
Ocean Sci., 18, 1221–1244, 2022
https://doi.org/10.5194/os-18-1221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Four-dimensional temperature, salinity and mixed-layer depth
in the Gulf Stream, reconstructed from remote-sensing and
in situ observations with neural networks
Etienne Pauthenet1, Loïc Bachelot2, Kevin Balem1, Guillaume Maze1, Anne-Marie Tréguier1, Fabien Roquet3,
Ronan Fablet4, and Pierre Tandeo4

1Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS),
IUEM, 29280, Plouzané, France
2Ifremer, Univ. Brest, CNRS, IRD, Service Ingénierie des Systèmes d’Information (PDG-IRSI-ISI),
IUEM, 29280, Plouzané, France
3Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
4IMT Atlantique, CNRS UMR Lab-STICC, Brest, France

Correspondence: Etienne Pauthenet (etienne.pauthenet@ifremer.fr)

Received: 4 March 2022 – Discussion started: 18 March 2022
Revised: 22 June 2022 – Accepted: 11 July 2022 – Published: 25 August 2022

Abstract. Despite the ever-growing number of ocean data,
the interior of the ocean remains undersampled in regions of
high variability such as the Gulf Stream. In this context, neu-
ral networks have been shown to be effective for interpolat-
ing properties and understanding ocean processes. We intro-
duce OSnet (Ocean Stratification network), a new ocean re-
construction system aimed at providing a physically consis-
tent analysis of the upper ocean stratification. The proposed
scheme is a bootstrapped multilayer perceptron trained to
predict simultaneously temperature and salinity (T −S) pro-
files down to 1000 m and the mixed-layer depth (MLD) from
surface data covering 1993 to 2019. OSnet is trained to fit
sea surface temperature and sea level anomalies onto all his-
torical in situ profiles in the Gulf Stream region. To achieve
vertical coherence of the profiles, the MLD prediction is used
to adjust a posteriori the vertical gradients of predicted T −S
profiles, thus increasing the accuracy of the solution and re-
moving vertical density inversions. The prediction is general-
ized on a 1/4◦ daily grid, producing four-dimensional fields
of temperature and salinity, with their associated confidence
interval issued from the bootstrap. OSnet profiles have root
mean square error comparable with the observation-based
Armor3D weekly product and the physics-based ocean re-
analysis Glorys12. The lowest confidence in the prediction
is located north of the Gulf Stream, between the shelf and
the current, where the thermohaline variability is large. The

OSnet reconstructed field is coherent even in the pre-Argo
years, demonstrating the good generalization properties of
the network. It reproduces the warming trend of surface tem-
perature, the seasonal cycle of surface salinity and mesoscale
structures of temperature, salinity and MLD. While OSnet
delivers an accurate interpolation of the ocean stratification,
it is also a tool to study how the ocean stratification relates to
surface data. We can compute the relative importance of each
input for each T −S prediction and analyse how the network
learns which surface feature influences most which property
and at which depth. Our results demonstrate the potential of
machine learning methods to improve predictions of ocean
interior properties from observations of the ocean surface.

1 Introduction

In situ observations of the ocean vertical structure are accu-
rate but sparsely distributed in time and space, hampering
the study of mesoscale features (Siegelman et al., 2020a) and
the computation of large-scale integrated variables such as
ocean heat content (Wang et al., 2018; Durack et al., 2014).
Meanwhile, the ocean surface has been observed at high tem-
poral and spatial resolution with satellites since the early
1990s. Remote sensing allows us to observe surface signa-
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ture of mesoscale to submesoscale features (Siegelman et al.,
2020b) and to track climatic trends of sea surface height
(Nerem et al., 2018), temperature (Merchant et al., 2019) and
salinity (Reul et al., 2020). It is therefore highly valuable for
combining sparse in situ profiles and high-resolution remote
sensing observations in order to predict the ocean stratifica-
tion at higher resolution and frequency.

This problem can be approached from two main points
of view. First, the physical approach aims at constraining a
global circulation model with all observations available (e.g.,
Lellouche et al., 2021; Forget et al., 2015). The numerical
models have the advantage of offering a product that is phys-
ically consistent but that can contain drifts and biases (Stam-
mer, 2005). The data assimilation is a practical means of
reducing the spurious model drifts and biases, but still the
model can diverge from observations and even drift in un-
charted states in poorly sampled regions (Forget et al., 2015).
Second, the statistical approach aims at finding the empiri-
cal relationship between the surface ocean and the interior.
The simplest method is to use a multiple linear regression
between sea-level anomaly (SLA), sea surface temperature
(SST) and T −S profiles (Guinehut et al., 2012; Jeong et al.,
2019). According to Guinehut et al. (2012), this method can
only reconstruct 50 % to 30 % of the temperature and 20 % to
30 % of the salinity at depth. An improvement of the linear
reconstruction method is to first reduce the T −S profiles and
to link up the reduced variables to the satellite data. Indeed,
it was found that only a few modes are needed to explain
most of the variance or covariance of the temperature fields
(Meinen and Watts, 2000) or of combined T − S profiles us-
ing the gravest empirical mode (GEM) projection (Sun and
Watts, 2001). The GEM technique is a projection of hydro-
graphic profiles onto a geostrophic stream function plane,
which was used to estimate the four-dimensional structure
of the Southern Ocean (Meijers et al., 2010). However, this
requires that each dynamic height be associated with just
one T − S profile at each longitude, meaning that outside
of the Antarctic Circumpolar Current or boundary currents,
the approach is questionable. Buongiorno-Nardelli and San-
toleri (2005) developed the multivariate Empirical Orthog-
onal Function Reconstruction (mEOF-r) based on a similar
idea. It is a linear system that uses surface data to predict
the three leading modes of the EOFs applied to profiles of
temperature, salinity, and geopotential thickness. They later
showed that mEOF-r is outperformed by an artificial neural
network for the North Atlantic region (Buongiorno Nardelli,
2020).

Machine learning approaches are increasingly used to deal
with the ever-growing stream of geospatial data (Reichstein
et al., 2019; Sonnewald et al., 2021; Wang et al., 2019). More
specifically, deep learning methods are characterized by arti-
ficial neural networks (NNs) involving usually more than two
hidden layers. They exploit feature representations learned
exclusively from data (Zhu et al., 2017). Multiple studies re-
cently presented deep learning methods for reconstructing

hydrographic profiles from satellites. Proof-of-concept pa-
pers established the important capabilities of self-organizing
maps (SOM; e.g., Charantonis et al., 2015; Gueye et al.,
2014) and feed-forward or long short-term memory (LSTM)
neural networks for hydrographic profile predictions (e.g.,
Lu, 2019; Jiang et al., 2021; Contractor and Roughan, 2021;
Buongiorno Nardelli, 2020; Su et al., 2021; Sammartino
et al., 2020). NNs can also efficiently reconstruct Argo inter-
polated fields (Gou et al., 2020; Meng et al., 2021). A recent
study focused on predicting the mixed-layer depth (MLD)
from satellites using probabilistic machine learning (Foster
et al., 2021). However, to our knowledge these deep learn-
ing studies do not explore the vertical coherence of the pre-
dicted profiles, i.e., the presence of density inversions and
the accuracy of the MLD prediction. The presence of density
inversions makes an ocean product more difficult to use to
initialize regional forecast models. Statically unstable pro-
files have to be removed when using the product to anal-
yse ocean dynamics (e.g., New et al., 2021). The accuracy
of the MLD prediction also has large implications for the
pertinence of an ocean product. Indeed, the MLD and the
strength of underlying stratification regulate the rate at which
the ocean exchanges heat and gas with the atmosphere, which
directly impact our climate (Sallée et al., 2021). To under-
stand and quantify ongoing climate changes, we need to doc-
ument the variability of the vertical gradients of tempera-
ture, salinity and density in the water column. Physically
consistent products, in the spirit of the MIMOC climatology
(Schmidtko et al., 2013) but with higher resolution in time
and space, are required to validate models used for climate
projections. In particular, western boundary currents such
as the Gulf Stream play a major role in climate variability
by carrying warm and salty near-surface waters northwards
(Smeed et al., 2018) and by deeply impacting the atmosphere
(Minobe et al., 2008). In the present paper we focus on the
Gulf Stream region for its challenging high variability and its
dense in situ sampling coverage.

