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Abstract. The use of high-frequency radar (HFR) data is in-
creasing worldwide for different applications in the field of
operational oceanography and data assimilation, as it pro-
vides real-time coastal surface currents at high temporal and
spatial resolution. In this work, a Lagrangian-based, empir-
ical, real-time, short-term prediction (L-STP) system is pre-
sented in order to provide short-term forecasts of up to 48 h
of ocean currents. The method is based on finding histori-
cal analogs of Lagrangian trajectories obtained from HFR
surface currents. Then, assuming that the present state will
follow the same temporal evolution as the historical analog,
we perform the forecast. The method is applied to two HFR
systems covering two areas with different dynamical char-
acteristics: the southeast Bay of Biscay and the central Red
Sea. A comparison of the L-STP methodology with predic-
tions based on persistence and reference fields is performed
in order to quantify the error introduced by this approach.
Furthermore, a sensitivity analysis has been conducted to de-
termine the limit of applicability of the methodology regard-
ing the temporal horizon of Lagrangian prediction. A real-
time skill score has been developed using the results of this
analysis, which allows for the identification of periods when
the short-term prediction performance is more likely to be
low, and persistence can be used as a better predictor for the
future currents.

1 Introduction

The coastal zone is under increasing human pressure. During
recent decades coastal seas have been experiencing intensi-
fied activity for recreation, transport, fisheries, and marine-
related energy production, which, in many cases, results in
serious damage to coastal marine ecosystems. A better un-
derstanding of the dynamical processes responsible for the
surface oceanic transport is a prerequisite for the efficient
management of the coastal ocean. Coastal processes are re-
sponsible for the transport and fate of multi-source pollutants
like plastics, nutrients, jellyfish, and harmful algal blooms.
Thus, improving the capacity of monitoring and forecasting
the coastal area is key for the integrated assessment of the
marine ecosystem. This requirement is driving the setup of
a growing number of multi-platform operational observato-
ries designed for continuous monitoring of the coastal ocean
from international or national (e.g., US IOOS, EU EOOS,
Australian IMOS) to local scales. Moreover, due to the need
for forecasting applications for response to emergency situa-
tions such as oil spills or search-and-rescue operations, many
of the existing operational observatories are linked with oper-
ational ocean forecasting models with or without data assim-
ilation (e.g., MARACOOS, NOAA Global Real-Time Ocean
Forecast System, COPERNICUS Marine Environment Mon-
itoring System).
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With the need to provide a long-term framework for the
development and improvement of European marine coastal
observations, the JERICO Research Infrastructure (JERICO-
RI) has been developing methods and tools (through the
JERICO, JERICO-NEXT, and JERICO-S3 projects) for the
production of high-quality marine data and sharing exper-
tise and infrastructures between the existing observatories in
Europe. Typically constituted with different in situ pointwise
observational platforms (such as moored buoys, tidal gauges,
and/or drifting buoys), a significant number of these observa-
tories now employ land-based high-frequency radars (HFRs)
that provide real-time coastal currents with unprecedented
coverage and resolution (e.g., Paduan and Rosenfeld, 1996;
Kohut and Glenn, 2003; Abascal et al., 2009; Solabarrieta et
al., 2014; Rubio et al., 2017; Paduan and Washburn, 2013).
Each HFR coastal site measures radial surface currents mov-
ing away from or approaching the antenna based on the shift
of the first peak (Bragg peak) of the Doppler spectra (Crom-
bie, 1955; Barrick, 1977). Combining the overlapping radial
vectors from at least two antennas provides surface true vec-
tor currents (Barrick et al., 1979; Barrick and Lipa, 1979).
Several studies have compared in situ current measurements
with HFR observations (e.g., Schott et al., 1985; Hammond
et al., 1987; Paduan and Rosenfeld, 1996, Emery et al., 2004;
Paduan et al., 2006; Ohlmann et al., 2007; Liu et al., 2014;
Solabarrieta et al., 2014; Bellomo et al., 2015; Lana et al.,
2016; Hernández-Carrasco et al., 2018b) and have repeat-
edly demonstrated the potential of this technology. Presently,
more than 250 HFR antennas are installed and active world-
wide (Roarty et al., 2019; http://global-hfradar.org/, last ac-
cess: 26 May 2021).

Due to their high spatiotemporal resolution, HFR data are
commonly used in real time for search-and-rescue (Ullman
et al., 2006) or oil spill prediction and mitigation emergency
response (Abascal et al., 2017). In addition, there have been
several efforts dedicated to the development of assimilation
strategies that incorporate HFR-measured surface currents
into ocean coastal models (Breivik and Saetra, 2001; Oke
et al., 2002; Paduan and Shulman, 2004; Stanev et al., 2011;
Barth et al., 2011), some of which have been tested for short
periods of time (Chao et al., 2009). However, assimilation
of HFR data into models is still a computationally expensive
and complex issue, not to mention the operational capabil-
ities of such a procedure. Because of these constraints, the
availability of real-time high-resolution HFR current fields
has led to alternative solutions in order to obtain short-term
prediction (STP) of surface coastal currents through the di-
rect use of HFR historical and nowcast observations using
different approaches (e.g., Zelenke, 2005; Frolov et al., 2012;
Barrick et al., 2012; Orfila et al., 2015; Solabarrieta et al.,
2016; Vilibić et al., 2016; Ren et al., 2019; see Table 1).

