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Abstract. The balance between ocean mixing and stratifi-
cation influences primary productivity through light limita-
tion and nutrient supply in the euphotic ocean. Here, we ap-
ply a hierarchical clustering algorithm (Ward’s method) to
four factors relating to stratification (wind energy, freshwater
index, water-column-averaged vertical eddy diffusivity, and
halocline depth), as well as to depth-integrated phytoplank-
ton biomass, extracted from a biophysical ocean model of
the Salish Sea. Running the clustering algorithm on 4 years
of model output, we identify distinct regions of the model do-
main that exhibit contrasting wind and freshwater input dy-
namics, as well as regions of varying water-column-averaged
vertical eddy diffusivity and halocline depth regimes. The
spatial regionalizations in physical variables are similar in
all 4 analyzed years. We also find distinct interannually con-
sistent biological zones. In the northern Strait of Georgia and
Juan de Fuca Strait, a deeper winter halocline and episodic
summer mixing coincide with higher summer diatom abun-
dance, while in the Fraser River stratified central Strait of
Georgia, shallower haloclines and stronger summer stratifi-
cation coincide with summer flagellate abundance. Cluster-
based model results and evaluation suggest that the Juan de
Fuca Strait supports more biomass than previously thought.
Our approach elucidates probable physical mechanisms con-
trolling phytoplankton abundance and composition. It also
demonstrates a simple, powerful technique for finding struc-
ture in large datasets and determining boundaries of biophys-
ical provinces.

1 Introduction

Marine phytoplankton form the basis of the oceanographic
food web and are responsible for approximately half of
global carbon fixation (Field et al., 1998). To predict changes
in global ecosystem functioning, it is necessary to understand
the underlying controls on marine productivity. Primary pro-
ductivity in the near-surface ocean is controlled by the avail-
ability of macronutrients, micronutrients, and light, as well
as temperature, which are in turn controlled by the interplay
of stratifying processes and sources of mixing.

The breakdown of the surface ocean stratified layer may
reduce the availability of light for phytoplankton, inhibiting
growth (e.g., Sverdrup, 1953), or contrastingly bring nutri-
ents from deeper waters to nutrient-depleted surface waters,
thus stimulating growth. The interplay of different stratifica-
tion regimes exerts control on the structure of ocean ecosys-
tems (e.g., Legendre, 1981), and changes in regime have
been linked to shifts in phytoplankton community compo-
sition (e.g., Huisman et al., 2004).

The importance of phytoplankton in biogeochemical cy-
cling, as well as their position at the base of the food web and
impact on higher trophic levels, globally motivates the study
of phytoplankton distribution and dynamics. Coastal regions
are more productive than the open ocean (e.g., Longhurst
et al., 1995). Simultaneously, these regions typically have
more complex mixing, circulation, and stratification dynam-
ics than the open ocean, making resolution of phytoplank-
ton biomass patterns difficult. Finally, because both ocean
stratification patterns and phytoplankton biomass dynamics
may be expected to shift under anthropogenic climate change
(Richardson, 2008), there is a need to characterize their dy-
namic structure and identify key drivers.
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1.1 Oceanographic setting

The Salish Sea is a semi-enclosed fjord-like estuary on the
British Columbia coast, composed of the Strait of Georgia
(SoG), Juan de Fuca Strait (JdF), and Puget Sound (Fig. 1).
The SoG is connected to the open ocean by Juan de Fuca
Strait to the south and Johnstone Strait to the north, with
Juan de Fuca Strait serving as the site of primary seawater ex-
change with the open ocean (Khangaonkar et al., 2017). The
Salish Sea receives freshwater input from over 200 rivers,
but the primary freshwater source is the nival–glacial Fraser
River (Pike et al., 2010), which drives salinity-induced strat-
ification in the CSoG and a strong estuarine exchange (Gid-
dings and MacCready, 2017). Salinity stratification is op-
posed by wind and tidal action. Strong winds in the fall and
winter months lead to mixing of surface and intermediate wa-
ter masses. The SoG contains two deep basins (north and
central), with the Fraser River plume sitting on top of the
central basin. Deep SoG water is relatively unmixed, except
during deep-water renewal events (Masson, 2002).

This coastal ocean is a region of ecological and cultural
importance, providing habitats for important megafauna, in-
cluding the southern resident killer whales (Orcinus orca)
and the local salmon populations. The ongoing significant
decline of the local Coho and Chinook salmon (Preikshot
et al., 2013) has been implicated as a factor in the low repro-
ductive success of the killer whale populations (Wasser et al.,
2017), which depend on these salmon as a food source. The
health of fish populations in the Pacific Northwest has been
linked to spring bloom timing and phytoplankton abundance
(e.g., Malick et al., 2015; Boldt et al., 2019). Thus, potential
population declines in upper trophic levels further motivate
the understanding of factors controlling the base of the food
web.

The physical environment of the Salish Sea is well-known,
with functionally distinct physical–oceanographic regions
(Thomson, 1981; LeBlond, 1983; Pawlowicz et al., 2020).
An ongoing subject of interest in this coastal sea is the re-
lationship between known physical and presumed ecologi-
cal regions. Three prominent parts of the Salish Sea–Juan de
Fuca Strait (JdF), the northern Strait of Georgia (NSoG), and
the central SoG (CSoG) have been defined by distinct strat-
ification regimes and water mass characteristics, and avail-
able biological observations and model results (e.g., Masson
and Peña, 2009; Suchy et al., 2019; Peña et al., 2016) are
typically discussed in the context of these differing physical
environments. However, in situ sampling of phytoplankton
biomass remains relatively sparse and episodic and may not
capture inherently dynamic phytoplankton biomass fluctua-
tions, and remote sensing approaches can provide only sur-
face chlorophyll concentrations. Here, we aim to use an un-
supervised cluster analysis of a well-resolved sub-mesoscale
mechanistic biophysical model to consider the linkages be-
tween the regional physical oceanography of the system and
its phytoplankton biomass dynamics.

1.2 Application of clustering methods to a modeling
framework

Clustering methods have demonstrated utility in identify-
ing underlying structures in large observational datasets and
are commonly used in ecological and biological observa-
tional studies. In recent years, the application of cluster-
ing to physical and biogeochemical ocean models has be-
come more common (e.g., Sonnewald et al., 2020; Follows
et al., 2007; Sun et al., 2021), though these approaches are
not yet in widespread use. The quantity of data motivates
the use of clustering methods in a modeling context – even
in our relatively spatially limited sub-mesoscale resolution
model, 1 year of output of a single variable at hourly res-
olution is quite sizable (∼ 60 GB and ∼ 3× 1010 individual
values); the output of global circulation models is consid-
erably larger. Well-tuned, high-resolution numerical models
of complex natural systems are uniquely poised to provide
insight regarding physical oceanographic regimes and over-
arching patterns, especially in diverse regimes where sam-
pling efforts are sparse and often seasonally biased to fair
weather. However, interpreting (even visualizing) large vol-
umes of data poses a unique challenge; common approaches,
such as monthly averaged map snapshots, may represent an
oversimplification and fail to show the patterns present in
the underlying system. By extracting small-data key metrics
throughout the model domain, we reduce the size of the prob-
lem we are considering while keeping the key characteris-
tics of the system that we are studying. We can then clus-
ter these metrics in the hopes of revealing discrete dynam-
ical regimes in complex regions. Furthermore, the cluster-
ing method is an objective classification of the system in the
sense that it makes no prior assumptions about the locations
of any oceanographic features that it finds.

