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Abstract. The Korea Strait (KS) is a major navigation pas-
sage linking the Japan Sea (JS) to the East China Sea and
Yellow Sea. Almost all existing studies of the tides in the KS
employed either data analysis or numerical modelling meth-
ods; thus, theoretical research is lacking. In this paper, we
idealize the KS–JS basin as four connected uniform-depth
rectangular areas and establish a theoretical model for the
tides in the KS and JS using the extended Taylor method.
The model-produced K1 and M2 tides are consistent with
the satellite altimeter and tidal gauge observations, especially
for the locations of the amphidromic points in the KS. The
model solution provides the following insights into the tidal
dynamics. The tidal system in each area can be decomposed
into two oppositely travelling Kelvin waves and two families
of Poincaré modes, with Kelvin waves dominating the tidal
system. The incident Kelvin wave can be reflected at the con-
necting cross section, where abrupt increases in water depth
and basin width occur from the KS to JS. At the connecting
cross section, the reflected wave has a phase-lag increase rel-
ative to the incident wave of less than 180◦, causing the for-
mation of amphidromic points in the KS. The above phase-
lag increase depends on the angular velocity of the wave and
becomes smaller as the angular velocity decreases. This de-
pendence explains why the K1 amphidromic point is located
farther away from the connecting cross section in comparison
to the M2 amphidromic point.

1 Introduction

The Korea Strait (KS, also called the Tsushima Strait) con-
nects the East China Sea (ECS) to the southwest and the
Japan Sea (the JS, also called the East Sea, or the Sea of
Japan) to the northeast. It is the main route linking the JS to
the ECS and the Yellow Sea and is thus an important pas-
sage for navigation. The strait is located on the continental
shelf, and it has a length of approximately 350 km, a width of
250 km and an average water depth of approximately 100 m.
The JS, which is adjacent to the KS, is a deep basin that
has an average depth of approximately 2000 m and a depth
of more than 3000 m at its deepest part. A steep continen-
tal slope separates the KS and the JS, and it presents abrupt
depth and width changes (Fig. 1). Such topographic charac-
teristics create the unique tidal waves that occur in the KS.

Ogura (1933) first conducted a comprehensive study of
the tides in the seas adjacent to Japan using data from the
tidal stations along the coast and gained a preliminary un-
derstanding of the characteristics of the tides, including am-
phidromic systems in the KS. Since then, many researchers
have investigated the tides in the strait via observations
(Odamaki, 1989a; Matsumoto et al., 2000; Morimoto et al.,
2000; Teague et al., 2001; Takikawa et al., 2003) and numer-
ical simulations (Fang and Yang, 1988; Kang et al., 1991;
Choi et al., 1999; Book et al., 2004). The results of these
studies show consistent structures of the tidal waves in the
KS. Figure 2 displays the distributions of theK1 andM2 tidal
constituents based on the global tidal model DTU10, which
is based on satellite altimeter observations (Cheng and An-
dersen, 2011). The figures show that the amplitudes of the
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Figure 1. Map of the Korea Strait and its neighbouring areas. (TTS:
Tartar Strait; SYS: Soya Strait; TGS: Tsugaru Strait; KS: Korea
Strait; ECS: East China Sea). Isobaths are in metres (based on
ETOPO1 from US National Geophysical Center).

diurnal tides are smaller than the semidiurnal tides. The peak
amplitude of the semidiurnal tide appears on the south coast
of South Korea, and lower amplitudes occur along the south-
ern shore of the strait from the ECS to the JS. Distinguishing
features include (1) K1 and M2 amphidromic points in the
strait that appear in the northeast part of the KS close to the
southern coast of the Korean Peninsula and (2) the M2 am-
phidromic point appears further northeast and closer to the
shelf break relative to the K1 tide.

However, almost all previous studies have employed either
data analysis or numerical modelling methods; thus, theoret-
ical research is lacking. In particular, the existence of am-
phidromic points in the northeast KS for both diurnal and
semidiurnal tides has not been explained based on geophys-
ical dynamics. In this paper, we intend to establish a theo-
retical model for the K1 and M2 tides in the KS–JS basin
using the extended Taylor method. The model idealizes the
KS–JS basin into three connected uniform-depth rectangular
areas, with the effects of bottom friction and Coriolis force
included in the governing equations and with the observed
tides specified as open-boundary conditions. The extended
Taylor method enables us to obtain semi-analytical solutions
consisting of a series of Kelvin waves and Poincaré modes.