The abovementioned studies develop and implement dif-
ferent STP approaches (harmonic analysis of the last hours,
genetic algorithms, numerical models) that often require ei-
ther additional data or long training periods of data without

gaps. Hardware failures due to power issues, communica-
tions, or environmental conditions often result in spatiotem-
poral gaps within HFR datasets. Spatial gaps can be filled
on a real-time basis, but filling long temporal gaps is not
straightforward. Several gap-filling methodologies have been
developed for HFR datasets: open modal analysis, (OMA)
(Kaplan and Lekien, 2007), data-interpolating empirical or-
thogonal functions (EOFs) (DINEOF) (Hernández-Carrasco
et al., 2018a), and self-organizing maps (SOMs) (Hernández-
Carrasco et al., 2018a).

Given the motivation described above, and developed par-
tially within the framework of the JERICO-NEXT project,
we present a Lagrangian-based short-term prediction (L-STP
from now on) methodology using existing HFR datasets to be
applied to surface current real-time observations. The pro-
posed L-STP methodology aims to be capable of using the
previously developed gap-filling OMA method and gener-
ate forecasts in near-real time with low computational costs
compared to previously presented forecast methods, but with
the same level of assessment. The uniqueness of this ap-
proach is twofold: first, the historical Eulerian velocity fields
are used to construct a catalog of Lagrangian trajectories,
and second, using the trajectories obtained from present ob-
servations, analogs in the past dataset are searched in order
to obtain the best predictive match. The method is based on
Lagrangian computations, which have proven to be robust
against errors in velocity field data and against the dynam-
ics of unresolved scales, since the averaging effect produced
by integrating over trajectories that extend in time and space
tends to cancel random-like errors (Hernández-Carrasco et
al., 2011; Sayol et al., 2014). Consequently, they are reliable
for the assessment of dynamical flow structures.

Analogs represent a widely used method in time series pre-
diction, especially in early weather forecasting and statistical
downscaling. This is based on the assumption that if the be-
havior of a dynamical system at a given time is similar or
close enough to some other situation in the historical record,
then the evolution in the future of the state of the system
will be similar to the evolution observed in the same histor-
ical record. Simply stated, two analog fields are two distinct
fields that are close enough considering a given metric to
be considered equivalent. Finding the best (nearest) analog
of a specific time does not require a historically continuous
dataset as long as the dataset contains subsets of observations
that extend longer than the testing period and are representa-
tive of the range of potential states that the system can have.
These statistically analog events occur naturally in the envi-
ronment, and this methodology has been applied and tested
in atmospheric forecasts (Lorenz, 1969; Jianping et al., 1993;
Prince and Goswami, 2007; Shao and Li, 2013).

It must be stressed that this is the first time that the analog
technique has been applied to the HFR-derived ocean sur-
face currents to obtain short-term forecasts to the knowledge
of the authors. The L-STP is intended to be implemented op-
erationally with low computational cost (seconds to few min-
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Table 1. Characteristics of the previously developed STP works based on HFR data.

Authors Approach Needs continuous
training period

Complementary data
required?

Region of application Reliable
forecast
period

Zelenke (2005) EOF+ bilinear
regression model

Yes Wind Oregon coast 48 h

Frolov et al. (2012) EOF+ linear auto
regression model

Yes Wind and tides
(optional)

Monterey Bay,
California

48 h

Barrick et al. (2012) Constant linear trend
model applied to
OMA modes

Yes Wind Finnmark, Norway 12 h

Orfila et al. (2015) EOF+ genetic
algorithm

Yes No Toulon, France 48 h

Solabarrieta et al. (2016) Frolov et al. (2012) Yes No Bay of Biscay 48 h

Vilibić et al. (2016) SOM+ neural
network+winds

Yes Wind Northern Adriatic Sea 72 h

Ren et al. (2019) Random forest (RF)
classification algorithm

No Tide and Wind Galway Bay, Ireland 59 h

This paper: L-STP Analog finding No No Bay of Biscay and the
central Red Sea

48 h

utes for each forecast, depending on the size of the historical
dataset) and is easily implemented using existing HFR data
processing tools.