Here we present a method to estimate the ocean stratifica-
tion from surface data and the associated confidence intervals
using a prediction model fitted with in situ historical data.
We train a NN to predict temperature and salinity (T − S)
profiles down to 1000 m and the MLD, in the Gulf Stream
region, from satellite data covering 1993 to 2019. Our goal
is to combine MLD, T and S predictions to produce T − S
profiles that are physically consistent. Model training is done
on raw in situ profiles alone (not interpolated fields), and pre-
dictions are generalized on a grid with 1/4◦ horizontal res-
olution and daily time steps. Our framework further delivers
a quantification of uncertainties through a confidence inter-
val of the model prediction as well as the relative importance
of each input variable. The proposed reconstruction method
and resulting product are named OSnet for Ocean Stratifica-
tion network.

The paper is organized as follows. Section 2 introduces
the datasets used as inputs and outputs of OSnet as well
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as the products used as a benchmark to evaluate the perfor-
mance of our reconstruction. Section 3 presents the method
composed of the neural network and the MLD adjustment.
Section 4 evaluates the accuracy of OSnet predictions and
presents property maps and sections. OSnet profiles are com-
pared to a mooring; we also compare time series and an anal-
ysis of the relative importance of each input for each out-
put. In Sect. 5 we explore the potential of OSnet by estimat-
ing profiles from synthetic satellite data. Our conclusions are
presented in Sect. 6.

2 Data

2.1 Temperature and salinity in situ profiles

We use the in situ temperature and salinity (T − S) vertical
profiles sampled by Argo floats (Argo, 2022) and ships from
the CMEMS quality-controlled Coriolis Ocean Dataset for
Reanalysis (CORA) database (Cabanes et al., 2013; Szekely
et al., 2019). We keep only the profiles extending at least
from 25 to 1000 m for the period 1993 to 2019, total-
ing 67 767 T − S profiles for the region 80 to 30◦W and
23 to 50◦ N. All the profiles that do not reach 1000 m or start
deeper than 25 m are discarded. Profiles are interpolated on
an uneven vertical grid with 51 levels, with spacing increas-
ing with depth (27 levels are within the first 100 m leading to
a vertical resolution of 1 m in the upper levels and 450 m at
1000 m depth). Profiles without data at the surface are extrap-
olated by repeating the shallowest observation point. There is
little seasonal bias in the distribution of data with 5647 pro-
files by month on average, a minimum of 5027 in February
and a maximum of 6257 in October. The spatial distribution
of profiles kept in the analysis is shown in Fig. 1b. It reveals a
general lack of data in the center of the subtropical gyre com-
pared to the Gulf Stream region west of 60◦W. The temporal
distribution (Fig. 1a) reveals a significant increase in sam-
pling after 2000 thanks to the Argo program (Wong et al.,
2020). After 2012, the number of T − S profiles stabilizes at
∼ 400 profiles per month.

2.2 Input data

Input data (Table 1) are surface satellite data and bathymetry.
Mean dynamic topography (MDT) is from the Centre Na-
tional d’Etude Spatiale (CNES-CLS18) (Mulet et al., 2021),
and the bathymetry is the ETOPO1 bedrock, distributed by
NOAA (2009). The SLA is the level-4 daily product from
CNES-CLS (6.2_DUACS_DT2018). It has a 1/4◦ horizon-
tal grid resolution. We also use geostrophic surface veloc-
ities derived from the SLA and distributed by CNES-CLS
(Table 1). MDT is calculated by merging information from
altimeter data, GRACE, and GOCE gravity field and oceano-
graphic in situ measurements (drifting buoy velocities, hy-
drological profiles) (Mulet et al., 2021), while SLA is from
altimeter data only. Keeping MDT and SLA separated in the

inputs allows us to determine their respective importance in
the prediction (see Sect. 4.4). The SST is from the European
Space Agency (ESA) Climate Change Initiative (CCI) and
Copernicus Climate Change Service (C3S), v2.3 and level-
4 product. It provides gap-free maps of daily average SST
at 20 cm depth and 0.05◦× 0.05 ◦ horizontal grid resolution,
using satellite data from the Along Track Scanning Radiome-
ter (ATSR), Sea and Land Surface Temperature Radiometer
(SLSTR) and Advanced Very High Resolution Radiometer
(AVHRR) series of sensors (Merchant et al., 2019).

2.3 Additional datasets

We validate our results against other observational and syn-
thetic datasets. The sea surface salinity (SSS) CCI dataset is
distributed at 1/4◦ horizontal grid resolution from 2010 to
2019 (Boutin et al., 2021). We do not use SSS as an input
variable for several reasons. SSS satellite observations only
cover the period 2010–2019, and its quality is questionable at
high latitudes and in cold water (Boutin et al., 2021). As our
prediction only depends on the input variables, it is risky to
rely on data with systematic errors. Moreover, we tested an
architecture with SSS as input, and results were not improved
significantly: only the surface salinity was slightly better. The
relative importance algorithm also showed that SSS was not
used significantly in predictions. It has the same order of im-
portance than geostrophic currents (see Sect. 3.4 on the ex-
plainability of the NN). However, SSS is a useful product to
compare with, and we further discuss this in Sect. 4.5 and
Appendix B.

We compare OSnet gridded fields to Armor3D and Glo-
rys12 because they are the only ocean products, to our knowl-
edge, that extend from 1993 to today with a spatial res-
olution of at least 1/4◦ and a frequency under the month
(weekly for Armor3D and daily for Glorys12). The global
eddy-resolving reanalysis Glorys12 (Lellouche et al., 2021)
is based on the physical model NEMO (Madec, 2015) and
ocean observations assimilated by means of a reduced-order
Kalman filter. It is provided at 1/12◦ horizontal grid res-
olution and a daily mean. We also compare our results to
the observation-based Armor3D weekly product (Guinehut
et al., 2012). This later product is built in two steps: (i) pre-
diction of synthetic T −S fields by multiple linear regression
from SST and SLA and (ii) optimal interpolation combin-
ing synthetic and in situ T − S profiles. A section of OSnet
is compared to hydrographic section AT20 sampled along
52.3◦W by the research vessel Atlantis from 1 to 11 May
2012 (McCartney, 2012). Finally, we use T −S data sampled
at moorings of the Line W array, deployed in April 2004 be-
tween Cape Cod and Bermuda. We use profiles from the third
mooring located at 69.11◦W, 38.51◦ N.
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Figure 1. Count of temperature and salinity profiles extending from 25 to 1000 m for the region. Profiles are counted for 1/4◦ bins (b) and
represented where they exceed 0 with a truncated color bar at 20 profiles; the maximum number of profiles for a bin is 185 profiles. The
count in (a) is by months.

Table 1. List of input variables for the neural network and additional datasets to compare with. ESA CCI: European Space Agency Climate
Change Initiative. C3S: Copernicus Climate Change Service. NOAA: National Oceanic and Atmospheric Administration. DUACS: Data
Unification and Altimeter Combination System. CMEMS: Copernicus Marine Environment Monitoring Service.