Here our main goal is to investigate how physical dynam-
ics in the Salish Sea objectively define regions of distinct
phytoplankton biomass and functional group composition.
We extract model-available proxies for four separate factors
related to water column stratification: wind energy, freshwa-
ter index, water-column-averaged vertical eddy diffusivity,
and halocline depth, as well as one indicator of primary pro-
ductivity (depth-integrated phytoplankton biomass separated
by functional group). We then cluster each factor individu-
ally in order to discuss the three major regions of the Salish
Sea in the context of the spatial patterns in the yearly sig-
nals of these factors, as well as to consider their interannual
variability. We finally compare spatial patterns in stratifica-
tion factors to spatial patterns in phytoplankton biomass and
discuss possible linkages between the two.
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2 Methods

2.1 The SalishSeaCast biophysical model

We use SalishSeaCast, a regional oceanographic model de-
veloped for the Salish Sea (Soontiens et al., 2016; Soontiens
and Allen, 2017) using version 3.6 of the NEMO regional
ocean modeling engine (Madec et al., 2017). The physical
model solves the Reynolds-averaged Navier–Stokes equa-
tions on an Arakawa-C grid with a 2 s barotropic time step,
a 2 s vertical advection time step, and a 40 s baroclinic time
step. Major physical model modifications since the first im-
plementation are summarized in Olson et al. (2020).

The model domain (Fig. 1) is 898 (v) by 398 (u) horizontal
cells with approximately 500 m horizontal resolution and 40
vertical z layers ranging from 1 m resolution at the surface to
27 m resolution at the bottom. SalishSeaCast has two open
boundaries at JdF and Johnstone Strait, which are forced
with eight tidal constituents and sea surface height predic-
tions from NOAA’s storm surge forecast at Neah Bay in JdF
near the seaward entrance. The model is forced with over 150
rivers; the Fraser River runoff is taken from the Environment
and Climate Change Canada flow gauge at Hope, BC, and
the remaining rivers, as well as the Fraser River downstream
of Hope, are forced by a monthly climatology (Morrison
et al., 2012). Atmospheric forcing, including winds and so-
lar radiation, is derived from the High Resolution Determin-
istic Prediction System (HRDPS), a nested 2.5 km resolu-
tion operational atmospheric model (Milbrandt et al., 2016).
The HRDPS model output is too coarse to accurately re-
solve atmospheric conditions in the northern inlets, but its
wind fields have shown good agreement with observations
throughout the Strait of Georgia (Moore-Maley and Allen,
2022). Coupled to the physical model is a NPZD-type biolog-
ical model (SMELT – Salish Sea Lower Trophic Ecosystem
Model; Olson et al., 2020), which is described in summary
below.

The SMELT biological model represents the transfer of
matter, using nitrogen as currency, between three classes of
primary producers (diatoms, small flagellates, and the cili-
ate mixotroph M. rubrum), three classes of nutrients (nitrate,
ammonia, and silicic acid), three classes of detritus (particu-
late and dissolved organic nitrogen, and biogenic silica), and
one class of microzooplankton, with mesozooplankton graz-
ing as a closure term. The growth rate of all three primary
producer classes depends on the availability of nutrients and
light and on temperature. The diatom class is assigned the
highest maximum growth rate and the highest optimal light
level and is the only class to take up dissolved silica – in
the gleaner–opportunist framework, we consider it an oppor-
tunist class (Grover, 1990; Grover et al., 1997). Small flag-
ellates (representing phytoplankton groups such as crypto-
phytes) have the lowest maximum growth rate while compet-
ing better at low nitrogen levels, low light, and higher tem-
perature. Small flagellates have the lowest minimum nutrient

Figure 1. SalishSeaCast model domain colored by 1 d of surface di-
atom concentration (1 April 2016), highlighting major geographic
subregions and features. The Strait of Georgia is often subdivided
into the central Strait of Georgia (CSoG) and northern Strait of
Georgia (NSoG), with the divide between the two subregions oc-
curring approximately near the southern tip of Texada Island.

requirement, and we consider them the gleaner class in the
gleaner–opportunist framework. The mixotroph M. rubrum
has intermediate growth parameters while grazing on the
flagellate class in addition to photosynthesizing. Details of
phytoplankton growth rate as well as nutrient and light level
preference are available in Olson et al. (2020). A summary of
minor updates to the model tuning since publication in Olson
et al. (2020) is provided in Appendix B.

SalishSeaCast has been run operationally since 2014,
and results from a 2013 to 2021 hindcast are available
at https://salishsea.eos.ubc.ca/erddap/index.html (last access:
10 May 2022). The entire model system, including run en-
vironment, is documented at https://salishsea-meopar-docs.
readthedocs.io (last access: 10 May 2022). In Appendix A
we provide an evaluation of the model salinity, temperature,
nitrate, dissolved silica, and chlorophyll against available ob-
servations for the years and model version analyzed, sepa-
rated according to the major clusters found (Figs. A1–A2). In
summary, the model shows consistently high skill across all
clusters (Tables A1–A2), with Willmott skill scores for tem-
perature and salinity ranging from 0.957–0.971 and 0.959–
0.971, respectively, while comparisons with log-transformed
total chlorophyll data yield scores of 0.599–0.712.

https://doi.org/10.5194/os-18-1451-2022 Ocean Sci., 18, 1451–1475, 2022

https://salishsea.eos.ubc.ca/erddap/index.html
https://salishsea-meopar-docs.readthedocs.io
https://salishsea-meopar-docs.readthedocs.io


1454 T. Jarníková et al.: Salish Sea clustering

2.2 Stations and clustering signals

We analyzed 4 years of daily output from a hindcast of Sal-
ishSeaCast (2013–2016) using an unsupervised clustering al-
gorithm (Ward’s Euclidean distance method, see Sect. 2.3).
We developed model-available year-long time series proxies
(“signals”) for four different factors relating to stratification
and mixing activity (wind strength, freshwater influx, vertical
eddy diffusivity, and halocline depth) and one for an indica-
tor of biological productivity (total depth-integrated biomass
of three phytoplankton functional groups from the model’s
NPZD module). These signals were extracted for each year
at each of 571 model “stations” spaced 10 model grid points
apart (∼ 5 km, Fig. 2). This spacing was chosen as a compro-
mise between resolution and computing time, and we believe
it represents the different regions of the Salish Sea well while
being computationally manageable.

Several possible clusterings resulting from our analysis
were visualized and compared for major differences (see
Sect. 2.3). Results show the typical cluster structure for all
4 years for each individual factor (Sect. 3), while an example
visualization of all possible clusterings of 1 year of one of
the variables is available in Fig. C1 in Appendix C. Here, we
describe the signals.