2 Data and methods

2.1 Data

HFR data from two distinct oceanographic regions have been
used for the evaluation, validation, and testing of the devel-
oped methodology (Fig. 1): the Bay of Biscay (hereinafter
BoB HFR) and the central Red Sea region (hereinafter Red
Sea HFR). The range and the spatial resolution of the HFR
current systems depend on their working frequency and the
conductivity of the water over which the system is measur-
ing. Ranges vary from 15 to 220 km and spatial resolution
from 250 m to 12 km. Typically, a 12 MHz radar has a range
of∼ 70 km with a spatial resolution of 2–5 km. HFR systems
usually average current measurements for 1 h, although some
average currents for shorter periods, such as 30 min. HFR
data from these two regions are used to evaluate the skill of
the method under different dynamical conditions and with a
sufficient set of observations to provide a database suited to
the efficient research of appropriate analogs. The BoB HFR
system, located in the southeastern corner of the Bay of Bis-
cay in the Basque Country, is composed of two CODAR Sea-
Sonde sites working since 2009 at 4.5 MHz frequency, cov-
ering up to a 200 km range, and providing hourly surface ve-
locity fields at 5 km of spatial resolution. The dataset used
in this study spans the period from January 2012 to Decem-

ber 2015. The Red Sea HFR system is located on the central
western coast of Saudi Arabia and is also composed of two
CODAR SeaSonde sites. The Red Sea sites have been oper-
ational since June 2017, transmit at a 16.12 MHz frequency,
cover up to a 120 km range, and provide the hourly surface
velocity field at 3 km spatial resolution. The dataset used in
this study spans the period from June 2017 to October 2018.

The BoB HFR has been chosen as the pilot system for test-
ing the developed methodology, since it has the longest data
series and because several papers have already provided an
extensive description of the local circulation and dynamical
processes (Rubio et al., 2013a, b, 2018, 2019, 2020; Solabar-
rieta et al., 2014, 2015; Hernández-Carrasco et al., 2018a;
Manso-Narvarte et al., 2018; Declerk et al., 2019). The re-
sulting methodology is then applied to the operational Red
Sea HFR dataset as a study case. Coastal dynamics in the
BoB show a clear seasonality, with cyclonic and anticyclonic
eddies dominating in winter and summer, respectively, in re-
sponding to local winds and the mean coastal current (Iberian
Poleward Current) (Esnaola et al., 2013; Solabarrieta et al.,
2014). The circulation in the central Red Sea also demon-
strates a clear seasonality (Sofianos and Johns, 2003; Yao
et al., 2014a, b; Zarokanellos et al., 2017a, b) linked to the
seasonal winds of the area (Abualnaja et al., 2015; Lango-
dan et al., 2017). The region is dominated by eddy activity,
with both cyclonic and anticyclonic eddies occurring in the
region (Zhan et al., 2014; Zarokanellos et al., 2017a). Due
to the only recently available dataset (since mid-June 2017
to present) the detailed small-scale surface circulation pro-
cesses of this area are under characterization at the moment.
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Figure 1. (a) A global view of both analyzed study areas. (b) HFR system of the BoB. (c) HFR system of the central Red Sea. Blue dots
represent the data points, and the black crosses are the HFR antenna positions.

The primary difference between the two HFR systems is
the operating frequency, resulting in larger spatial coverage
for the BoB HFR than for the Red Sea HFR and a higher
spatial resolution for the latter (5 and 3 km, respectively).
This difference in the spatial resolution should result in bet-
ter capturing the small-scale dynamical features in the Red
Sea, which could influence the selection of an analog.

The data from both systems have been processed simi-
larly. The spectra of the received backscattered signal are
converted into radial velocities using the MUltiple SIg-
nal Classification (MUSIC) algorithm (Schmidt, 1986). The
HFR_Progs MATLAB package (https://github.com/rowg/
hfrprogs, last access: 26 May 2021) is then used to combine
radial currents and generate gap-filled total 2D currents by

means of the open modal analysis (OMA) methodology of
Kaplan and Lekien (2007).

2.2 Lagrangian analogs

The proposed prediction system, based on the analog iden-
tification method, has been developed with the objective of
providing HFR velocity field forecasts (up to 48 h). As an in-
novative element, we use a Lagrangian approach in searching
for analogs through a historical library composed of particle
trajectories instead of the commonly used Eulerian velocity
fields. In our methodology we find the best analog by com-
paring maps of trajectories obtained from the last available
48 h (target field) with the historical catalog of maps of La-
grangian trajectories (hereinafter Lagrangian catalog). Then
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the catalog map with the trajectory pattern closest to the tar-
get field map is selected. Relying on the similar evolution of
the current situation and the past analog, the next 48 h time
velocity fields of the selected analog provide the target period
forecast. In other words, if we find a state in the historical
database that is “close enough” to the target field, we assume
that the forecast for the current observations will evolve in
the same way as for the chosen analog. A detailed descrip-
tion of the short-term prediction system is provided in the
following algorithm.

1. Lagrangian catalog configuration. First, to build the
Lagrangian catalog, a set of synthetic trajectories was
computed by advecting N particles uniformly initial-
ized on a regular grid (Fig. 2) in the OMA HFR ve-
locity fields. The N Lagrangian particles are released
every hour over all available velocity data and advected
during 48 h. The maps of trajectories of the catalog are
referred as to XC.