Variable input Temporal coverage Distributor, version (citation)

Longitude n/a n/a
Latitude n/a n/a
Day of the year (cosine and sine) n/a n/a
Bathymetry n/a NOAA (ETOPO1 Bedrock) (NOAA, 2009)
Mean dynamic topography (MDT) n/a CNES-CLS18 (Mulet et al., 2021)
Sea surface temperature (SST) 1981–ongoing ESA CCI and C3S, v2.3, L4 (Good et al., 2019)
Sea-level anomaly (SLA) 1993–ongoing CNES-CLS, 6.2_DUACS_DT2018, L4
Zonal absolute geostrophic velocities – –
Meridian absolute geostrophic velocities – –
Zonal geostrophic velocity anomalies – –
Meridian geostrophic velocity anomalies – –

Additional datasets used – –

Sea surface salinity (SSS) 2010–2019 ESA CCI, v2.31 (Boutin et al., 2021)
Armor3D 1993–ongoing CMEMS (Guinehut et al., 2012)
Glorys12 1993–2019 CMEMS (Lellouche et al., 2021)

n/a: not applicable.

3 Method

The method is composed of three steps (Fig. 2). Firstly, a
neural network is trained to predicts T −S profiles and MLD
from satellite data. Secondly, an adjustment of predicted T , S
and MLD corrects the vertical shape of the profiles towards a
physically consistent solution. Finally, an operational phase
uses the trained network and MLD adjustment to predict T ,
S and MLD on daily grids from the satellite data.

The procedure is coded in Python with the help of sev-
eral useful modules. The NN algorithm is coded with Ten-
sorflow (Abadi et al., 2016) and the Keras application pro-
gramming interface (Chollet and Others, 2015). It is ex-
plained with Shap (Kaur et al., 2020). Xarray (Hoyer and
Hamman, 2017), Dask (Rocklin, 2015) and Numba (Lam
et al., 2015) are used for fast computation and the manage-
ment of large datasets. The color palettes for maps are from
Cmocean (Thyng et al., 2016) and Colorcet (Kovesi, 2015).
All the codes to build OSnet models are available at https:

//github.com/euroargodev/OSnet (last access: 27 June 2022,
Pauthenet et al., 2022b), and the models and prediction
tools specific to the Gulf Stream region are available at
https://github.com/euroargodev/OSnet-GulfStream (last ac-
cess: 27 June 2022, Pauthenet et al., 2022c).

3.1 The multilayer perceptron

The neural network used is a multilayer perceptron (MLP),
which is a class of feed-forward artificial neural networks
(Rosenblatt, 1961; Gardner and Dorling, 1998). The MLP
guesses the non-linear relation between inputs and out-
puts, through one or more hidden layers with many neurons
stacked together. The learning mechanism that allows the
MLP to iteratively minimize the loss function is called back-
propagation. We keep the architecture simple with only two
layers of 256 neurones each. Dropout is used as a regulariza-
tion method to reduce overfitting and improve generalization
(Srivastava et al., 2014). Activation functions are a rectified
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Figure 2. Schematic of OSnet formed of a neural network (NN) with two hidden layers and a mixed-layer (MLD) depth adjustment. The
NN uses 12 surface inputs that are listed in Table 1 to predict profiles of temperature (T ), salinity (S) and MLD mask (K). T −S profiles are
then adjusted using the profile K for a better prediction of the MLD.

linear activation function (ReLU) for the hidden layers, linear
for T and S output, and a sigmoid for the MLD output. We
tested more complex architectures (additional layers, con-
volutional layers, bottleneck architecture) but could not im-
prove the accuracy of the results with them. A simple archi-
tecture is advantageous for its lower computation time. The
input consists of 12 values, listed in Table 1: latitude, lon-
gitude, day of the year (cosine and sine), bathymetry, MDT,
SST, SLA, four geostrophic velocitiesU , V and both anoma-
lies. Inputs are linearly interpolated at the in situ location of
each profile. The outputs are predictions of three vectors of
51 depth levels (temperature, salinity and the MLD mask).
The depth levels are the ones presented in the data section,
on which the CORA profiles are interpolated.

The dataset is split (randomly with no replacement) as fol-
lows: 20 % of the profiles are set aside for testing. In the
remaining 80 %, we use 80 % as training data and 20 % as
validation data. Validation data are used to avoid overfitting
by assessing the performance of the trained model after each
epoch (one epoch sees all the training data). Be aware that the
train and test data are not truly independent: the selection is
random without accounting for spatial and temporal autocor-
relation. Once the training of the NN is finished, we select the
model with the best performance on the validation dataset.
We then run this model on the test dataset (data not seen in
training or validation) to confirm the good generalization of
the model (i.e., training and test errors are similar, Fig. 3).
Given a NN architecture with good generalization properties,
we retrain a NN using all 67 767 profiles (Fig. 3, orange) as
training data. The training of one model takes ∼ 20 min on
an eight-core CPU with 32 Go of RAM.

To further improve the prediction performance and assess
the associated confidence intervals, we exploit a bootstrap-
ping scheme (Breiman, 1996). More precisely, we bootstrap
the training procedure 15 times using a different initializa-
tion and training dataset each time. Indeed, because of the

instability of the prediction method, bootstrapping can give
substantial gains in accuracy. Overall, given 15 trained mod-
els, we compute the mean T , S and K profiles for all input
data and their standard deviation (Fig. 3, grey). The latter
delivers an estimate for the confidence interval. This boot-
strap method reduces the estimation bias. Finally, the T − S
prediction is generalized on a daily 1/4◦ horizontal grid. The
spatial resolution of the input data (Table 1) is unified to 1/4◦

in longitude and latitude by a nearest neighbor interpolation
method. This produces T and S fields with 51 depth levels
from the surface to 1000 m for each day between 1 January
1993 and 31 December 2019. It is freely available (Pauthenet
et al., 2022a).

3.2 Prediction of the mixed-layer depth

We define the mixed-layer depth H with a density deviation
from the surface method, as proposed by de Boyer Mon-
tegut et al. (2004). It is the depth at which the potential den-
sity referenced to the surface, σ0, exceeds by a threshold of
0.03 kg m−3 the density of the water at 10 m, σ0 (z=−H )=
σ0 (z=−10 m) +0.03 kg m−3. This definition is chosen for
its simplicity of application but tends to overestimate deep
winter MLDs compared to the more sophisticated hybrid al-
gorithm of Holte et al. (2017). These regions of deep winter
MLD are rarely observed in our dataset (1145 profiles with
MLD deeper than 300 m, i.e., 1.7 % of the dataset), comfort-
ing our choice of using a simple density threshold. For the
NN, the mixed layer is represented in the form of a unitless
profile K of size Z = 51 that is filled with zeros between the
surface and the mixed-layer depth H and with ones from H

to −1000 m.

K(z)=

{
0 if z > H

1 if z ≤H
(1)

This formulation allows the NN to give an estimation of
the gradients around the MLD instead of a single depth value

https://doi.org/10.5194/os-18-1221-2022 Ocean Sci., 18, 1221–1244, 2022
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Figure 3. Normalized root mean square error (nRMSE) between temperature (a) and salinity (b) observed (CORA) and predicted profiles
(Glorys12, Armor3D, NN and OSnet). The normalization is done with the standard deviation of the observed temperature and salinity by
depth. The upper panels are a zoom of the first 100 m of the full-depth lower panels. The Glorys12 (blue) and Armor3D (purple) profiles are
collocated with the CORA profiles, and the error is calculated between these subsamples. The NN profiles are only predicted with the NN,
without adjustment of MLD, for 15 trained datasets (dark grey) and 15 test datasets (light grey). NN full (orange dotted) corresponds to the
predictions using the full dataset (test + train) and is averaged for 15 models (bootstrap). Finally, the OSnet profiles (orange) are predicted
with a NN bootstrapped 15 times and the MLD adjustment is performed, which slightly increases the error at the surface.

(Fig. 4d). The resulting mask K is also convenient for the
MLD adjustment performed on predicted profiles.