2.2.1 Wind strength

The wind forcing used (HRDPS, see model description) has
2.5 km spatial resolution and hourly temporal resolution, and
it is used operationally by Environment Canada in the Cana-
dian Pacific region. The skill of the HRDPS wind product in
this region when compared to local meteorological stations
has been evaluated by a previous study and accurately re-
produces the climatology of observed wind magnitudes and
directions (Moore-Maley and Allen, 2022). We first interpo-
late this product onto the model grid and then extract hourly
wind speed. Here we are interested in the impact of wind
on mixing of the water column. Therefore, because wind en-
ergy available for mixing scales with the cube of wind speed
(Fischer et al., 1979), we use the cube of wind speed as our
signal. To take advantage of the hourly resolution of the wind
product, we use the daily average of cubed hourly wind speed
(Fig. 2a).

2.2.2 Vertical eddy diffusivity

The vertical eddy diffusivity (VED) represents the strength
of mixing in the system (Soontiens and Allen, 2017) and de-
pends on the choice of vertical turbulence closure scheme.
SalishSeaCast uses a k-ε configuration of a generic length
scale turbulence model to estimate sub-grid-scale turbu-
lent processes (Umlauf and Burchard, 2003), with back-
ground vertical eddy viscosity and diffusivity both set
to 10−6 m2 s−1. We report a daily depth-averaged value
(Fig. 2b). Though average vertical eddy diffusivity reflects

Figure 2. Example yearly signals of clustered physical and bi-
ological factors from one station in the CSoG (red star) for the
year 2014. The physical signals are as follows: (a) wind en-
ergy (m3 s−3), (b) water-column-averaged vertical eddy diffusiv-
ity (m2 s−1), (c) freshwater index (g kg−1), (d) halocline depth
(m). The biological signal is water-column-integrated phytoplank-
ton biomass (mmol N m−2) separated by functional group (diatoms,
ciliates, and flagellates). The remaining 570 stations used in the
clustering are shown as blue points. Depth-integrated phytoplankton
biomass signals are combined in series for clustering (see Fig. 8).

all sources of mixing and stratification present in the system,
it is dominated by barotropic tidal activity, and we expect it
to be highest at tidal mixing hotspots (Crean, 1978).

2.2.3 Freshwater index

The freshwater index (Fig. 2c) is intended as a proxy for
freshwater influence on the water column at a given station
and is expressed as the salinity difference between the mean
of the surface 4 m of the water column and the salinity at
depth 50 m (units: g kg−1). This metric may be thought of
as a salinity stratification metric. Where the water column is
shallower than 50 m, the salinity at 50 m at the nearest model
point that is 50 m deep is used. Similar metrics have been
used as indicators of stratification in the region (Suchy et al.,
2019; Masson and Peña, 2009) but were typically based on
the difference in water density between the surface and the
deep waters; here we isolate the impact of salinity alone by
using a salinity-based metric. As salinity dominates strati-
fication in this region (LeBlond, 1983), we expect clusters
derived from a salinity-based clustering to be broadly similar
to those derived from a density-based clustering. The value
of 50 m was chosen because the majority of the Salish Sea is
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more than 50 m deep; however, we do not expect the results
to change dramatically if a different depth were to be chosen.

2.2.4 Halocline depth

The halocline depth (Fig. 2d) is defined as the depth of the
maximum salinity gradient in the water column, which is
estimated by finding the salinity difference of two adjacent
cells in the vertical dimension and reporting the depth at the
midpoint of the two cells that have the maximum salinity gra-
dient in the water column at a given station.

2.2.5 Phytoplankton biomass

We extract daily average depth-integrated phytoplankton
biomass (mmol N m−2) for each of the three phytoplankton
functional groups to form three signals (Fig. 2e). These sig-
nals are then connected in series to form an overall phy-
toplankton biomass signal that differentiates by functional
group – thus, functional group identity, not just total phyto-
plankton biomass, is a factor in our clustering. Furthermore,
our chosen metric of functional-group-differentiated phyto-
plankton biomass will capture functional-group-specific re-
sponses to different habitat characteristics.

2.3 Clustering method

We use Ward’s method (Ward, 1963), a type of hierarchi-
cal clustering method, to cluster our data. Broadly, cluster-
ing methods are a subset of unsupervised machine learning
methods used to reveal the underlying structure of a dataset
by grouping similar data points. In hierarchical clustering
methods, every data point is initially a single-point data clus-
ter. At each step of the clustering, the two “closest” clus-
ters are merged into a new cluster; this process is repeated
until all points have been merged into a single cluster. Met-
rics of closeness vary between hierarchical clustering meth-
ods – while some methods use variations of the definition of
the physical distance between clusters as a clustering crite-
rion, Ward’s method analyzes changing intracluster variance,
or the “loss of information” (Wishart, 1969) if they were to
merge into a single cluster. In Ward’s method, at each step,
the clusters whose merging results in the lowest increase in
intracluster variance are combined.

Many hierarchical clustering methods exist; of these we
chose Ward’s method because the algorithm is straightfor-
ward to implement and compares favorably to other hi-
erarchical clustering methods with regards to performance
in identifying structure in known clusterings (e.g., Man-
giameli et al., 1996). We perform hierarchical clustering us-
ing Ward’s method on each of the five signals independently.
For each signal, the clustering is done four times (once for
each of the 4 years 2013–2016), and the results for the 4 years
are then compared to assess interannual variability in the pat-
terns found.

Cluster number selection

A common challenge in the application of clustering methods
is the selection of cluster number, as the clustering algorithm
can produce anywhere between two andN clusters (whereN
is the number of stations with signals being clustered). Typi-
cal approaches include choosing a cluster number for which
the difference in the mean signals of the found clusters when
going from cluster numberN to cluster numberN+1 is max-
imized. In our case, attempts to use objective metrics to deter-
mine cluster number, such as the Davies–Bouldin, silhouette,
or Calinski–Harabasz criteria (Maulik and Bandyopadhyay,
2002), typically identified only two clusters in a given dataset
(not shown). Though these may be the most prominent clus-
ters, meaningful structure in the data persists at larger cluster
numbers. Ultimately, our approach was to visualize several
possible clustering outputs, with cluster number N varying
from 2 to 15, and to visually compare how the spatial struc-
ture of the patterns changed with increasing cluster number
(e.g., Fig. C1). In all variables, the same typical structure
emerged at a relatively low cluster number (e.g., N = 3–5)
and persisted with increasing cluster number in all years. To
facilitate comparison of clusters between years, we chose a
cluster number of N = 5 for all years for all variables being
clustered and are confident that the structures described are
robust to a selection of a variety of cluster numbers.

Interannual cluster persistence

Visually, it is immediately apparent that similar spatial struc-
ture in the clusterings of a single variable persists interannu-
ally. To formalize the interannual persistence of a single clus-
ter between years, as well as spatial commonality of different
variables, we establish a simple nondimensional cluster com-
monality metric (CC). For two clusters A and B, the cluster
commonality CCAB is defined as

CCAB =
|A∩B|

0.5(|A| + |B|)
.

For any two clusters, CC varies from 0 (clusters of any size
with no stations in common) to 1 (two clusters of equal size
with all stations in common) and may be used to compare
clusters of unequal sizes. We use this metric to compare the
persistence of clusters of individual variables between years,
as well as the cluster persistence between different variables
in a given year (Fig. C2).