2 The extended Taylor method and its application to
multiple rectangular areas

The Taylor problem is a classic tidal dynamic problem (Hen-
dershott and Speranza, 1971). Taylor (1922) first presented a
theoretical solution for tides in a semi-infinite rotating rect-
angular channel of uniform depth to explain the formation
of amphidromic systems in gulfs and applied the theory to
the North Sea. The classic Taylor problem was subsequently
improved by introducing frictional effects (Fang and Wang,
1966; Webb, 1976; Rienecker and Teubner, 1980) and open-
boundary conditions (Fang et al., 1991) to study tides in mul-
tiple rectangular basins (Jung et al., 2005; Roos and Schut-
telaars, 2011; Roos et al., 2011) as well as to solve tidal dy-
namics in a strait (Wu et al., 2018).

The method initiated by Taylor and developed afterwards
is called the extended Taylor method (Wu et al., 2018). This
method is especially useful in understanding the tidal dy-
namics in marginal seas and straits because the tidal waves
in these sea areas can generally be represented by combina-
tions of the Kelvin waves and Poincaré waves/modes (e.g.
Taylor, 1922; Fang and Wang, 1966; Hendershott and Sper-
anza, 1971; Webb, 1976; Fang et al., 1991; Carbajal, 1997;
Jung et al., 2005; Roos and Schuttelaars, 2011; Roos et al.,
2011; Wu et al., 2018).

2.1 Governing equations and boundary conditions for
multiple rectangular areas

A sketch of the model geometry is shown in Fig. 3, and it
consists of a sequence of J rectangular areas with length Lj ,
width Wj and uniform depth hj for the j th rectangular area
(denoted as Areaj , j = 1, . . . , J ). For convenience, the shape
of the study region shown in Fig. 3 is the same as that for the
idealized KS–JS basin, which will be described in the next
section. In particular, Area1 represents the KS, which is our
focus area in this study.

Consider a tidal wave of angular velocity σ and typical el-
evation amplitude H . We assume H/h� 1, and the conser-
vation of momentum and mass leads to the following depth-
averaged linear shallow water equations on the f plane:

∂ũj
∂t
− fj υ̃j =−g

∂ζ̃j
∂x
− γj ũj

∂υ̃j
∂t
+ fj ũj =−g

∂ζ̃j
∂y
− γj υ̃j

∂ζ̃j
∂t
=−hj

[
∂ũj
∂x
+
∂υ̃j
∂y

] , (1)

where x and y are coordinates in the longitudinal (along-
channel) and transverse (cross-channel) directions; t repre-
sents time; ũj and υ̃j represent the depth-averaged flow ve-
locity components in the x and y directions, respectively,
with the subscript j indicating the area number; ζ̃j represents
the free surface elevation above the mean level; γj represents
the frictional coefficient, which is taken as a constant for each
tidal constituent in each area; g = 9.8 ms−2 represents the
acceleration due to gravity; and fj represents the Coriolis
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Figure 2. Tidal charts of the KS and its neighbouring areas based on DTU10 (Cheng and Andersen, 2011) for the (a) K1 tide and (b) M2
tide. Solid lines represent the Greenwich phase lag (in degrees), and dashed lines represent amplitude (in metres).

Figure 3. Model geometry.

parameter, which is also taken as a constant based on the av-
erage of the concerned area. The equations in Eq. (1) for each
j are two-dimensional linearized shallow water equations on
an f plane with momentum advection neglected. For any j ,
the equations are the same as those used in the work of Tay-
lor (1922) except that bottom friction is now incorporated,
such as in Fang and Wang (1966), Webb (1976) and Rie-
necker and Teubner (1980). When a monochromatic wave is
considered,

(
ζ̃j , ũj , υ̃j

)
can be expressed as follows:(

ζ̃j , ũj , υ̃j

)
= Re

(
ζj ,uj ,υj

)
eiσ t , (2)

where Re stands for the real part of the complex quantity
that follows;

(
ζj ,uj ,υj

)
are referred to as complex ampli-

tudes of
(
ζ̃j , ũj , υ̃j

)
, respectively; i ≡

√
−1 is the imaginary

unit; and σ is the angular velocity of the wave. For this wave,

Eq. (1) can be reduced as follows:
(
µj + i

)
uj − νjυj =−

g
σ

∂ζj
∂x(

µj + i
)
υj + νjuj =−

g
σ

∂ζj
∂y

ζj =
ihj
σ

[
∂uj
∂x
+
∂υj
∂y

] , (3)

in which

µj =
γj

σ
and νj =

fj

σ
. (4)