3.3 Adjustment of the mixed layer

We identified two types of error in the direct prediction of
T − S profiles. Firstly, the MLD predicted by the K̂ profile
has a better accuracy (MLD RMSE of 40 m) than the MLD
computed from the T − S profiles directly (MLD RMSE of
50 m). The latter is systematically too shallow due to unre-
alistic T − S excursions on the vertical in the mixed layer,
causing the density threshold to be reached too close to the
surface. These sharp variations of T and S in the mixed
layer also create density inversions. Secondly, the gradients
of the layer under the MLD are systematically underesti-
mated compared to the observed profiles. The mean and stan-
dard deviation of gradients of σ0 over a 200 m-thick layer un-
der the MLD is 1.33± 0.9 kg m−3 for the observed profiles

and 1.24± 0.8 kg m−3 for the predicted ones. The presence
of strong gradients under the MLD has been documented
(Johnston and Rudnick, 2009), and the profile K̂ seems to
contain this information. Indeed, K̂ is a sigmoid-like profile
(Fig. 4d), and its vertical gradients are proportional to the
T − S gradients around the MLD. The summer K̂ profiles
have sharp vertical gradients compared to the winter ones
(not shown), which is coherent with the seasonal cycle of the
transition layer thickness (Johnston and Rudnick, 2009).

We thus choose to apply an MLD adjustment to the pre-
dicted profiles, in the same spirit as convective adjustment
schemes are used in numerical hydrostatic models (Madec,
2015). We want to weight the vertical gradients of T̂ and
Ŝ by K̂ in order to reduce the gradients of T̂ and Ŝ in the
mixed layer and increase the gradients of T̂ and Ŝ just be-
low the MLD (K̂ = λ) while keeping the deeper gradients
unchanged. We first modify the K̂ into a new mask K̂∗ as
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Figure 4. Example of a profile (orange) sampled on 3 March 2012 at 35.55◦W and 23.53◦ N, truncated at 300 m deep. We display tempera-
ture (a), salinity (b), potential density (c) and profile K that is a mask of MLD (see Eq. 1). The T − S profile predicted by the NN is in red
and the adjusted using the K̂∗ profile (OSnet) in green (see Sect. 3.3). The green and red bands are the confidence interval for each profiles,
i.e., the standard deviation of the 15 bootstrapped models. MLDs observed, predicted and adjusted are shown with dotted horizontal lines.
SST is added with a purple dot and a horizontal bar for its mapping uncertainty.

follows:

K̂∗z =


K̂z if K̂z < λ,

2− K̂z if λ > K̂z > 1,
K̂z if K̂z = 1,

(2)

with λ= 0.57 the value ofK corresponding to the MLD. The
calibration of λ is done by a cross-validation procedure ac-
cording to the estimation bias between T̂ at the sea surface
and the SST value (Fig. 5). In other words, λ= 0.57 allows
us to adjust the MLD while keeping null the mean difference
between T̂ and SST (green in Fig. 5). We expect this value
(λ) to be specific to our region and NN parameterization. It
would likely require a new calibration for another study.

After computing the K̂∗ profiles, we reconstruct iteratively
T − S profiles with the gradients multiplied by K̂∗, starting
from the bottom value (at z= 1000 m) where K̂∗ = 1 (be-
cause the deepest MLD never reaches 1000 m, the maximum
observed in the CORA dataset is H = 628 m for our region).
On a predicted temperature profile T̂ (the same is applied to
salinity), the adjusted temperature profile T̂ ∗ is computed as
follows:

1T̂ ∗

1z
=
1T̂

1z
K̂∗, (3)

and we retrieve the temperature profiles iteratively along
depth by starting from the bottom z+ 1= 1000 m, where
K̂∗z+1 = 1 and T̂ ∗z+1 = T̂z+1:

T̂ ∗z = K̂
∗
z

(
T̂z− T̂z+1

)
+ T̂ ∗z+1. (4)

Figure 5 presents the overall bias of surface T̂ and Ŝ rela-
tive to SST and SSS. If we adjust gradients with a K̂ profile,

the surface temperature is systematically too warm compared
to SST (Fig. 5a, red). Now, if the adjustment is also increas-
ing the gradients under the MLD (K̂∗), the surface temper-
ature bias is null (Fig. 5a, green). This supports our choice
to amplify gradients just under the MLD (K̂∗ > 1) and to
reduce them in the mixed layer (K̂∗ < 1). Note that the di-
rect prediction of temperature at the surface (Fig. 5a, blue)
is more accurate compared to SST than in situ observations,
because OSnet learns from SST. The salinity difference rela-
tive to SSS is too large for the adjustment to cause a signif-
icant issue (Fig. 5b). Still, the adjusted salinity profiles with
K predicted create a fresh bias, and the use of K̂∗ corrects
that.

A good example of profile prediction and adjustment is
presented in Fig. 4. In this case the adjustment corrects per-
fectly the MLD estimate, from 30 m predicted (red) to 133 m
adjusted (green). It reduces the T − S gradients above the
MLD estimated from the K profile (K = 0.5) and increases
the T − S gradients just under this MLD. The decrease in
T − S gradients in the mixed layer also removed the density
inversion (Fig. 4c).

The adjustment proposed here reduces the variance of T̂
and Ŝ above the MLD, reduces the number of density inver-
sions, improves the predictions of the MLD (see Table 2) and
increases the gradients in the transition layer under the MLD.
For the adjusted profiles, the mean and standard deviation of
gradients of σ0 over a 200 m-thick layer under the MLD are
1.38± 0.9 kg m−3, which is closer to the observed values of
−1.33± 0.9 than the predicted values of 1.24± 0.8 kg m−3.
The large summer gradients are especially well retrieved (not
shown).

An alternative idea to solve the density inversion issue is
to constrain the NN to predict profiles that are hydrostati-
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Figure 5. Density distribution of the difference between the in situ surface temperature and salinity and the remote sensing SST and SSS.
The predicted profiles (blue) correspond to the profiles produced by the NN alone. The adjusted distribution with K̂ is in red (also red in
Fig. 4d). The adjusted distribution with K̂∗ is in green and corresponds to the OSnet product (i.e., NN + adjustment), also shown in green in
Fig. 4d.

Table 2. Metrics of accuracy for predictions of Armor3D, Glorys12, a neural network (NN, i.e., OSnet without MLD adjustment) and OSnet
compared to the in situ CORA profiles. The σ0 inversions larger than 0.01 kg m−3 are counted. The Armor3D and Glorys12 statistics are
computed on the subsampled products at the locations of the profiles of CORA.

CORA Armor3D Glorys12 NN OSnet: NN +MLD
adjustment

Ratio of profiles with 1.37 % 53.72 % 0.01 % 17.3 % 0.32 %
σ0 vertical inversion (%)

Mean size of σ0 2.30× 10−3 8.85× 10−2 1.15× 10−4 8.19× 10−3 8.39× 10−4

vertical inversion (kg m−3)

RMSE of MLD (m) – 39.6∗ 39.3 50.0 40.0
nRMSE of T (%) – 13.97 % 25.09 % 18.82 % 18.9 %
nRMSE of S ( %) – 20.3 % 30.86 % 23.96 % 24.05 %
nRMSE of σ0 (%) – 20.5 % 29.03 % 23.12 % 23.23 %

∗ All the MLDs are computed with the density criterion of 0.03, except for Armor3D, for which a different criterion is used to bypass their density
inversion issues.

cally stable. The physical relationship can be implemented in
the NN to enforce consistency on the predictions (Karpatne
et al., 2017). This can be done by modifying the loss of the
NN and penalizing the predictions with density inversions
(Appendix A). This solution is elegant and allows us to pre-
dict directly profiles without density inversions. We provide
this alternative approach here for the record of a negative re-
sult with regard to the design of such a NN. Indeed, pro-
files predicted with this custom loss still have poor MLD es-
timates compared to K̂ profiles and hence still need a pos-
teriori adjustment. The modified loss (Appendix A) is not
needed in this case because the MLD adjustment presented
above happens to remove density inversions efficiently.