3 Results

We describe the main physical–oceanographic subregions in
the domain (CSog, NSoG, and JdF) determined by clustering
the physical factors and interpret our results in the context of
previous work. We also consider some tidal mixing hotspots
highlighted in the derived map of vertical eddy diffusivity.
Our results here typically extract the main known general
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physical–oceanographic features of this coastal sea. We then
describe the observed spatial regions in biomass, which are
remarkably cohesive, in the context of these physical fac-
tors. In the Discussion section, we propose some mechanisms
through which the physical factors likely shape the biological
structures seen here.

3.1 Central Strait of Georgia

The physical–oceanographic dynamics of the CSoG are
dominated by stratification due to Fraser River runoff, which
is easily visible in the derived clustering of the freshwater
index (Fig. 3). Spatially, in all 4 years of our analysis, the
highest freshwater index is seen near the mouth of the Fraser
River and in Howe Sound (cluster 1/gold), and it then ra-
dially decreases in bands (cluster 2/grey, cluster 3/sky blue)
outward from this maximum. The tendency of the surface
Fraser River plume to move north from the mouth of the
Fraser due to the Coriolis force (Liu, 2014) is also easily ob-
servable in this visualization. The stratifying tendency of the
Fraser River (and of other major rivers) is then reflected in
the clustering of the halocline signals (Fig. 4). The CSoG
(cluster 3/sky blue) has consistently shallow haloclines with
only limited seasonal variability (∼ 5 m in summer to ∼ 7 m
in winter). These shallow, stable haloclines also persist in
most of the Puget Sound, owing to the influence of the Skagit
River, and in the northern fjords with large rivers at their head
(Toba Inlet, Bute Inlet, and Howe Sound), and the influence
of these rivers is reflected in the clustering of the freshwater
index. Because rivers other than the Fraser are forced by cli-
matology in the model, the potential effects of the interannual
variability of their hydrographs are not seen here.

In the wind clustering, the boundary between the CSoG
and NSoG is farther south than that seen in the clusterings of
freshwater index and halocline depth (Fig. 5). Though winds
in all clusters are highly episodic, all wind clusters show a
marked decrease in wind energy during the summer months
(Fig. 6) – this change in mean signal magnitude and variabil-
ity is most pronounced in the NSoG (cluster 4/red), which
consistently shows ∼ 2 times higher wind energies in the
winter months than in the summer months. In contrast, the
CSoG (cluster 3/sky blue) shows the lowest variability be-
tween summer and winter energy magnitudes. Summer wind
energies are actually higher in the CSoG than in the NSoG,
likely due to the long wind fetch length in the CSoG, as
summer winds in the Salish Sea are predominantly northerly
(Thomson, 1981; Moore-Maley and Allen, 2022). Average
vertical eddy diffusivity is lowest in the CSoG (Fig. 7), likely
owing to both high stratification and comparatively low tidal
currents (Thomson, 1981), consistent with the historical idea
of the Salish Sea as a system of relatively quiet basins inter-
connected by dynamic sills (Ebbesmeyer and Barnes, 1980).

3.2 Northern Strait of Georgia

As expected, the influence of the Fraser River is lower in
the NSoG as the region is farther away from the river mouth
(Fig. 3). The resulting lower stratification is reflected in
deeper and more variable haloclines in all seasons (on av-
erage, ∼ 10 m in summer to ∼ 20 m in winter) (Fig. 4). A
striking feature in the clustering of the freshwater index sig-
nal and halocline signals in the NSoG and the CSoG is the
dissimilarity of the year 2016 to other years, reflected in a
lower cluster persistence metric in this year (Fig. C2). Max-
imum Fraser River discharge (freshet) during 2016 was re-
markably low, in the lowest quartile of discharge on record,
reaching only ∼ 8000 m3 s−1, or roughly 2/3 of the mag-
nitude of the 2013–2014 freshets, which were both in the
highest quartile (Fig. C3). Interestingly, the mean freshwa-
ter index signal for each cluster in 2016 remains similar to
the means for other years, as does the spatial extent of the
most river-influenced cluster (cluster 1/gold), but the medium
freshwater-influenced clusters (cluster 2/grey, cluster 3/sky
blue) extend less far from the river mouth. As a result, the
NSoG clusters with JdF in this year.

3.3 Juan de Fuca Strait

Dynamics in Juan de Fuca Strait are broadly characterized by
limited local freshwater influence, though a small increase in
freshwater index is visible in the summer months (Figs. 3,
6), in part because of the surface advection of freshet-driven
water from the CSoG due to the estuarine circulation (Thom-
son et al., 2007). The limited freshwater stratification, ac-
companied by a large tidal range, results in deep and vari-
able haloclines (Fig. 4). The larger tidal velocities here are
also reflected in slightly higher water-column-averaged VED
(Fig. 7). Interestingly, in 2015, the VED in much of JdF clus-
ters with the SoG, possibly due to the inhibition of water col-
umn mixing by higher thermal stratification of the system
due to the significant marine heatwave in the North Pacific in
the years 2013–2015 (Gentemann et al., 2017), whose effects
were most pronounced in the Salish Sea in 2015 (Chandler
et al., 2016). The dissimilarity of the year 2015 to other years
is reflected in the cluster persistence metric (Fig. C2).

3.4 Tidal mixing hotspots

Water-column-averaged vertical eddy diffusivity in the Sal-
ish Sea is dominated by tidal mixing activity (Crean, 1978),
allowing clustering VED to uncover dominant tidal hotspots.
VED varies by 3 orders of magnitude in the model domain
(Fig. 7). As expected, this metric reaches its maximum in the
Haro Strait region, as well as in parts of Puget Sound, for ex-
ample in Admiralty Inlet, near known tidal mixing hotspots
(Ebbesmeyer and Barnes, 1980; LeBlond, 1983; Moore et al.,
2008; Deppe et al., 2018). Two stations in northern Johnstone
Strait and the Discovery Passage region also exhibit height-
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Figure 3. Clustering of the freshwater index signal (Sect. 2.2). As expected, areas near the mouth of the Fraser River have the highest
freshwater index, with the freshwater plume turning north due to the Coriolis force, and the index decreases in bands from this maximum.
An elevated freshwater index can also be seen in the vicinity of the Skagit River in Puget Sound and at the head of Toba Inlet, Bute Inlet,
and Howe Sound, which contain glacial rivers. The magnitude of the freshwater index in the different clusters does not vary significantly
interannually, but the spatial extent is diminished in the year 2016, which had the lowest freshet magnitude of the 4 years. In all clusters, the
freshwater index peaks at the same time as the Fraser freshet does for a given year.

ened VED in all 4 years, consistent with the high observed
tidal velocities near Seymour Narrows in this region (Thom-
son, 1981). Fourier analysis of the annual vertical eddy dif-
fusivity signals also shows local maxima in energy at weekly
and fortnightly frequency (not shown) in all 4 years in all
five clusters, consistent with the role of tides as the dominant
source of mixing energy in the system (Crean, 1978).