2. Target map. A map of trajectories corresponding to the
most recent HF currents observations, referred as toXT,
is computed using the same procedure as for the La-
grangian catalog but now advecting the N particles in
the last available 48 h (tf–48 h) of HFR velocity fields,
where tf corresponds to the current time.

3. Searching for the analog. A searching algorithm for the
best (closest to the target map) analog among all the tra-
jectory maps is implemented next. To increase the effi-
ciency of this process, the search was done in two steps.

i. Optimization of the catalog. First, selecting only
“potential” analogs with a similar main drift re-
duces the Lagrangian catalog. The trajectory cen-
troid for each map of the catalog is computed and
compared to that of the target field, finally discard-
ing the analogs whose centroid was at a distance
greater than δcg. The value of the δcg is selected
to be small enough to minimize the computational
time but sufficiently large not to lose sampling vari-
ability in the potential analogs. We explored dif-
ferent values of this threshold distance to find that
δcg = 2ξ = 10 km (where ξ is the spatial resolution)
makes a good compromise between computational
cost and the number of potential analogs in both
study areas.

ii. In a second step, we computed the Lagrangian er-
rors (ε) between the trajectories of the target field
and the potential analogs, defined as

εANL =

√
1
T

∑T

j=1
(δANL (ti))

2,

ti = {6,12,24,36,48h}, (1)

where T = 5 is the number of elements of the set
of times ti , and δANL (ti) is the mean separation

distance at time ti between the trajectories belong-
ing to the target field XT and each of the potential
analogs Xc, given by

δANL (ti)=
1
N

∑N

j=1

∣∣∣(XjT (ti)−Xjc (ti))∣∣∣, (2)

with N being the total number of trajectories j .

4. Best analog. The selection of the best analog is per-
formed by Eq. (1), which is a simple measure of sim-
ilarity between two datasets. The best analog is selected
as the element of the catalog with the lowest εANL. Fig-
ure 3 shows an example of the time series of εANL val-
ues through the catalog of potential analogs for a spe-
cific case. Then we locate the time tANL correspond-
ing to best analog: tANL→min(εANL)= εANL(tANL) :

Xc(tANL).

5. Current prediction. Once we have identified tANL, the
short-term forecast of the HFR velocity fields is given
by the hourly velocity fields corresponding to the next
48 h since tANL (hereinafter “L-STP fields”):

XSTP (tc+ 1 : tc+ 48h)=Xc (tANL+ 1 : tANL+ 48h)

→ VSTP (tf+ 1 : tf+ 48h)
= Vc (tANL+ 1 : tANL+ 48h) ,

where VC (tANL) is the velocity field corresponding to
the best analog and VSTP represents the forecast cur-
rents.

Figure 2 provides an example of the selected analog
(Fig. 2b) and corresponding L-STP fields (Fig. 2d) for a
given target field (Fig. 2a) and the “truth” trajectories for the
following 48 h from the date of the target field (Fig. 2c). The
associated temporal series of errors for the target field and
the potential analogs are shown in Fig. 3, where the value of
εANL is marked using a red dot (corresponding to the error
between the trajectories of the L-STP field in Fig. 2d and the
truth trajectories for the forecast period in Fig. 2c).

To assess the performance of the methodology, we com-
puted forecasted trajectories based on the persistence of cur-
rents (hereinafter “persistence fields”XPRS). To obtain simu-
lated trajectories using persistence currents, the particles are
advected during 48 h using a constant (frozen) velocity field
(given by the current velocity field, or target field, V (tf))
during the 48 h of simulation: V (x,y, tf+ T )= V (x,y, tf),
where tf is the current time and T = {1 : 48h}.

The mean drift of the truth forecasted trajectories, XTRU,
is also computed for each simulation period (the mean drift
is computed by averaging over the entire particle trajectory
length during 48 h).

https://doi.org/10.5194/os-17-755-2021 Ocean Sci., 17, 755–768, 2021



760 L. Solabarrieta et al.: A new Lagrangian-based short-term prediction methodology

Figure 2. 15 April 2015 00:00 example of the developed methodol-
ogy applied to the BoB HFR system. (a) The past 48 h of the target
field for the test period. (b) The analog having the lowest error. (c)
The truth trajectories for the forecast period. (d) The STP trajecto-
ries. The initial positions of the particle trajectories are indicated by
the blue dots, and the red dots indicate the position after 48 h.

The Lagrangian errors between the truth trajectoriesXTRU
and the L-STP trajectories XSTP were also computed as

εSTP =

√
1
T

∑T

j=1
(δSTP (ti))

2

=

√
1
T

∑T

j=1

(
1
N

∑N

j=1

∣∣∣(XjTRU (ti)−X
j

STP (ti)
)∣∣∣)2

,

(3)

where δSTP is the mean separation distance between the truth
and the L-STP trajectories for t = t : t + 48 (following 48 h
from the study time). To compare with persistence, we also
compute the Lagrangian error between the truth trajectories
XTRU and the trajectories derived from the persistence field
XPRS,

εPRS =

√
1
T

∑T

j=1
(δPRS (ti))

2

=

√
1
T

∑T

j=1

(
1
N

∑N

j=1

∣∣∣(XjTRU (ti)−X
j
PRS (ti)

)∣∣∣)2
, (4)

where δPRS is the mean separation distance between the truth
maps of trajectories, XTRU, and maps of trajectories from
persistent velocity fields, XPRS, for t = t : t + 48 (following
48 h from the study time).