3.4 Explainability of the neural network

Explaining the predictive skills of the neural network is key
to interpreting the prediction and strengthening trust in the
model. It is also a useful tool in the development phase. Here,
it gives insights into the relationship between surface data
and in situ profiles. In this section, we use a game-theoretic
approach to retrospectively estimate the relative importance
of each input for each output. The algorithm, called SHapley
Additive exPlanations (SHAP) (Lundberg and Lee, 2017), is
a unified framework combining state-of-the-art methods to
explain deep neural networks. It is based on a method called
Deep Learning Important FeaTures (DeepLIFT) (Shrikumar
et al., 2017) and Shapley values. DeepLIFT is a method for
computing the effect of changing the original input to a ref-
erence value (uninformative background value for the input).
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The change in the output is representative of the importance
of the input for predicting the output. Shapley regression val-
ues (Shapley et al., 1953) represent the impact of an input
on the output by removing it from the input set and retrain-
ing this model with the subset of inputs. This being compu-
tationally expensive, it is possible to obtain an approxima-
tion of the effect of removing a variable from the model by
integrating over samples from the training dataset using the
Shapley sampling values (Štrumbelj and Kononenko, 2014).
It produces an “importance” value for each particular predic-
tion. The importance value is positive or negative, indicating
the direction in which the input influences the output relative
to the averaged output. The SHAP algorithm being computa-
tionally expensive, it was not possible to run it over the full
dataset. After some tests, we found that 300 random samples
were representative enough to obtain stable results for the
average feature importance across the entire dataset.

4 Results

4.1 Accuracy of the predictions compared to
observations

Table 2 presents several metrics to evaluate OSnet, Armor3D
and Glorys12 relative to CORA. Each dataset is predicted
or subsampled at the locations of CORA profiles (in longi-
tude, latitude, depth and time). The first two lines indicate
the number and size of vertical density inversions. They indi-
cate that the MLD adjustment of OSnet suppresses almost all
density inversions, from 17.3 % to 0.32 % of profiles. Mean-
while, Armor3D has about 50 % of profiles with density in-
versions and Glorys12 almost none (0.01 %). Regarding the
amplitude of density inversions, the MLD adjustment sup-
presses sufficiently large inversions and decreases by 1 order
of magnitude the mean amplitude of inversions, from 10−3

to 10−4 kg m−3.
The root mean square error (RMSE) of the MLD (Ta-

ble 2) indicates that the MLD adjustment improves the MLD
RMSE of OSnet from 50 to 40 m, which is the same order
of magnitude as Glorys12 (38.6 m) and Armor3D (39.4 m).
Note that the MLD of Armor3D is computed with a differ-
ent criterion to bypass density inversions. Armor3D uses the
minimum of temperature and density threshold equivalent to
a 0.2 ◦C decrease from the surface. The MLD of Armor3D
computed with a density criterion of 0.03 kg m−3 yields a
RMSE of 62.6 m. Finally, the global errors of temperature,
salinity and density indicate that Armor3D profiles are the
closest to the observed profiles. The metric is the normalized
RMSE (nRMSE), which is the RMSE between predicted and
observed profiles divided by the standard deviation of the ob-
served profiles. It is a ratio of error compared to the variabil-
ity observed. OSnet has a smaller nRMSE than Glorys12,
and the MLD adjustment slightly increases the temperature
nRMSE at the surface. Figure 3 reveals the vertical distribu-

tion of nRMSE. OSnet gives a more accurate prediction at
the surface compared to both Armor3D and Glorys12, but
Armor3D is closer to observations for the rest of the wa-
ter column. Overall, the nRMSE of OSnet predictions is the
same order of magnitude compared to other products, and it
does not contain significant density inversions.

4.2 Temperature and salinity maps

Let us examine a daily map of temperature and salinity at
1/4◦ resolution (Fig. 6). We chose a date in the pre-Argo
era to illustrate the generalization skill of the OSnet prod-
uct. All the maps reveal coherent horizontal structures. At the
surface, the warm Gulf Stream detaches from Cape Hatteras
and meanders further east, transforming into the North At-
lantic Current (Fig. 6a, b). The surface confidence intervals
are maximum for the cold and fresh waters near the edge of
the continental slope and inside the cold and fresh core eddies
and meanders (Fig. 6c, d). On average, confidence intervals
highlight cold waters north of the Gulf Stream (Fig. 7a, b),
which is consistent with the error of prediction maps pre-
sented in Buongiorno Nardelli (2020). This could be due
to the lack of profiles containing these cold waters in our
dataset. At depth (1000 m in Fig. 6e, f), the signature of
large eddies is visible, associated with a maximum of the
confidence interval again (Fig. 6g, h). The salty and warm
Mediterranean Overflow Waters are seen in the southeast of
the region. The average confidence interval at 1000 m is max-
imum along the Gulf Stream and its meanders, rather than in
waters north of the Gulf Stream like at the surface (Fig. 7c,
d). It corresponds to areas with the largest variability (Gail-
lard et al., 2016; Forget and Wunsch, 2007). Note the differ-
ent color scale: the maximum confidence interval values at
1000 m depth are twice as small for temperature and 5 times
smaller for salinity compared to the surface.

4.3 MLD maps

To illustrate the quality of the predicted MLD of OSnet,
we show MLD maps for a given day (5 January 2018) in
Fig. 8. We picked a winter day to emphasize deep MLD ar-
eas. The direct prediction of the NN (Fig. 8a) has shallow
patches in a few places that are due to density inversions.
The density threshold is met too shallow due to these arti-
facts in the water column (see the profile example in Fig. 4).
The MLD adjustment corrects these shallow patches, and the
MLD field of OSnet looks more consistent and more similar
to Glorys12. The OSnet MLD does not exhibit any very deep
patch (MLD > 300 m). These deep MLD events are rarely
observed in CORA (1.7 % of the profiles have a MLD deeper
than 300 m) but are often present in the MLD fields from
Glorys12 (Fig. 8). They occur in warm meanders and eddies
of the Gulf Stream. The MLD field of Armor3D (Fig. 8d)
is for the week that contains 5 January 2018. It has several
patches of either shallow or deep MLD (i.e., 28◦ N, 52◦W
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Figure 6. OSnet temperature and salinity maps for 7 January 1993, at the surface (a, b) and at 1000 m (e, f). Their respective confidence
intervals are displayed too, i.e., the standard deviation of the 15 bootstrapped models (c, d, g, h).

or 48◦ N, 32◦W) which look very sharp compared to OSnet
and Glorys12. These patches might be regions around ob-
served profiles for the given week, and the optimal interpo-
lation of Armor3D is overfitting the profile at the expense of
the general property field coherence. The Armor3D MLD is
computed with a different criterion to bypass their density in-
version issues. Still, some patches have no values where the
criterion could not be matched (Fig. 8d).

Monthly MLD averages are presented for March and Au-
gust in Fig. 9. The averages in 1◦× 1◦ boxes for the in situ
profiles (Fig. 9a, d) are compared to OSnet (b, e) and Glo-
rys12 (c, f). The three estimates are in good agreement with
each others and with climatologies not shown here (Holte
et al., 2017; Sallée et al., 2021). The main structures are well
respected with a large winter patch of deeper MLD extending
between the Gulf Stream and the subtropical gyre. In winter,

vigorous air–sea fluxes extract heat from the ocean and erode
the superficial stratification. This process activates convec-
tive mixing and deepens the mixed layer, ventilating and cre-
ating the Eighteen Degree Mode Water (Speer and Forget,
2013; Maze and Marshall, 2011). In summer the near-surface
water warms and caps the mode water layer. The summer
MLD is shallower everywhere with a slightly deeper signa-
ture in the core of the Gulf Stream, as it separates from the
coast at Cape Hatteras. A deeper summer MLD is also found
south of ∼ 30◦ N along the equatorward edge of the subtrop-
ical gyre (Fig. 9d, e, f), a feature also observed in the cli-
matology of de Boyer Montegut et al. (2004). This tropical
summer MLD deeper than 30 m is marked by the trade winds
(Stramma and Schott, 1999). The large permanent anticy-
clonic “Mann eddy” (Mann, 1967; Rossby, 1996) is clearly
visible as a deep mixed-layer patch at 43◦ N, 42◦W (Fig. 9).
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Figure 7. Time average maps of the confidence intervals for surface and 1000 m temperature and salinity, i.e., the standard deviation of the
15 bootstrapped models.

