µm	0.09	k _{DMSP cn}	0.48
Small flagellate	0.82	<u>10-20 µm</u>	0.03	k _{DMSP ir}	0.32
Gymnodinium	0.29	20-50 µm	0.32		
Chl-a	0.03	>50 µm	0.09		
DMSP	0.64	<u>k _{DMS cn}</u>	0.05		
DMS	0.02	k _{DMS pr}	0.31		

Table SI 1: Results from the Shapiro normality test of the different variables in the SML. If the *p* value is higher than 0.05, the variable is considered as normally distributed. The variables that are not normally distributed are underlined.

Figure S1: Initial and final DMSP concentration in the different treatments of SML water at each station. T_0 was the DMSP concentration determined from the original water sample, set A corresponds to sea surface microlayer (SML) water incubated in the light, set B to SML water incubated in the dark, and set C to SML water incubated in the dark with dimethyl disulfide (DMDS) addition to a final concentration of 200 nmol L⁻¹. Water mass type is indicated by the label at the top of the figure (subtropical front as STF, subantarctic water as SAW, subtropical water as STW, and a mixture of coastal and shelf water with STW as Mixed) and is separated by vertical dashed lines.

Figure S2: Initial and final DMS concentrations in the different SML treatments at each station. T_0 was the DMS concentration determined from the original water sample, set A corresponds to sea surface microlayer (SML) water incubated in the light, set B to SML water incubated in the dark, and set C to SML water incubated in the dark with dimethyl disulfide (DMDS) addition to a final concentration of 200 nmol L⁻¹. Water mass type is indicated by the label at the top of the figure (subtropical front as STF, subantarctic water as SAW, subtropical water as STW, and a mixture of coastal and shelf water with STW as Mixed) and is separated by vertical dashed lines.

Table S2: Summary of Pearson test results and Spearman's rank correlation (underlined) for DMSP and DMS processes. The correlations are significant when r or rho (for Pearson and Spearman's rank tests, respectively) is > 0.5

and p < 0.05, and are indicated by *. Diatom, dinoflagellate and small flagellate biomass from optical microscopy and size fraction summed biovolume from Flowcam.

Processes	<u>k DMS cn</u>	k _{DMS pr}	k _{DMS ir}	k DMSP cn	k _{DMSP ir}
Variables		-			
Diatom	-0.80 (0.33)	0.30 (0.70)	0.32 (0.68)	-0.94 (0.06)	-0.55 (0.45)
Dinoflagellate	-0.60(0.42)	0.18 (0.82)	0.04 (0.96)	- 0.99 (0.01*)	-0.39 (0.61)
Small flagellate	-0.40(0.75)	0.82 (0.18)	0.04 (0.96)	0.42 (0.58)	-0.56(0.44)
Gymnodinium	-0.60(0.42)	0.37 (0.63)	0.20 (0.80)	- 0.95 (0.05*)	-0.50(0.50)
Chl a	-0.50(0.45)	0.70 (0.23)	0.40 (0.52)	-0.90(0.08)	0.20 (0.78)
DMSP	-0.50(0.45)	0.65; (0.23)	0.46 (0.44)	- 0.92 (0.03*)	0.14 (0.82)
DMS	-0.56(0.32)	0.67 (0.22)	0.56 (0.32)	-0.87 (0.05*)	0.15 (0.80)
Bact. abundance	-0.30(0.68)	0.07 (0.91)	0.80 (0.11)	-0.56 (0.32)	0.06 (0.93)
<10 µm	-0.80 (0.13)	0.22 (0.73)	0.33 (0.59)	-0.42 (0.48)	-0.63 (0.25)
<u>10-20 µm</u>	-0.70(0.23)	0.80 (0.13)	0.60 (0.35)	<u>-0.60 (0.35)</u>	<u>0 (1)</u>
20-50 µm	-0.60 (0.35)	0.44 (0.46)	0.91 (0.03*)	-0.81 (0.10)	0.46 (0.44)
>50 µm	-0.60(0.35)	0.21 (0.74)	0.61 (0.28)	-0.97 (<0.01*)	0.21 (0.73)