The entire process for the selection and validation of the
analog with the different variables has been summarized in

Figure 3. Example for the test period on 15 April 2015 at 00:00;
errors are for all Lagrangian catalog fields of the BoB HFR system
(training period 2012–2014), restricted to the δcg = 10 km condi-
tion. The red dot indicates the occurrence date and the error of the
best analog (19 September 2012 at 07:00).

Fig. 4. The time series and spatial distribution of the εSTP
and εPRS errors have been analyzed for both study areas. Fi-
nally, εSTP and εPRS time series have also been calculated and
compared to the time series of the εANL in order to evaluate
if the εANL can be used as an indicator of the expected skill
of the L-STP with respect to the persistence.

Some parameters in the algorithm have to be tuned in or-
der to optimize the results and the computational cost. For
instance, we found that the optimal number of particle trajec-
tories, N , is equal to 25. All the trajectories have been com-
puted considering infinitesimal and passive particles without
adding a diffusion term. To this end, we used the Lagrangian
module included in the HFR_Progs MATLAB package.

The ability of this method relies on precision in find-
ing two matching HFR current states over the entire region,
which is dependent on the historical record of observations
used to build the catalog and the dynamical representativity
of the catalog. In this study we use a 4-year dataset (2012–
2015) of trajectory maps computed for the SE BoB; the tra-
jectory maps from the first 3 years (2012–2014) were used
as a Lagrangian catalog, and the remaining year (2015) was
used as a test period. The historical Lagrangian catalog for
this HFR system is thus composed of 26 304 maps ofN = 25
trajectories of 48 h. Then the method was applied to the Red
Sea dataset for the period of July 2017–October 2018. As the
dataset temporal extension was short (1 year and 4 months),
we have used the whole period to build the Lagrangian cat-
alog to act as a test period at the same time. In this case, for
the analog search the 5 d period around the date of the target
field was removed from the catalog at each iteration to avoid
temporal overlapping with the target field.

3 Results

Figure 2 shows an example of the developed methodology
applied to the BoB HFR system on 15 April 2015. It is a
visual representation of the (a) target trajectories, (b) the se-
lected analog, (c) truth trajectories during the next 48 h from
the target period, and (d) the L-STP trajectories provided by
the method (48 h from the analog).

Ocean Sci., 17, 755–768, 2021 https://doi.org/10.5194/os-17-755-2021
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Figure 4. Scheme of the analog selection and L-STP forecast assessment process.

Figure 5. Errors of the hourly best analog for the BoB HFR for
2015 (εANL), together with the εSTP and εPRS. The black dots over
the timeline show the times when εSTP is higher than εPRS.

The performance assessment results are described in
Sect. 3.1, and the temporal and spatial forecasts for both
study areas are shown in Sect. 3.2.

3.1 Assessment of the L-STP skills

Figure 5 shows the εANL through 2015 for the BOB study
area, together with the εSTP and εPRS. The analysis of this
plot aims to check the relation between εANL,εSTP, and εPRS.
Black dots over the timeline in Fig. 5 show the times when
εSTP is higher than the εPRS, which occurs 12 % of the time.
The mean value of the εPRS is 73 % higher than the εSTP.
The correlation between εANL and εSTP is 0.46, while the
correlation between εANL and εPRS is 0.05 for the whole test
year (2015). Focusing on the times when the εPRS is lower
than the εSTP, it can be seen that they mostly occur dur-
ing winter months. Previous works in this area have shown
that there are high persistent eastward currents that can last
for several weeks during winter months (Solabarrieta et al.,
2014), which can explain the better performance of the per-
sistence fields in this period.

The hourly values of εSTP and εPRS have been plotted
against their corresponding hourly εANL values for the test

Figure 6. The x axis shows the εANL, ordered from minimum to
maximum, for the best analog for the test year 2015 for the BoB
HFR. The left y axis indicates εSTP (red) and εPRS (blue) for the
corresponding εANL. The right y axis indicates the percent of cu-
mulative comparison times, as shown by the gray solid line. The
dashed vertical line indicates the crossing point between εSTP and
εPRS (εANL∗ = 13.06 km).

year, ordered from minimum to maximum along the x axis,
in Fig. 6. We observe that, when εANL is low (less than
13.06 km for this dataset), εSTP is smaller than εPRS. How-
ever, as εANL increases, εSTP and εPRS converge until an
inflection point beyond which εSTP is slightly greater than
εPRS. For the SE BoB experiment, the inflection point occurs
at εANL = 13.06 km and 88 % of cumulative εANL. Results
from the Red Sea HFR system indicate a similar pattern (not
shown) when the inflection point occurs at εANL = 12.81 km
and at 86.4 % of cumulative εANL.