Figure 8. MLD maps for 5 January 2018. Panel (a) shows the result of the NN alone (step 1 from the schematic Fig. 2) and panel (b) is the
final OSnet product. Panels (c) and (d) are the MLDs of the TS profiles of Glorys12 and Armor3D. Armor3D is a weekly product, so the
profiles here are for the first week of January 2018. All the MLDs are computed with the density criterion of 0.03, except for Armor3D, for
which a different criterion is provided to bypass their density inversion issues. The shelf break is traced in black with the bathymetry contour
of 1000 m. The maximum of the color bar is set by the maximum of OSnet.

A region of the deeper MLD is also visible along the North
Atlantic Current, deeper in OSnet than in Glorys12.

4.4 Importance of each input for the reconstruction

In Figs. 10 and 11 we present the absolute values of the rela-
tive importance of each input, on each output, averaged over
depth, over the 300 test profiles and over the 15 bootstrapped
models. Error bars correspond to the standard deviation of
the 15 models. To be comparable, the importance values of

the inputs are normalized so that the sum per output is equal
to 1. Figures 10 and 11 give a general overview of what the
NN uses for the predictions. These importance values can
also be displayed for a specific profile or by depth levels,
seasons, or geographical regions, providing insights to elu-
cidate the behavior of the NN. The main result here is that
SST is the main driver for estimating T , S and MLD profiles
(Fig. 10). As expected, it is especially important for predict-
ing surface temperature. MDT is the second-most important
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Figure 9. Maps of the monthly mean of the MLD defined with a density threshold of 0.03 kg m−3 for (a, d) CORA T − S profiles averaged
by bins of 1◦ (b, e) OSnet and (c, f) Glorys12. The months of March and August are representative of the seasonal range of the MLD for the
region. Note the different color-bar range for each month. The maximum of the color bar is set by the maximum of OSnet. The shelf break
is traced in black with the bathymetry contour of 1000 m.

variable, and it is the most important deeper than ∼ 200 m
(Fig. 11). The latitude, longitude, SLA and day of the year
equally concur to explain the predictions. The rest of the in-
put variables, i.e., bathymetry and the surface geostrophic
currents derived from SLA, are smaller contributions to the
predictions. Even if they have small contributions on aver-
age, they can be important for a specific profile. The cosine
of the day of the year is very important for the prediction of
the MLD (Fig. 10), probably because it is in phase with the
MLD seasonal cycle, while temperature and salinity cycles
are in phase with the sine of the days (not shown). Still, it
means that the day of the year alone drives ∼ 29 % of the
MLD predictions, which is equivalent to the importance of
SST for MLD predictions (∼ 29 % too).

4.5 Time series of surface properties

To assess the accuracy of OSnet through time, we ana-
lyze the time series of the spatially averaged surface tem-
perature and compare it to the observed SST time series
as well as the Glorys12 and Armor3D products. We aver-
age data over the region after removing values on the shelf
(bathymetry > 1000 m). The long-term trends are obtained
by applying a seasonal-trend decomposition based on local
regression (STL) (Cleveland et al., 1990). STL is a filtering
procedure that extracts three components: (i) the variations
in the data at the seasonal frequency (Fig. 13), (ii) the low-
frequency variation together with nonstationary and long-
term changes (Fig. 12) and (iii) a remaining high-frequency
component.

OSnet follows best the long-term trend of SST with a
linear trend of 0.197 ◦C/decade, close to the SST trend of
0.190 ◦C/decade (Fig. 12a). For comparison, the surface-
averaged temperature of Armor3D is warmer in the pre-Argo

years, probably due to their background global average that
is mostly composed of Argo floats. This is a validation that
OSnet generalizes well and is not biased towards the recent
years of in situ observations. Regarding surface salinity long-
term trends, no significant trend is captured over the 1993–
2019 period (Fig. 12b). There is no clear agreement between
the different datasets, except in the last period, 2010 to 2019,
where all averages increase like the SSS signal. Armor3D
mean surface salinity drops significantly during the last 2
years, 2018 and 2019, out of the SSS error margin. Note that
OSnet does not include the areas over the continental shelf
and does not predict deeper than 1000 m. A significant part
of the climatic signal takes place in the coastal regions (Ezer
et al., 2013; Davis et al., 2017), and an improvement of OS-
net would be to deal with profiles of different lengths in order
to include these regions.

The mean seasonal variation of surface temperature, salin-
ity and MLD is presented in Fig. 13. We compute it by aver-
aging the signal by day of the year (week of the year for Ar-
mor3D). The surface temperature seasonal signal is well re-
produced for each dataset, as expected considering that SST
is included in the input of OSnet and used to produce both
Armor3D and Glorys12 (Fig. 13a). A close observation of
the curves in Fig. 13a shows that the seasonal cycle of OSnet
surface temperature is too cold between May and Septem-
ber (Fig. 13c). This is due to the MLD adjustment, since the
direct prediction of surface temperature gives a very precise
seasonal cycle of SST (red line in Fig. 13c). Armor3D sea-
sonal temperature is warmer from August to April, which
could be a bias caused by the undersampling of the pre-Argo,
colder years (Fig. 13c). This bias is also present in the tem-
perature time series (Fig. 12a).

The surface salinity seasonal signal is noisier, in part be-
cause it presents inter-annual variations that are the same or-
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Figure 10. Relative importance of each input for each output, averaged by depth. The inputs (x axis) are sorted by importance for the
temperature to have the largest importance on the left of the plot. The cosine of the day of the year is more important than the sine for the
MLD prediction because the cosine is in phase with the seasonal cycle of the MLD.

Figure 11. Relative importance of each input for each output, averaged by depth. The areas are sorted by variance to have the input with the
largest difference of impact by depth to the right of each panel.

der of magnitude as the seasonal variations (Fig. 13b). We
compare 2010–2019 because it is the only period available
for the SSS product. OSnet surface salinity is the closest to
SSS compared to the predictions of Armor3D and Glorys12,
which are both fresher than the observed SSS. We observe
a delay in the SSS seasonal variations: it is fresher by al-
most 0.1 psu from January to March. We discuss this in Ap-
pendix B and Fig. A1.

Finally, the seasonal cycle of MLD (Fig. 13d) in the re-
gion is asymmetrical, with slow deepening from summer to
winter and fast shoaling during the early spring. This asym-

metry is expected since buoyancy loss at the surface leads
to convective mixing (hence deepening the mixed layer re-
quires buoyancy loss over an ever-increasing water column
depth), while buoyancy gain directly leads to a stable strat-
ification and shallow mixed layer (e.g., Taylor and Ferrari,
2010). OSnet MLD compares well to the MLD computed on
Glorys12. We do not present the MLD of Armor3D here be-
cause it is computed with a different criterion. The winter
MLD variance is larger in Glorys than OSnet, which is also
observed on daily maps of MLD. Events of deep MLDs are
not represented in OSnet (Fig. 8).
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Figure 12. Nonseasonal low-frequency time series of surface temperature (a) and salinity (b) averaged over the region excluding the shelf
shallower than 1000 m. It is extracted with a seasonal-trend decomposition. The linear trends of temperature are displayed with dashed lines,
and their slope and R2 are in the legend of panel (a). The grey shaded areas are the SST mapping error in (a) and the SSS random error (b).
The green shaded areas are the OSnet confidence intervals, i.e., the standard deviation of the 15 bootstrapped models.