Provided that the j th rectangular area, denoted as Areaj ,
has a width ofWj , has a length of Lj and ranges from x = lj
to x = lj+1 (lj+1 = lj +Lj ) in the x direction and from y =

wj,1 to y = wj,2 (wj,2 = wj,1+Wj ) in the y direction, the
boundary conditions along the sidewalls within x ∈ [lj , lj+1]

are taken as follows:

υj = 0 at y = wj,1 and y = wj,2. (5)

Along the cross sections, such as x = lj , various choices
of boundary conditions are applicable depending on the prob-
lem:

uj = 0, (6)

if the cross section is a closed boundary;

uj =±

√
g(

1− iµj
)
hj
ζj , (7)
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if the free radiation in the positive/negative x direction occurs
on the cross section;

ζj = ζ̂j , (8)

if the tidal elevation is specified as ζ̂j along the cross section;
and

{
ζj = ζj+1,

ujhj = uj+1hj+1,
(9)

if the cross section is a connecting boundary of the areas j
and j + 1, with each having a different uniform depth of hj
and hj+1.

Equation (9) is matching conditions accounting for sea
level continuity and volume transport continuity. The indi-
vidual Eqs. (6) to (9), or their combination, may be used as
boundary conditions for the cross sections. The relationship
between uj and ζj shown in Eq. (7) is based on the solu-
tion for progressive Kelvin waves in the presence of friction,
which will be given in Eqs. (10) and (11) below.

2.2 General solution

For the j th rectangular area, that is, for xε[lj , lj+1] and
yε[wj,1, wj,2], the governing equations in Eq. (3) only have
the following four forms satisfying the sidewall boundary
condition of Eq. (5) (see for example Fang et al., 1991):


υj,1 = 0,
uj,1 =−aj exp

[
αjy+ iβj

(
x− lj

)]
,

ζj,1 =
βj
σ
hjaj exp

[
αjy+ iβj

(
x− lj

)]
;

(10)


υj,2 = 0,
uj,2 = bj exp

[
−αjy− iβj

(
x− lj

)]
,

ζj,2 =
βj
σ
hbj exp

[
−αjy− iβj

(
x− lj

)]
;

(11)



υj,3 =
∑
∞

n=1κj,n sinrj,ny exp
[
−sj,n

(
x− lj

)]
,

uj,3 =
∑
∞

n=1κj,n
(
Aj,n cosrj,ny+Bj,n sinrj,ny

)
exp

[
−sj,n

(
x− lj

)]
,

ζj,3 =
ihj

σ

∑
∞

n=1
κj,n

(
Cj,n cosrj,ny+D1,n sinrj,ny

)
exp

[
−sj,n

(
x− lj

)]
;

(12)

and



υj,4 =
∑
∞

n=1λj,n sinrj,ny exp
[
−sj,n

(
lj+1− x

)]
,

uj,4 =
∑
∞

n=1λj,n

(
A′j,n cosrj,ny+B ′j,n sinrj,ny

)
exp

[
−sj,n

(
lj+1− x

)]
,

ζj,4 =
ihj

σ

∑
∞

n=1
λj,n

(
C′j,n cosrj,ny+D′j,n sinrj,ny

)
exp

[
−sj,n

(
lj+1− x

)]
,

(13)

where αj , βj , rj,n and sj,n are equal to the following:

αj =
νj(

1− iµj
)1/2 kj , (14)

βj =
(
1− iµj

)1/2
kj , (15)

rj,n =
nπ

Wj

, (16)

and

sj,n =
(
r2
j,n+α

2
j −β

2
j

) 1
2
, (17)

in which kj = σ/cj is the wave number, with cj =
√
ghj

being the wave speed of the Kelvin wave in the absence
of friction. The parameters sj,n in Eq. (17) are of funda-
mental importance in determining the characteristic of the
Poincaré modes. If Re(β2

j −α
2
j )

1/2 < π/Wj , all Poincaré
modes are bound in the vicinity of the open, connecting or
closed cross sections (see Fang and Wang, 1966; Hender-
shott and Speranza, 1971, for an absence of friction), while if
Re(β2

j −α
2
j )

1/2 > nπ/Wj , the nth and lower-order Poincaré
modes are propagating waves. In the present study, the in-
equality Re(β2

j −α
2
j )