The by-cluster seasonally averaged means and standard
deviations of average VED are consistent interannually
(Figs. 6, 7). The same three stations in the San Juan islands
(cluster 4/red) report the highest VED in all 4 analyzed years,
exhibiting maxima that are almost a factor of 2 larger than
the next-largest signal (cluster 2/grey). In the highly vari-
able Haro Strait and Johnstone Strait regions, the spatial fre-
quency of our sampling likely plays a role in our derived
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Figure 4. Clustering of the halocline signal, defined as the depth of the maximum salinity gradient. The largest region (cluster 3, light blue)
is the freshwater influenced CSoG, with shallow (< 10 m) haloclines and limited variability between seasons. Similar halocline dynamics are
seen in Puget Sound and at the head of Toba Inlet, Bute Inlet, and Howe Sound, which contain glacial rivers. Significantly deeper and more
variable haloclines are found in the NSoG (cluster 4, red), commonly deeper than 40 m in winter. The deepest and most spatially variable
haloclines occur in the center of the JdF (clusters 1, 2, and 5), with nearshore regions of the JdF clustering with the NSoG in most years
(cluster 4).

map of tidal mixing hotspots – as we sample only approx-
imately every 100th horizontal model coordinate, we likely
miss other high-VED model points in this subregion, es-
pecially channels that have width scales comparable to our
model resolution (0.5 km), for example the intricate chan-
nel passages of the San Juan and Discovery Island groups in
the Haro and Johnstone Strait regions, which are known tidal
mixing hotspots (Fig. 1). Analysis of tidal mixing hotspots is

not the focus of this work, but a full characterization of this
tidally mixed zone using a more refined clustering approach
may be an interesting focus of future work.

3.5 Biomass of primary producers

A similar biological clustering arises in all 4 years (Figs. 8,
C2). The boundaries of this clustering broadly coincide with
the three major oceanographic subregions discussed above.
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Figure 5. Clustering of the daily average wind energy signal. Though spatial cluster boundaries are consistent, wind energy in all clusters is
highly episodic, and all wind clusters show a marked decrease in wind energy during the summer months. Nearshore ares have lowest wind
energy owing to low fetch. Summer wind energies are higher in the CSoG than in the NSoG.

The largest cluster (the CSoG – cluster 3/sky blue) is charac-
terized by diatoms blooming first, followed by a transition to
flagellate abundance in the summer months. In all 4 years, a
functionally distinct NSoG region (cluster 4/red) arises, with
sharp, episodic spikes in summer diatom biomass and dimin-
ished flagellate biomass. JdF (cluster 5/dark blue) reaches
maximum biomass later in the year and, like the NSoG,
shows a persistence of summer diatoms and diminished sum-
mer flagellate biomass. In contrast to the NSoG, where di-
atom biomass diminishes between episodic spikes, diatom
biomass in JdF typically remains above 20 mmol N m−2

throughout the spring and summer seasons, with occasional
spikes to higher biomass.

These three main regions have roughly similar mean sea-
sonal biomass, with interannual variability larger than vari-
ability between clusters; the main differences between them
are in the relative abundances of different functional groups
and in the temporal characteristics of the phytoplankton
biomass. Nearshore areas cluster together (cluster 2/grey)
and have low depth-integrated biomass because they are lim-
ited by shallow depth. The largest depth-integrated biomass
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Figure 6. Seasonal means of the physical signals. Seasons are defined as follows: winter is December–February, spring is March–May,
summer is June–August, and fall is September–November. The temporal standard deviation of the seasonal mean signal for each cluster is
shown.

in the model in both the diatom and flagellate groups is found
in the tidal mixing region of Haro Strait (cluster 1/gold).

4 Discussion

We now consider the regional phytoplankton structure in the
context of previous observational and modeling studies and
discuss some mechanisms underlying the observed patterns.
We focus on the three main regions found by the biological
clustering (the CSoG, the NSoG, and JdF).

4.1 The northern vs. the central Strait of Georgia

In the model, the NSoG shows only slightly higher depth-
averaged phytoplankton biomass in all seasons than the
CSoG (Fig. 9). This biomass is consistent with the in situ
study of Masson and Peña conducted between 2001 and 2007
in this region, which shows lower surface chlorophyll but

a deeper phytoplankton growing zone in the NSoG, lead-
ing to slightly higher depth-integrated chlorophyll concen-
trations in the northern region in all four seasons of sampling
(Masson and Peña, 2009, henceforth MP09, their Table 2).
Remote sensing observations also show significantly lower
surface chlorophyll in the NSoG throughout the year, as well
as finding anomalously high surface chlorophyll concentra-
tions in 2015 that are not reproduced by the model (Suchy
et al., 2019). The majority of the modeled biomass differ-
ence between the NSoG and CSoG occurs in the subsurface
maximum around 6–8 m in depth (Fig. C4), where it cannot
be detected by remote sensing. Previous modeling (of the
years 2007–2009) found somewhat higher depth-integrated
phytoplankton biomass in the CSoG throughout the year, but
with significant spatiotemporal variability (Peña et al., 2016).
However, a recent year-round in situ campaign in several
parts of the Strait of Georgia found no meaningful differ-
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Figure 7. Clustering of the daily depth-averaged vertical eddy diffusivity signal. The domain is split into two major regions: the Strait
of Georgia, which has universally low vertical eddy diffusivity, and Juan de Fuca Strait, with comparatively slightly higher VED due to
stronger tidal currents. VED hotspots of various magnitudes are consistently found at tidal mixing hotspots, including Discovery Passage
near Seymour Narrows and Haro Strait near the San Juan islands.

ence in depth-integrated chlorophyll between the NSoG and
CSoG (Pawlowicz et al., 2020).

Together, these studies suggest that the difference between
the two regions with respect to total depth-integrated biomass
is subtle. However, we find a substantial difference in the
modeled phytoplankton functional group composition and
the temporal scale of variability of the phytoplankton signal
between regions. In both regions of the strait, the opportunist-
class diatoms, which have the highest growth rate and high-
est nutrient requirements, peak first (typically in late March,

though with considerable variability; Allen and Wolfe, 2013)
and form the majority of the phytoplankton biomass in the
spring (Figs. 8, 9). In the CSoG, the model then transitions
to higher biomass of gleaner-type flagellates around day 150,
near the beginning of June, and flagellates continue to ex-
hibit high summer biomass in this region (Figs. 8, 9). In
contrast, the NSoG continues to exhibit episodic short-lived
peaks of high opportunist-type phytoplankton biomass, rep-
resented by diatoms, throughout the summer so that in all
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Figure 8. Clustering of vertically integrated phytoplankton biomass separated by model-defined functional group (diatoms, followed by
flagellates, then ciliates). The domain is split into the CSoG, NSoG, and JdF, each of which exhibits distinct phytoplankton dynamics (see
Sect. 3.5 and the Discussion section).

years except 2016, diatoms make up the majority (∼ 55 %–
60 %) of summer phytoplankton biomass in this region.