5 Discussion

In the results section we have seen that OSnet predictions are
overall coherent. We now want to assess whether OSnet can
be used to help interpret local oceanographic measurements
or for process studies. The goal is to be as close as possible
from observations while being physically consistent. To do
so, OSnet is compared to observations (remote and in situ)
and to the other two products, Armor3D and Glorys12. In
this section we present these comparisons and discuss the
quality of our predictions.

5.1 Comparison to observed data

One major feature of OSnet is the possibility of estimating
T and S profiles at any location, given that surface data are
available. Here we predict T −S at the location of a mooring
of the line W (Fig. 14) and along the hydrographic section
AT20 (Fig. 15). Temperature and salinity at 1000 m are plot-
ted in comparison to mooring data for a period of 3 years (10
May 2004 to 11 March 2007). OSnet corresponds well to ob-
servations but with a slight warm and fresh shift in the first
year (Fig. 14). A warm-core eddy crosses the location of the
mooring in 2006 (see the SLA map in Fig. 14a), and its warm
and salty deep signature is well captured by OSnet. Smaller
warm and salty spikes appear in October 2004 and July and
November 2005 but are not visible in the mooring data. They
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Figure 13. Seasonal variation of the mean surface temperature (a), surface salinity (b) and MLD (d) for OSnet, Armor3D and Glorys12
compared to remote sensing SST and SSS (black). The difference between SST and the surface temperature is displayed in panel (c), with
the direct prediction of the NN hence without MLD adjustment in red. It is averaged over the period 1993–2019 excluding the shelf shallower
than 1000 m, except for the surface salinity because SSS only ranges from 2010 to 2019. The bands or errors are the standard deviation over
the time period.

correspond to warm meanders of the Gulf Stream revealed by
the SST and SLA at these three periods (not shown), causing
deep T − S changes in OSnet.

We compare the OSnet T − S structure along the hydro-
graphic section AT20 sampled in May 2012 by the research
vessel Atlantis (Fig. 15). The OSnet prediction is done at
the exact locations of the conductivity–temperature–depth
(CTD) profiles, interpolated linearly on the maps of input
data (Table 1). The comparison is also done for Glorys12 but
by collocating the profiles with a nearest neighbor method.
Both Glorys12 and OSnet predictions are coherent, but we
note two specific biases in Glorys12. First, Glorys12 dis-
plays a deep patch of MLD around 41◦ N, north of the Gulf
Stream, that is not observed by the CTDs nor predicted by
OSnet (Fig. 15d). This deep MLD could be due to the nearest
neighbor selection of the profile that is not exact in the case
of Glorys12, or it could be an artifact of their model. Indeed,
deep patches of MLD are also visible on daily MLD maps
of Glorys12 but are absent on the OSnet daily MLD maps
(Fig. 8). Second, the salinity reconstruction of Glorys12 dif-
fers more from the observed data north of the Gulf Stream
(Fig. 15g). OSnet performs very well along this section in
comparison to Glorys12.

5.2 OSnet to explore theoretical inputs

Since OSnet is very easy and fast to manipulate to make pre-
dictions, it can be used to make predictions using theoreti-
cal inputs. To illustrate this, we seek the interior signature of
eddies detected with altimetry. We make two predictions of
temperature and salinity for a section across two particular
eddies observed on 6 October 2006 (Fig. 16a): one predic-
tion is based on all observational inputs (Fig. 16b, c), and the
second prediction is made by removing the eddy signature in
SLA; we simply set it to 0 (Fig. 16e, f, g). The interior tem-
perature and salinity anomalies associated with the eddies
are obtained by difference (Fig. 16h, i). Anomalies are the
largest at depth around 400/500 m with amplitudes of a few
degrees per meter of SLA. These are reasonable amplitudes
and structures for the region (Castelao, 2014) and illustrate
how OSnet could easily be used to extract more knowledge
than the standard realistic T − S predictions on a grid.

5.3 Potential improvement of the method

Several improvements of the method could be made in the
future. One important limitation is the current NN architec-
ture that prevents predictions of profiles of different lengths.
It constrains the analysis to use a fixed maximum depth and
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Figure 14. OSnet prediction of temperature and salinity at 1000 m (blue) at the location of a mooring of line W3 (black, 69.11◦W, 38.51◦ N).
The map of SLA in the temperature panel is for 25 April 2006, when a warm-core eddy went through the mooring location. These mooring
data are not included in the learning dataset of OSnet.

thus prevents profiles from being kept shorter than that max-
imum depth. A solution would be to develop a custom loss
that can deal with empty variables. Another way would be
to add depth as an input variable like in Buongiorno Nardelli
(2020). In that case, we could predict properties over shallow
bathymetry and also deeper than our rather arbitrary 1000 m
limit.

OSnet produces coherent horizontal and temporal patterns
even though each profile is predicted independently. Yet we
wonder how using horizontal and temporal surface gradi-
ents as inputs could improve predictions, especially in frontal
regions. To test this, we would need to work with three-
dimensional (long–lat–time) patches of input data for each
profile location and to build a different NN architecture (e.g.,
Ouala et al., 2018; Jouini et al., 2013; Tandeo et al., 2013;
Lguensat et al., 2018) that takes patches of data as input
and profiles as output. Convolutional neural architectures
accounting for irregularly sampled space–time observations
might also be appealing (Fablet et al., 2021). The expected
result would be sharper fronts, as we observe that fronts from
OSnet are smoother than in observations, e.g., Fig. 15. We

wonder whether the NN could learn from the temporal sur-
face gradient to anticipate vertical changes in stratification.

Prediction intervals (PIs), also called “coverage probabil-
ity”, could be computed as a complement of confidence in-
tervals (Khosravi et al., 2011). While the confidence intervals
(Fig. 7) give the range of variation of a set of NNs with differ-
ent initializations and training datasets, the PI gives the prob-
ability of the observation associated with the prediction being
in a range of values. The PI can be obtained by adding out-
put variables to the proposed architecture. Here, the PI could
be represented as temperature and salinity profiles around
the prediction, representing the 95 % interval. It means there
would be a 95 % probability of the true value associated with
the prediction lying within the interval.

Given the very promising results of our study, obvious fu-
ture work would be to apply OSnet in other more challenging
regions, with fewer data or more complicated vertical struc-
tures and different dynamics. Also, the 3D geostrophic veloc-
ities of the OSnet gridded product could be estimated using
the thermal wind equation combined with surface altimeter
geostrophic currents (Mulet et al., 2012). Finally, since we
found that OSnet correctly captures the SST warming trend

Ocean Sci., 18, 1221–1244, 2022 https://doi.org/10.5194/os-18-1221-2022



E. Pauthenet et al.: Ocean Stratification network 1237

Figure 15. Hydrographic section AT20 (a, b, c) sampled along the 52.3◦W meridian by the research vessel Atlantis from 1 to 5 May 2012.
Temperature and salinity profiles are estimated with OSnet (e, f) at the exact locations of the sampled CTDs by interpolating the input data
at those locations. Glorys12 profiles (h, i) are collocated in time and space with the CTD profiles. The SSH in panel (a) is averaged over the
sampling period of the section. The MLDs in panel (d) are computed with the density threshold of 0.03. Salinity segments at 200 and 800 m
are plotted along latitude in panel (g) with confidence intervals in blue bands around the mean value for OSnet, i.e., the standard deviation of
the 15 bootstrapped models. The contour intervals for the plot section are 0.5 psu from 33 to 37 psu for salinity and 2 ◦C from 4 to 24 ◦C for
temperature.

(Fig. 12a) and mesoscale structures, it would be interesting to
apply OSnet to other boundary currents and to compare the
resulting OHC estimates to previous reconstructions (e.g.,
Cheng et al., 2017). Other global ocean indicators such as
ocean freshwater content or steric sea level could be investi-
gated as well.