1/2 < π/Wj holds for all rectangular
areas shown in Fig. 3, so that all Poincaré modes in the
present study appear in a bound form. The parameter sj,n
has two complex values for each n, and here we choose the
one that has a positive real part. To satisfy the equations in
Eq. (3), (Aj,n,Bj,n,Cj,n,Dj,n) and (A′j,n,B

′

j,n,C
′

j,n,D
′

j,n)
should be as follows:

Aj,n =

[(
µj + i

)2
+ ν2

j

]
rj,nsj,n(

µj + i
)2
r2
j,n+ ν

2
j s

2
j,n

sj,n, (18)

Bj,n =
νj
(
µj + i

)(
α2
j −β

2
j

)
(
µj + i

)2
r2
j,n+ ν

2
j s

2
j,n

, (19)

Cj,n = rj,n− sj,nAj,n, (20)
Dj,n =−sj,nBj,n, (21)
A′j,n =−Aj,n, (22)

B ′j,n = Bj,n, (23)

C′j,n = Cj,n, (24)

and

D′j,n =−Dj,n. (25)

Equations (10) and (11) represent Kelvin waves propagat-
ing in the −x and x directions, respectively; and Eqs. (12)
and (13) represent two families of Poincaré modes bound
along the cross sections x = lj and lj+1 in the j th rectan-
gular area, respectively. The coefficients (aj ,bj ,κj,n,λj,n)
determine amplitudes and phase lags of Kelvin waves and
Poincaré modes. These coefficients must be chosen to satisfy
the boundary conditions, preferably using the collocation ap-
proach.
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2.3 Defant’s collocation approach

The collocation approach was first proposed by Defant in
1925 (see Defant, 1961) and is convenient in determining
the coefficients (aj ,bj ,κj,n,λj,n). In the simplest case, that
is, if the model domain contains only a single rectangular
area, then J = 1 and the index j has only one value: j = 1,
the calculation procedure can be as follows. First, we trun-
cate each of the two families of Poincaré modes in Eqs. (12)
and (13) at the N1th order so that the number of undeter-
mined coefficients for two families of Poincaré modes is 2N1
and the total number of undetermined coefficients (plus those
for a pair of Kelvin waves) is thus 2N1+ 2. To determine
these unknowns, we take equally spaced N1+ 1 dots, which
are called collocation points, located at y = w1,1+

W1
2(N1+1) ,

w1,1+
3W1

2(N1+1) , . . . , w1,1+
(2N1+1)W1

2(N1+1) on both cross sections
x = l1 and l2. At these points, one of the boundary condi-
tions given by Eqs. (6) to (8) should be satisfied, which yields
2N1+ 2 equations. By solving this system of equations, we
can obtain 2N1+ 2 coefficients (a1,b1,κ1,n,λ1,n). Because
the high-order Poincaré modes, which have great values of n
and s1,n in Eqs. (12) and (13), decay from the boundary very
quickly, it is generally necessary to retain only a few lower-
order terms. In the above single-rectangle case, the spacing
of collocation points is equal to 1y =W1/(N1+ 1).

For J > 1, that is, when the model contains multiple rect-
angular areas connected one by one, we can treat the ap-
proach in the following way. First, we may choose a com-
mon divisor of W1, W2, . . . , WJ as a common spacing,
which is denoted by 1y, for all areas. For the j th rectan-
gle (Fig. 3), we may select the collocation points at y =
wj,1+

1y
2 , wj,1+

31y
2 , . . . , wj,2−

1y
2 on the cross sections

x = lj and x = lj+1, wherewj,2 = wj,1+Wj . The number of
collocation points on each cross section in this area is equal
toWj/1y. Thus the number of undetermined coefficients for
the Poincaré modes is selected to beNj = (Wj/1y)−1. Ac-
cordingly, there will be in total

∑J
j=1(2Nj + 2) collocation

points in J areas. Note that on the cross section connecting
Areaj and Area(j + 1), the collocation points that belong to
Areaj and those that belong to Area(j +1) are located at the
same positions. For the points located on the open or closed
boundaries, Eqs. (6) to (8) are applicable, while for the points
located on the cross sections connecting two areas, Eq. (9)
should be applied. From these

∑J
j=1(2Nj+2) equations, we

can obtain
∑J
j=1(2Nj +2) coefficients (aj ,bj ,κj,n,λj,n), in

which j = 1, 2, . . . , J and n= 1, 2, . . . , Nj .