In the Strait of Georgia, significant evidence of high sum-
mer biomass near strong mixing zones or in response to mix-
ing driven-nutrient delivery exists. For example, early sur-
veys of the system find high chlorophyll associated with dy-
namic frontal regions in the northern and southern ends of
the SoG (Parsons et al., 1981), and they consequently warn

against drawing firm conclusions about the nature of phyto-
plankton abundance and variability from episodic sampling
in shifting frontal zones. Nutrient delivery via episodic tidal
mixing events near Discovery Passage has been linked to in-
creased biomass (e.g., Parsons et al., 1981; Haigh and Taylor,
1991) and modeled primary productivity (Olson et al., 2020).
Though this phenomenon has been recorded in the CSoG as
well (Yin et al., 1997; St. John et al., 1993), higher stratifica-
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Figure 9. Depth-integrated phytoplankton biomass for the three
main biological clusters (CSoG, NSoG, and JdF) differentiated by
functional group. The annual, spring, and summer means of the de-
rived clusters are shown for all 4 modeled years. All three clustered
regions have similar total biomass, which stays relatively consistent
interannually, but functional group composition varies by cluster,
with higher summer diatom abundance in the NSoG and JdF than
in the CSoG. Spring is defined as March–May, and summer is June–
August.

tion may dampen the magnitude of the nutrient pulses. Sud-
den introduction of abundant nutrients is expected to favor
the opportunist functional group represented by diatoms over
the slower-growing gleaner functional group represented by
flagellates, as is seen in our clustering (Cloern and Dufford,
2005; Dutkiewicz et al., 2009). A recent 4-year time series
of phytoplankton composition data at a station near Quadra
Island in the NSoG supports this idea by showing episodic
blooms of summer diatoms after wind events (Del Bel Bel-
luz et al., 2021). Indirect evidence of episodic high biomass,
sometimes following wind events, has been observed else-
where in the NSoG (Evans et al., 2019; Mahara et al., 2021).

We suggest that our results reflect a controlling influence
of stratification on phytoplankton biomass and community
structure. Strong stratification concentrates phytoplankton
biomass in a thin well-lit surface layer while limiting sup-
ply of nutrients after the initial biological drawdown. In the
model, these conditions favor high abundance of the gleaner
flagellate group. In the NSoG, nutrient drawdown also oc-
curs, but episodic wind events lead to stronger upwelling and
mixing due to the comparatively weaker stratification and
inject sharp pulses of nutrients into the near surface, lead-
ing to sharp, short-lived diatom blooms (Moore-Maley and
Allen, 2022). In contrast, in the CSoG, despite stronger sum-
mer winds, strong stratification continues to favor gleaner-
type organisms. Faster-growing opportunist diatoms tend to
outcompete gleaner flagellates when sufficient nutrients and
light are available, but inherent variability in the physical
environment promotes coexistence (Anderies and Beisner,
2000). The result is only a modest, if any, change in biomass
but a significant change in functional group composition and
temporal variability between the NSoG and CSoG.

Peña et al. find higher biomass in the CSoG due to the
deeper nutricline in the NSoG (Peña et al., 2016). We find
instead that the increased mixing in the NSoG provides in-
creased nutrients and that biomass in both regions is about
the same. These two views are not directly reconcilable and
which view is more representative of actual conditions de-
pends on accurately capturing the balance between the action
of mixing as a source of nutrients and mixing as a source of
light reduction and phytoplankton dilution.

4.2 Comparison with in situ phytoplankton functional
group observations

The extent of phytoplankton diversity in the Salish Sea can-
not be strictly condensed into the three functional groups
represented in this model. The divide of the phytoplankton
functional groups in the model does not precisely correspond
to a split between diatoms and all types of flagellates. For
instance, silicoflagellates (class Dictyochophyceae) might
align with the diatom class based on silicon utilization. For
this reason, we discuss these classes in terms of competition
between opportunist-type primary producers with high nu-
trient needs and high light needs and gleaner-type primary
producers with capacity to persist at lower nutrient and light
levels. For this study, the requirement is capturing the over-
all regional biomass patterns and function. Here we provide
a brief comparison between our results and available in situ
phytoplankton functional group observations.

In situ measurements of the relative abundance of phy-
toplankton functional groups remain rare in the Salish Sea
and tend to be sparse in space and/or time. In situ observa-
tions represent a snapshot at a single station and depth, while
model output instead presents the average of a much larger
volume (the discrete model cell). A recent temporally well-
resolved 4-year (2015–2018) time series of phytoplankton
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biomass and composition, derived from high-performance
liquid chromatography (HPLC) analysis of phytoplankton
pigments, taken at a single station in the NSoG (Del Bel Bel-
luz et al., 2021) provides a starting point for such a compari-
son. The in situ data, taken from a depth of 5 m, show diatom-
dominated blooms with varying start dates in the spring sea-
son, followed by a transition to a regime wherein flagellate-
type groups (chiefly prasinophytes and cryptophytes) make
up the majority of phytoplankton biomass, but diatoms re-
main present (Del Bel Belluz et al., 2021, their Figs. 4, 5).
Episodic later-summer diatom blooms occur in 3 of the 4 ob-
servational years, corroborating the modeled later-summer
NSoG diatom blooms seen in this study.

Local phytoplankton composition data derived from ship-
board observations from spring, summer, and autumn cruises
spanning the Juan de Fuca Strait and both the CSoG and
the NSoG are also available as a technical report by Nem-
cek et al. (2020). Unlike the Del Bel Belluz study, these data
are relatively well-resolved in space but less resolved tem-
porally; in a given year, typically only 1 d of observations
is available for each station. The relative abundance of phy-
toplankton functional groups in the three regions is thus in-
terannually variable (Nemcek et al., 2020, their Fig. 39-2),
and in contrast to the Del Bel Belluz study, the data show
only limited summer presence of diatoms in the NSoG in ei-
ther of the years overlapping with our study (2015 and 2016).
These observations contradict trends seen in our model. Si-
multaneously, these data show summer diatom dominance
in the well-mixed Haro Strait region, corresponding to our
tidal mixing region, which echoes trends we see in this study.
Taken together, these two in situ phytoplankton composition
studies each provide some corroboration of patterns we see in
the model but differ from each other regarding summertime
diatom representation in the NSoG. Combined with the mod-
eling, these three perspectives on phytoplankton composition
and biogeography each represent different spatial and tempo-
ral scales. The questions raised by their contrasting findings
highlight the need for both modeling and observational work
to provide a holistic view of the local biophysical dynamics.

Our modeling study is necessarily subject to limitations.
For example, very high biomass shown in the tidal mixing
region (Fig. 8, cluster 1/gold) could be an artifact of slower
phytoplankton mortality rates, at least at times, than occur in
nature, with phytoplankton mixed deep into the water col-
umn and persisting too long. Such a rate imbalance would
affect the response to mixing described above. Available ob-
servations support model phytoplankton levels in this region
but are limited to the upper water column. Because model–
data agreement on biomass and nitrate is strong in these re-
gions, we believe the mechanism of nutrient delivery by wind
events in the less stratified north, leading to dominance of
faster-growing phytoplankton, is robust.

4.3 Juan de Fuca Strait

Our results suggest that the mean annual average depth-
integrated biomass is about the same in all three physical
regions, including the well-mixed, weakly stratified JdF. In
contrast, previous studies suggested a lower biomass in JdF
(Masson and Peña, 2009; Peña et al., 2016) due to a deeper
nutricline. However, recent in situ chlorophyll and nutrient
data (2013–2016) support our result. In fact, the evaluation
suggests that, for dates and locations for which observations
are available, the model slightly underestimates observed
biomass in Juan de Fuca Strait (Fig. A2, Table A2).