Further analyses to elucidate the mean separation dis-
tances (δSTP and δSTP) related to εANL after 6, 12, 24, 36,
and 48 h are presented hereinafter. εANL has been plotted to-
gether with the mean separation distances of the trajectories
(δSTP and δPRS) after 6, 12, 24, 36, and 48 h for each target
field (Fig. 7). δSTP is always higher than the δPRS for the 6 h
simulation. But the values of δSTP show lower values than
δPRS for the lowest εANL for the simulations at 12, 24, 36,
and 48 h.

https://doi.org/10.5194/os-17-755-2021 Ocean Sci., 17, 755–768, 2021
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Figure 7. The left y axis indicates δSTP (red) and δPRS (blue) for the
corresponding εANL after 6, 12, 24, 36, and 48 h. The right y axis is
the cumulative percent of time steps in the computation of the mean
errors, as indicated by the black line in the plots. The x axis is the
εANL, ordered from minimum to maximum, for the best analog for
the test year 2015 (BoB HFR system).

The values of the correlation coefficient (R2) between the
εANL and δSTP and between εANL and δPRS after 6, 12, 24, 36,
and 48 h are summarized in Table 2 in order to analyze the
relations between the analog, the L-STP, and the persistence.
Values of R2 for εANL and δPRS are small (almost no cor-
relation), varying between 0.01 and 0.11, while correlations
between εANL and δSTP are higher, varying between 0.19 and
0.56, and show higher correlation (>0.37) after 12 h of sim-
ulations. The behavior of the Red Sea HFR system figures
(not shown) is similar to the BoB HFR system.

Figures 6 and 7 (and the same ones for the Red Sea sys-
tem, not shown) show that while εANL increases, εSTP and
δSTP increase, but εPRS and δPRS decrease, showing an inflex-
ion point (hereinafter εANL(∗)). The εANL(∗) can be calculated
just for the historical dataset, but εANL can also be calculated
in real time and compared with εANL(∗). It gives a reference
value for the forecast skills.

εANL<εANL(∗)→ δSTP<δPRS→ use L-STP
εANL>εANL(∗)→ δSTP>δPRS→ use persistence

To assess the capabilities of the L-STP methodology, only
times when εANL<εANL(∗) are analyzed from now on, as
when εANL>εANL(∗) we recommend using persistent cur-
rents as a short-term forecast.

3.2 Spatiotemporal performances of the L-STP
methodology

Mean separation distances between the truth and forecasted
trajectories after different periods of integration times have
been computed for both systems just for εANL<εANL(∗) times
(Fig. 6) in order to evaluate the temporal forecast capabilities
of the methodology. Separation distances computed for the
whole test year 2015 are shown in Fig. 8 for the BoB HFR
observations.

Figure 8. Time evolution of the mean separation δSTP and δPRS
[km] between the truth and forecast trajectories using the truth and
STP–PRS currents and the mean drift with BoB system data for
2015. The mean drift of the truth forecasted trajectories is also com-
puted for each simulation period (the means drift is considered the
average of the distances moved by each particle during 48 h).

Figure 9. Time evolution of the mean separation distances δSTP and
δPRS [km] between the real and forecast trajectories using the truth
and STP–PRS currents and the mean drift with the Red Sea HFR
system data for July 2017 to October 2018. The mean drift of the
truth forecasted trajectories is also computed for each simulation
period (the means drift is considered the average of the distances
moved by each particle during 48 h).

The separation distances between the measured trajecto-
ries and predicted persistent and STP trajectories have sim-
ilar values during the first 6 h (4 km) of the forecast period,
with slightly better results for persistent trajectories. But af-
ter 6 h, the separation distance for the forecast based on per-
sistent currents increases faster than using L-STP. At 24 h,
the separation distance is 11 km for persistence forecasts and
8 km for L-STP forecasts. The values are 12 and 18 km, re-
spectively, after 48 h of simulation. The mean drift values of
the truth trajectories show that the mean drift is similar to the
L-STP separation distances during the 48 h.

Temporal mean separation distances between the truth and
forecasted trajectories for the central Red Sea HFR system,
computed for εANL<εANL(∗), are shown in Fig. 9. The sep-
aration distances for the STP forecasts are higher than those
forecasts with persistent currents during the first 15 h. After
15 h, the quality of the forecasts reversed and STP produced
better results than persistence.

Ocean Sci., 17, 755–768, 2021 https://doi.org/10.5194/os-17-755-2021



L. Solabarrieta et al.: A new Lagrangian-based short-term prediction methodology 763

Table 2. Correlation coefficient values between the best εANL and δSTP and between εANL and δPRS after 6, 12, 24, 36, and 48 h of
simulation.