6 Conclusions

We proposed a method to estimate the ocean stratification
from surface data using a neural network trained from in situ
historical data. The originality of this study is the attention
we gave to the vertical coherence of T − S profiles, in par-
ticular the accuracy of MLD predictions and the absence of
unrealistic vertical density inversions. The global nRMSEs
of T and S are better than a state-of-the-art ocean re-analysis
(Glorys12) but worse than Armor3D predictions. However,
OSnet predictions do not have any unrealistic density inver-

sions, while Armor3D does. Each OSnet profile is predicted
independently, but OSnet produces coherent horizontal pat-
terns on a 1/4◦ daily grid, especially for MLD. In addition,
the pre-Argo years are well reconstructed, which supports
the good generalization skill of OSnet. Confidence intervals
issued from the bootstrapped method provide an estimate of
the prediction variability. Confidence is lower in the cold sur-
face waters north of the Gulf Stream and in the jet at depth,
which corresponds to the most variable areas. The recon-
structed surface temperature reproduces the observed warm-
ing trend. The seasonal cycle of surface salinity matches best
the one of SSS compared to Glorys12 and Armor3D.

One convenient feature of OSnet is the possibility of esti-
mating profiles at any location, given that the surface data are
provided. This allows us to compare predicted profiles at the
exact location of the observed CTD, for example. It is com-
putationally inexpensive to run, and we encourage anyone
who needs to predict ocean stratification from surface data

https://doi.org/10.5194/os-18-1221-2022 Ocean Sci., 18, 1221–1244, 2022
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Figure 16. Prediction of T − S profiles for a section across two meanders of the Gulf Stream (b, c) and for a simulated SLA flattened to
zero (e, f). The meanders are visualized with maps of SLA (a) and SSH d, which are computed by adding MDT and SLA for 6 October 2006.
The anomaly between the T − S sections for the observed SLA and the simulated SLA is displayed in panels (h) and (i). The SSH contour
in panel (d) is 0.1 m to represent the Gulf Stream.

to use OSnet. Another feature is the possibility of comput-
ing the relative importance of each input for each T −S pre-
diction and analyzing which surface features influence most
which properties. This is a development tool that can also be
used to study how the ocean stratification reflects on the sur-
face data. Finally, the horizontal resolution of OSnet is con-
strained at 1/4◦ by the resolution of the SLA. The upcom-
ing satellite mission SWOT should provide higher-resolution
observations for OSnet to learn and predict smaller-scale fea-
tures.

Appendix A: Alternative way to suppress the density
inversions with a physics-constrained loss function

A1 Custom loss function

Without constraining the predictions in a physical space,
most profiles show spurious density inversions that make the
MLD computation impossible. To alleviate these issues, we
develop a custom loss that constrains the density profile to
be monotonous and the properties in the mixed layer to be

well mixed. The loss function is the minimization of the
mean square error between our prediction and the target pro-
files, which we complement with a physics-constrained loss
LossPhy and LossH:

Loss=
1
N

N∑
n=1
(ŷn− yn)

2
+LossPhy+LossH, (A1)

with N the batch size and ŷ the predicted and y the observed
profiles of temperature and salinity as tensors of sizeN×D×
2 (D = 51 depth levels). To that standard loss we add two
more terms. First we include the potential density σ0 profile
in the target y and prediction ŷ. It ensures that the T − S
predictions correspond to a profile of density closer to the
observed density profile. We also take the profile K out of
the standard loss and multiply by a coefficient λMLD:

LossH = λH.
1
N

N∑
n=1
(Ĥn−Hn)

2. (A2)

Second, we add a constraint of monotony on the density
profile to penalize the predictions that contain density inver-
sions. A positive value of1σ0 is a violation of the hydrostatic
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stability of the water column. Such density inversion can ex-
ist in observed profiles at small temporal and vertical scales.
As our predicted profiles are daily averages, we assume that
they should not present any density inversions, i.e.,1σ0 < 0,
strictly.

LossPhy = λPhy.
1
N

N∑
n=1

ReLU
(
1σ0

1z

)
(A3)

A2 Optimization of the λ coefficient

The λ coefficient of our custom loss needs to be optimized in
order to minimize three metrics. A metric of accuracy is the
root mean square error of the target relative to the prediction,

m1 =

√√√√ 1
N

N∑
n=1
(ŷn− yn)

2, (A4)

and two metrics of physical consistency, the root mean
square error of the MLD H ,

m2 =

√√√√ 1
N

N∑
n=1
(Ĥn−Hn)

2, (A5)

and m3 the count of density inversions. Note that the Ĥ in
m2 is directly predicted by the NN; it is not computed on the
predicted profiles with the density criterion. This is a multi-
objective problem that we solve with the NSGA-II genetic
algorithm (Deb et al., 2002).

Figure A1. Periodic signal of the mean surface salinity from OSnet (green), Glorys12 (orange), Armor3D (blue) and remote sensing (black).
The periodic signal is extracted using an STL decomposition. The SSS seasonal variation is delayed each year in winter until the 2017–2018
winter.
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Appendix B: Delay in the SSS-CCI seasonal variations

We observe a delay in the SSS seasonal variation. It is fresher
by almost 0.1 psu from January to March (Fig. 13b). The
periodic signal of SSS is different from 2010 to 2017 com-
pared to the other three products but seems corrected for the
2018 and 2019 winters (Fig. A1). The authors of the SSS-
CCI dataset (Boutin et al., 2021) also noticed larger seasonal
biases in the SSS with respect to Argo salinities before mid-
2015 over the global ocean. The largest differences relevant
for our region are observed in high-latitude cold waters and
boreal winter above 47◦ N. After 2015 the integration of a
new satellite (SMAP) and a change in the calibration mode
of the satellite used over the period 2010–2019 (SMOS) in
November 2014 improved the quality of the seasonal signal
(Boutin et al., 2021).

Code and data availability. The complete code to process input
data and to develop a fully trained OSnet model is available at
https://github.com/euroargodev/OSnet (Pauthenet et al., 2022b). A
simpler version, focusing on making predictions with OSnet, is
also available at https://github.com/euroargodev/OSnet-GulfStream
(Pauthenet et al., 2022c). The OSnet gridded temperature and salin-
ity daily fields of the 0–1000 m Gulf Stream region from 1993 to
2019 are available at https://doi.org/10.5281/zenodo.6011144 (Pau-
thenet et al., 2022a).

The CORA hydrographic profiles are available at
https://www.seanoe.org/data/00351/46219/ (last access:
27 June 2022, Szekely et al., 2022). MDT CNES-CLS2018
is available at https://www.aviso.altimetry.fr/en/data/products/
auxiliary-products/mdt/mdt-global-cnes-cls18.html (last access:
27 June 2022, Mulet et al., 2022b). The SST dataset is available at
https://doi.org/10.5285/62c0f97b1eac4e0197a674870afe1ee6
(Good et al., 2019). SLA and derived variables are
available through the CMEMS portal at https://www.
copernicus.eu/en/access-data/copernicus-services-catalogue/
global-ocean-gridded-l4-sea-surface-heights-and-derived
(last access: 27 June 2022, CMEMS, 2022). The SSS
CCI dataset is available at https://catalogue.ceda.ac.uk/
uuid/4ce685bff631459fb2a30faa699f3fc5 (last access:
27 June 2022, Boutin et al., 2022). Armor3D is available
through the CMEMS portal at https://doi.org/10.48670/moi-
00052 (Mulet, 2022a). Glorys12 is available through the
CMEMS portal at https://doi.org/10.48670/moi-00021 (Drévil-
lon et al., 2022). Bathymetry ETOPO1 can be found at
https://www.ngdc.noaa.gov/mgg/global/ (last access: 27 June 2022,
NOAA, 2009). The Line W mooring data are available at
https://scienceweb.whoi.edu/linew/ (last access: 27 June 2022,
Toole et al., 2022). The hydrographic section AT20 is accessible at
https://cchdo.ucsd.edu/cruise/33AT20120419 (McCartney, 2012).
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