One factor contributing to the difference between these
conclusions may be the vertical structure in the biomass ob-
served by both MP09 and the model. In MP09, the spring
phytoplankton biomass is much more prominent in the CSoG
and NSoG than in JdF. The spring biomass exhibits a strong
subsurface maximum (∼ 10 m in the chlorophyll observa-
tions) and persists relatively deep into the water column (up
to 40 m). However, though overall concentrations reported in
MP09 are lower in all seasons in JdF, observed chlorophyll
concentrations>= 1 mg m−3 persist at deeper depths in most
seasons in Juan de Fuca than in both regions of the Strait of
Georgia (up to 50 m in the spring, summer, and fall), and
in summer and fall, the NSoG exhibits slightly deeper phy-
toplankton persistence compared to the CSoG. We replicate
these trends in general vertical structure (Fig. C4), with a
prominent subsurface maximum at∼ 6–8 m and phytoplank-
ton biomass mixed deeper in Juan de Fuca Strait than in ei-
ther region of the Strait of Georgia.

This vertical structure likely leads to a dilution effect –
even when phytoplankton concentration at a given depth may
be lower in Juan de Fuca Strait than in the Strait of Geor-
gia, overall depth-integrated biomass may be simultaneously
higher. This deep biomass is less likely to be captured by
sampling campaigns, potentially leading to an underestima-
tion of the phytoplankton biomass of the region as a whole.
Furthermore, because of the interannual variability in spring
bloom timing and differences in spring bloom timing be-
tween the Strait of Georgia and Juan de Fuca Strait (dis-
cussed further below), the spring in situ survey that captures
high biomass in the Strait of Georgia may be too early to
observe the full extent of the spring bloom in Juan de Fuca
Strait.

In the NSoG and CSoG, the derived biological signals sug-
gest a regime wherein stable growing conditions in the spring
transition to varying degrees of summer nutrient limitation
which are interrupted by episodic nutrient delivery more fre-
quently in the NSoG. In contrast, the diatom growth curve in
JdF suggests a light-limited environment year-round, consis-
tent with the established understanding (Mackas and Harri-
son, 1997). Nutrients are rarely limiting in JdF owing to the
plentiful supply of oceanic nitrate (Sutton et al., 2013) and
stronger water column mixing in this region demonstrated in
the VED clustering (Fig. 7). One factor that may potentially
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Figure 10. A spatial view of the onset of the spring bloom in the domain. Here the spring bloom is defined as the first peak in depth-integrated
diatom biomass that is at least 30 % of the maximum annual diatom biomass at that station. In all years, the spring bloom occurred earliest
in the CSog and subsequently in the NSoG before reaching JdF with a variable delay.

enhance growing conditions in the summer season here is
the advection of a freshwater lens from the Strait of Georgia
via the surface estuarine circulation (Pawlowicz et al., 2007;
MacCready et al., 2021). This advection is visible as a slight
increase in the summer freshwater index in JdF (Fig. 6); it
may contribute to increased water column stability and hence
light availability and favorable growing conditions in this pe-
riod.

4.3.1 Spring bloom timing

The timing of the first substantial increase in phytoplankton
biomass (the spring bloom) in the Salish Sea varies consider-
ably interannually and is driven by different factors, primar-
ily wind speed and cloud cover and secondarily temperature
and freshwater discharge (Allen and Wolfe, 2013). While we
do not evaluate spring bloom timing here, considering the
spatial variability of the onset of the spring bloom through-
out the domain may deliver insights regarding the function-
ing of the different regions. For the purposes of this informal
exploration, at each station we define the spring bloom as
the first peak in depth-integrated diatom biomass that is at
least 30 % of the maximum annual diatom biomass at that
station. Earlier spring bloom initiation in the CSoG with re-
spect to the NSoG was seen in multiple years of satellite ob-
servations (Suchy et al., 2019). In our results this progression
within the SoG is almost indistinguishable and is followed by
later blooming in the JdF. The late bloom timing in JdF was
likely driven by stronger mixing, limiting light availability
later into the year in the JdF region (Fig. 10), consistent with
the functional differences between JdF and the NSoG and
CSoG discussed above.

This preliminary examination of modeled bloom timing
shows the large interannual variability in the onset of the
spring bloom, consistent with one-dimensional models of the
region (Collins et al., 2009; Allen and Wolfe, 2013) and the
in situ and satellite-based observations (Suchy et al., 2019;
Gower et al., 2013; Boldt et al., 2019). The significant spatial
variability seen here underscores the dynamical differences
in environmental growing conditions in different regions of
the Salish Sea and provides an interesting direction for future
research.

4.4 Utility of clustering methods in the context of
high-resolution models

Our clustering approach identifies unambiguous regions of a
complex coastal sea that exhibit distinct biological responses
to disparate physical environments. These responses are not
immediately obvious in time-averaged snapshots of the stud-
ied system. The simple machine learning technique used here
enhances our way of looking at the problem – in this ap-
plication, we are not using machine learning to predict un-
known quantities, as is becoming common (e.g., Keppler
et al., 2020), but instead we are asking it to show us what
is already there. Using this simple technique, we are able to
draw objective boundaries between regions based on emer-
gent structures in our data and significantly advance our intu-
ition about the system. Cluster-based model evaluation may
also be a very useful application of clustering techniques, as
it has potential to diagnose how well a given model performs
across different biophysical regimes.

The simplicity of the approach may have utility in nu-
merous contexts. For instance, many characterizations of en-
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vironmental regions rely on sparse data with large spatial
biases. Objective clusters determined from regional mod-
els, with mechanistic underpinnings, may be used to group
sparse data. This approach allows clear characterization of
complex systems. Furthermore, it may provide the neces-
sary first step for machine learning studies that rely on well-
organized training datasets to accurately predict target vari-
ables (e.g., Landschützer et al., 2013). Resource and envi-
ronmental management situations and optimal monitoring
strategies may also benefit from a data-driven approach to
regional definitions.

5 Conclusion

Our work applies a hierarchical clustering algorithm to
4 years of SalishSeaCast model output. We extract four
factors relating to stratification and one relating to depth-
integrated phytoplankton biomass, differentiated by func-
tional group. We identify distinct regions of the model do-
main that exhibit contrasting wind and freshwater input dy-
namics, as well as regions of varying water-column-averaged
vertical eddy diffusivity and halocline depth regimes. Simi-
lar spatial regionalizations in physical variables persist in all
4 analyzed years.

Similarly, we find distinct, interannually persisting, bi-
ological regions with phytoplankton biomass patterns that
may be explained by patterns in the physical factors. In the
NSoG, a deeper winter halocline and episodic summer mix-
ing coincide with higher summer opportunist-type phyto-
plankton abundance, represented in the model by diatoms,
and episodic fluctuations in phytoplankton biomass. In con-
trast, in the Fraser River stratified CSoG, shallower halo-
clines and stronger summer stratification coincide with more
consistent biomass and high summer abundance of gleaner-
type phytoplankton with slower growth rates, represented
in the model as the flagellate functional group. While the
biomass signals in the CSoG and NSoG suggest varying de-
grees of nutrient limitation, the JdF biomass signal suggests a
light-limited physical regime. Furthermore, the cluster-based
model evaluation suggests that JdF supports more biomass
here than previously thought, likely due to a deeper growing
layer. Our approach shows that stratification controls nutri-
ent delivery and causes subtle structure in regional biologi-
cal patterns, and it demonstrates the utility of simple machine
learning tools in extracting insight from large datasets in the
context of oceanographic models.