6 h 12 h 24 h 36 h 48 h

R2εANL− δSTP 0.19 0.37 0.55 0.56 0.54
R2εANL− δPRS 0.07 0.11 0.03 0.01 0.04
εANL [km] for the inflection point between δSTP and δPRS – 11.94 12.44 13.09 14.33
% of εANL (cumulative) for the previous line – 81 84 87 95

Figure 10. Spatial distribution of separation distances [km] between
trajectories using L-STP and persistent currents at 6, 12, 24, and
48 h for the BoB HFR system.

The spatial distributions of the difference between δPRS
and δSTP at 6, 12, 24, and 48 h for the BoB and the Red Sea
study areas are shown in Figs. 10 and 11.

For the BoB HFR system, the differences are not appre-
ciated during the first 6 h. However, after 12 h of simulation,
the advantage of the L-STP is clear in most of the study area,
especially outside the continental shelf slope where persis-
tent currents dominate the circulation. The separation values
between δPRS and δSTP increase up to 10 km after 48 h of
simulation.

For the Red Sea, the significant differences between STP
and persistence start after 24 h of simulation and continue
until 48 h.

4 Discussion

In this work, a new methodology to forecast ocean surface
currents based on HFR observations has been described. The
approach is based on the search of analogs in a trajectory
(Lagrangian) space using a previously generated trajectory
field catalog. The temporal and spatial skills of the proposed
L-STP methodology have been analyzed in the previous sec-
tion.

Figure 11. Spatial distribution of separation distances [km] between
trajectories using L-STP and persistent currents at 6, 12, 24, and
48 h for the Red Sea HFR system.

The target Lagrangian trajectory maps have been com-
pared with the previously generated trajectory catalog to ob-
tain εANL, εSTP, εPRS, δSTP, and δPRS for each analyzed time.
For the BoB system (2015 period), the correlation between
εANL and εPRS is 0.05, showing no relation between them,
and similar values are obtained for εANL and δPRS (0.01–
0.11 from Table 2). The correlation between εANL and εSTP is
0.46, and it varies from 0.19 to 0.56 between εANL and δSTP.
Although the correlations between εANL (past) and δSTP or
εSTP (future) are low, they suggest that there is a relation be-
tween the errors of the analogs and the errors of the L-STP.
δSTP is always higher than the δPRS for the 6 h simulation,
which means that for the first hour, it is better to use persis-
tence.

The εANL(∗) can just be calculated for the historical
dataset, but εANL can also be calculated and compared to the
previously selected εANL(∗) in real time. It gives a reference
value for the forecast skills, and we suggest that εANL can be
considered a real-time skill-score metric for the L-STP.

εANL<εANL(∗)→ δSTP<δPRS→ use L-STP
εANL>εANL(∗)→ δSTP>δPRS→ use persistence

The selection of the best value for εANL(∗) is the main sen-
sitive step of the proposed methodology: the values of εANL
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are different for each study area and no fixed value can be
given. Due to this, an exhaustive analysis of εANL,δSTP, and
δPRS of the historical dataset is required to find the correct in-
flexion point and select a correct εANL(∗), before the method
can be applied to a new study area.

Once εANL(∗) is fixed, the skills of the proposed L-STP
methodology have been tested in Figs. 8 to 11. The values
of the δSTP, compared to previous works in the BoB area,
showed that the L-STP produces accurate predictions, which
demonstrates the ability of the Lagrangian approach to cap-
ture key dynamical features needed to accurately predict the
proper dynamical conditions.

For the BoB HFR system, temporal δSTP shows values of
3.5, 5.5, and 8 km after 6, 12, and 24 h, respectively. The δSTP
values are similar to the δPRS values during the first 6 h of
simulation, but δSTP is lower after that, with 3 and 5.5 km
of difference between them after 24 and 48 h of simulation,
respectively (Fig. 8). As stated in a previous work, the circu-
lation over the BoB area is dominated by a stable, persistent
current field during winter (Solabarrieta et al., 2014), which
is reflected by these results in which persistence has good
or even slightly better forecasting skill during the first 6 h of
forecast than the proposed methodology.
δSTP values for the BoB HFR system are similar to the

ones obtained by Solabarrieta et al. (2016) for the whole year,
but δSTP values are better for summer months for the same
study area. They used the linear autoregressive model, de-
scribed in Frolov et al. (2012), to forecast HFR current fields,
and the errors using that approach were 2.9 and 7.9 km after
6 and 24 h. Although the results obtained in this work only
improve the forecast presented in Solabarrieta et al. (2016)
during certain periods, the presented methodology has three
advantages over the previous method: it is easy to run in real
time, it does not require a continuous training period, and it
is able to discriminate the times when the usage of the per-
sistence is applicable. On the negative side, it requires the
generation of a catalog of past trajectories as the search space
for analogs, but once it is ready, it is easily increasable in real
time without extra pre-analysis; just add new trajectory fields
to the previous catalog.

The values of the δSTP for the Red Sea HFR system follow
a similar pattern as the BoB results, with higher separation
distances. This may be related to the limited time span of the
available dataset, as a better closest analog may be found in
a longer dataset.

The spatial comparison of the δSTP and δPRS for the BoB
HFR system (Fig. 10) shows that the L-STP has better skills
for the entire study area after 12 h of simulations. The skills
of the L-STP with respect to the persistence increases with
time, showing up to 10 km of improvement relative to persis-
tence at 48 h in some parts of the study area. For the spatial
distribution, after 12 h, the smallest differences between δSTP
and δPRS occurred over the slope. This is explained by the
existence of the persistent seasonal Iberian Poleward Cur-
rent that flows along the continental slope toward the east

along the Spanish coast and northward along the French
coast (Solabarrieta et al., 2014). In other words, although the
L-STP can be performant in periods of persistent currents,
the persistence field can show a better forecast for a short
temporal scale (48 h). L-STP will improve those forecasts as
soon as spatiotemporal variability increases.

The results for the Red Sea HFR system are similar, but the
benefit of the L-STP methodology appears only after 12 h of
simulation. Spatially, the improvement is again lower where
persistent currents occur, as is the case of the eastern bound-
ary current that flows northward following the eastern Red
Sea coastline in the study area (Bower and Farrah, 2015;
Sofianos and Johns, 2003; Zarokanellos et al., 2017b). The
dominance of the persistent currents is evident in the lower
values of the difference between the STP forecasts and the
persistence forecasts, as shown in Fig. 11 and in comparison
with Fig. 10.

We have compared the capabilities of the L-STP method-
ology against the forecast based on the persistence of cur-
rents. The L-STP method requires long (but not continuous)
training periods and improves the results obtained from pre-
viously developed HFR forecast systems (Solabarrieta et al.,
2016) in the same study area (BoB) for the whole year. How-
ever, the L-STP still shows some limitations in predicting
some specific dynamical scenarios, i.e., the dynamical con-
ditions created by the persistent IPC (Iberian Poleward Cur-
rent). We have found that the Lagrangian analog is not able
to properly identify such persistence; it performs relatively
better during non-persistent periods. Given the fact that per-
sistent events in both study areas are characterized by nar-
row high-speed jets (i.e., IPC in the BoB), small spatial dif-
ferences in the location of the main circulation could gen-
erate high separation distances between the reference and
predicted trajectories. While the trajectory computed from
the velocity field predicted from the persistence model is ad-
vected in the same jet, the currents obtained from the L-STP
are slightly shifted, but just enough to advect the particle in
a different position within the jet, therefore generating larger
errors (larger εSTP). We have observed that the longer the
training period (as in the BoB system), the better the per-
formance of the L-STP method. This suggests that longer
training periods would increasing the capability to identify
periods of persistent dynamics occurring over the same area,
thus improving the performance of the L-STP.

As mentioned, previous efforts to forecast surface currents
from HFR data have shown similar results compared with the
methodology presented in this paper. However, the advantage
of the L-STP method is that it can be used in near-real time
with short and non-continuous datasets of around 2–3 years.

5 Conclusions

A methodology to forecast surface currents with analogs of
Lagrangian dynamics in real time has been proposed. This
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methodology provides accurate forecasts of sea surface cur-
rents up to 48 h, and its capability has been tested in terms
of spatial and temporal distributions. The methodology has
been successfully applied to two distinct coastal regions to
evaluate its capabilities in different hydrodynamic regimes,
although further analysis using data from more areas is re-
quired to generalize the methodology.

Relationships between εANL and εSTP–εPRS suggest that
the εANL can be considered a reliable indicator of the
method’s performance. Taking into consideration all the
analyses done in this work, we propose using STP currents
for trajectory or velocity field predictions from 12 h forward
if the εANL value is lower than εANL(∗). If εANL is higher
than εANL(∗) or the forecast is just for the next 6 h, the use
of the persistence field is suggested. We also suggest that the
εANL(∗) value and forecast transition time need to be care-
fully evaluated for each study region. This, of course, implies
that a minimum dataset is required before the L-STP method
can be applied.

Further analysis of analog-finding approaches is required
to improve the observed results, especially during periods
when currents are persistent. The use of a longer dataset as a
training period may improve this aspect. Then, the next step
would be to test the methodology for additional periods and
other regions to analyze the possibility to find analogs for
different sub-regions and to evaluate its functionality in an
operational mode.

The methods to find the minimum training period for each
system should be analyzed deeper in future works. The mini-
mum training period will be directly related to the variability
of the local dynamics, and those should be considered during
the analysis.

The HFR_Progs MATLAB package (https://github.com/
rowg/hfrprogs, last access: 26 May 2021) has been used to
generate total currents from radial files and to fill the spa-
tial gaps in the surface current field using the OMA method,
as well as to generate Lagrangian trajectories. The presented
forecasting method can therefore be easily implemented as
an additional tool to provide short-term forecasts at the same
time that they generate total currents.
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