Appendix A: Model evaluation

We evaluate the version of the SalishSeaCast biophysical
model used in this clustering analysis regionally against
available data from the Department of Fisheries and Oceans
Canada (Ocean Sciences Division, 2020), specifically nitrate,
dissolved silica, log-transformed chlorophyll, absolute salin-
ity, and conservative temperature, along with the spread of
locations and times of collection (Figs. A1, A2; Tables A1,
A2).
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Figure A1. Model comparison with DFO CTD (conductivity–temperature–depth sensor) temperature and salinity data. The plots show
modeled vs. observed values for salinity and temperature for the entire model domain, as well as points matched only to the three major
biological clusters – the northern Strait of Georgia, the central Strait of Georgia, and the Juan de Fuca Strait (cluster boundaries are specific
to the year of observation) (note that in some years, Bute Inlet clusters with the Juan de Fuca Strait). Because of the large amount of data
available for comparison, a histogram view is presented. The timeline and rightmost panel display observation times and locations. Summary
statistics corresponding to these plots are shown in Table A1.
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Figure A2. Model comparison with DFO nitrate, dissolved silica, and log-transformed chlorophyll data. The plots show modeled vs. observed
values for nitrate, dissolved silica, and log-transformed chlorophyll for the entire model domain, as well as points matched only to the three
major biological clusters – the northern Strait of Georgia, the central Strait of Georgia, and the Juan de Fuca Strait (cluster boundaries
are specific to the year of observation). The timeline and rightmost panel display observation times and locations. Stations with nutrients
but no chlorophyll data are shown in red, while stations with observations of all three parameters are shown in purple. Summary statistics
corresponding to these plots are shown in Table A2.
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Table A1. Summary statistics corresponding to the model–data comparison of temperature and salinity shown in Fig. A1. Model bias is low
compared to model means, and model bias and skill score do not vary significantly between biological clusters.

Metric All data Cluster 3 (CSoG) Cluster 4 (NSoG) Cluster 5 (JdF)

Temperature (◦C) N 502 228 308 314 56 479 37 858
Model mean 9.5 9.5 9.6 8.7
Bias 0.01 0.044 −0.075 −0.068
RMSE 0.47 0.44 0.45 0.51
WSS 0.967 0.966 0.961 0.966

Salinity (g kg−1) N 502 228 308 314 56 479 37 858
Model mean 31 30 30 32
Bias 0.046 0.067 0.15 −0.066
RMSE 0.47 0.48 0.32 0.42
WSS 0.967 0.960 0.970 0.971

Table A2. Summary statistics corresponding to the model–data comparison of biological variables shown in Fig. A2. Chlorophyll data are
log-10 transformed. Model bias is low compared to model means and RMSE, and model bias and skill score do not vary significantly between
biological clusters.

Metric All data Cluster 3 (CSoG) Cluster 4 (NSoG) Cluster 5 (JdF)

Nitrate N 4732 2212 682 933
Model mean 21 22 22 23
Bias −2.0 −2.1 −0.94 −2.4
RMSE 3.9 3.7 3.7 4.3
WSS 0.94 0.97 0.95 0.90

Dissolved silica N 4732 2212 682 933
Model mean 39 41 42 37
Bias −6.2 −7.0 −5.9 −4.2
RMSE 9.7 9.7 9.1 8.57
WSS 0.865 0.866 0.913 0.786

Chlorophyll (log-10) N 950 475 133 222
Model mean −0.58 −0.69 −0.71 −0.55
Bias −0.23 −0.19 −0.17 −0.28
RMSE 0.48 0.42 0.43 0.53
WSS 0.712 0.786 0.757 0.599

Appendix B: Changes to biophysical model since first
publication

Several adjustments to the biological model have been made
from the simulation described in Olson et al. (2020) for the
present run. The most significant concerns the silicon cycle.
The rate of silica dissolution was adjusted from 3.089×10−6

to 1.221× 10−6 s−1, and a bottom flux of silicon of 6.66×
10−5 mmol m−2s−1 was added across the land–ocean inter-
face below 250 m. The sinking rate of biogenic silicon was
increased from 1.44× 10−4 to 3.108× 10−4 m s−1. The bot-
tom reflection coefficient for biogenic silicon was increased
from 0.8 to 0.92, and the reflection coefficient for diatoms
was changed from 0.8 to 0. Additionally, the ratio of di-
atom silicon to nitrogen content was increased from 1.5 to
1.8 µmol Si : µmol N.

Diatom growth parameters were adjusted slightly, with an
increase in the optimal light level from 42 to 45 W m−2, an
increase in the dissolved silica half-saturation constant from
1.2 to 2.2 µM Si, and a 1 % decrease in maximum growth
rate. The flagellate half-saturation constant for ammonium
increased from 0.1 to 0.2 µM N.

Several small adjustments were made to grazing rates,
prey preferences, and predation threshold, primarily to de-
crease the minimum standing stock of phytoplankton and
increase grazing by microzooplankton relative to meso-
zooplankton. Additionally, the seasonally varying mesozoo-
plankton maximum grazing level was adjusted slightly, de-
creasing winter and midsummer grazing rates and bringing
the cycle forward by approximately 5 d. The western bound-
ary and riverine nutrient concentrations have been updated.
The namelists specifying these small adjustments are avail-
able from the paper’s associated GitHub repository.
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Appendix C: Companion figures

Figure C1. One example clustering output by Ward’s method for the annual halocline depth signal in the year 2015 (see Sect. 2.2–2.3).
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Figure C2. The interannual cluster commonality metric, measuring interannual cluster persistence for each factor. For any two clusters,
cluster commonality varies from 0 (clusters of any size with no stations in common) to 1 (two clusters of equal size with all stations in
common) and may be used to compare clusters of unequal sizes.

Figure C3. Fraser river flow at Hope, British Columbia, for the 4 modeled years, as implemented in Soontiens and Allen (2017). Data from
Environment and Climate Change Canada (https://wateroffice.ec.gc.ca/report/real_time_e.html?stn=08MF005, last access: June 2021).
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Figure C4. Mean depth profiles of phytoplankton biomass for the three main biological clusters (CSoG, NSoG, and JdF) for all 4 modeled
years. Spring is defined as March–May, summer is June–August, autumn is September–November, and winter is December–February.

Code and data availability. Model namelists as well as post-
processing and analysis scripts are available from the associated
GitHub repository (https://doi.org/10.5281/zenodo.7144696,
Jarníková, 2022a). SalishSeaCast results are available from the
SalishSeaCast ERDDAP server (https://salishsea.eos.ubc.ca/
erddap/index.html, SalishSeaCast Project Contributors, 2022).
Observational data used in the model evaluation are avail-
able online from the Department of Fisheries and Oceans
Canada (DFO): https://www.pac.dfo-mpo.gc.ca/science/oceans/
data-donnees/index-eng.html (DFO, 2016). More information
about SalishSeaCast can be found on the project web page
(https://salishsea.eos.ubc.ca, last access: 10 May 2022). The model
source code is available at https://doi.org/10.5281/zenodo.7144812,
(Jarníková, 2022b).
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