3 Tidal dynamics of the Korea Strait

As noted by Odamaki (1989b), the co-oscillating tides are
dominant in the JS, which is mainly induced by inputs at
the opening of the KS rather than those through the Tsugaru
Strait (TGS) and Soya Strait (SYS). Furthermore, our study
focuses on the KS, in which influences of the tide-generating

Figure 4. Idealized model domain fitting the Korea Strait and Japan
Sea. The dashed line represents an open boundary, and the solid
lines represent closed boundaries. A, B, . . . , M indicate the locali-
ties of the points used in Fig. 6 for model–observation comparison.
Numbered red dots are tidal gauge stations where the observed har-
monic constants are used for model validation in Table 2.

force and the inputs from the TGS and SYS are negligible.
Therefore, we idealize the KS–JS basin as a semi-enclosed
basin with a sole opening connected to the ECS and study
the co-oscillating tides generated by the tidal waves from the
ECS through the opening.

3.1 Model configuration and parameters for the Korea
Strait and Japan Sea

To establish an idealized analytical model for the KS–JS
basin, we use four rectangular areas as shown in Fig. 4 to
represent the study region. The first rectangle, designated
as Area1, represents the KS, which is our focus area. Ac-
cording to the shape of its coastline, we use three rectan-
gles designated as Area2 and Area3 to represent the JS. We
place the x axis parallel to but 200 km away from the south-
east sidewall of the KS (that is w1,1 in Fig. 3 is equal to
200 km), and the y axis is in the direction perpendicular to
the x axis through the opening of the KS (Fig. 4). The se-
lected depths are the mean depths calculated based on the
topographic dataset ETOPO1. TheK1 andM2 angular veloc-
ities are equal to 7.2867× 10−5 and 1.4052× 10−4 s−1, re-
spectively. The details of the model parameters can be found
in Table 1.

Based on the depths listed in Table 1, the wavelengths of
the K1 Kelvin waves in these four areas are 2686, 12 189,
11 398 and 2561 km, respectively, and those of theM2 Kelvin
waves are 1393, 6321, 5911 and 1328 km, respectively. Be-
cause the widths of the areas are all smaller than half the
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Table 1. Parameters used in the model.

Parameter Area1 Area2 Area3 Area4

Wj (km) 230 700 350 140
Lj (km) 350 950 400 400
wj,1 (km) 250 200 550 760
fj (10−5 s−1) 8.28 9.24 10.10 10.65
hj (m) 99 2039 1783 90
Nj 22 69 34 13

corresponding Kelvin wavelengths, the inequality Re(β2
j −

α2
j ) < π/Wj as stated in the Sect. 2.2 is satisfied (see also

Godin, 1965; Fang and Wang, 1966; Wu et al., 2018), Thus
the Poincaré modes can only exist in a bound form.

In addition to the parameters listed in Table 1, we need to
estimate the parameters µM2 and µK1 as defined by Eq. (4).
SinceM2 has the largest tidal current in the KS (Teague et al.,
2001), and we assume that the tidal currents are rectilinear,
the linearized frictional coefficient for M2 is approximately
equal to the following, after Pingree and Griffiths (1981),
Fang (1987) and Inoue and Garrett (2007),

γM2 ≈
CD

h

8
3π
UM2

(
1+

3
4

∑
i=2, 3,...

ε2
i

)
, (26)

where CD is the drag coefficient and UM2 is the tidal cur-
rent amplitude ofM2, εi = Ui/UM2 , withUi representing the
tidal current amplitude of the constituent i (here, we desig-
nate i = 1 for M2 and i = 2, 3, . . . for any constituents other
than M2). According to Fang (1987) and Inoue and Gar-
rett (2007), the linearized frictional coefficient for the non-
dominant constituent i is approximately equal to the follow-
ing:

γi ≈
CD

h

4
π
UM2

1+
ε2
i

8
+

1
4

∑
k = 2,3, . . .
k 6= i

ε2
k

 . (27)

Inserting Eqs. (26) and (27) into Eq. (4), we can obtain the
parameter µ. Teague et al. (2001) provided tidal current har-
monic constants at 10 mooring stations along two cross sec-
tions in the KS. The averaged values of the major semi-
axes of the tidal current ellipses at these stations are 0.154,
0.119, 0.101 and 0.062 m s−1 forM2,K1,O1 and S2, respec-
tively. Here, we use these values and CD ≈ 0.0026 to esti-
mate the parameters in Eqs. (26) and (27). Then, after insert-
ing these values into Eq. (4), we obtain rough estimates of
µM2 and µK1 for the KS (Area1), which are approximately
0.05 and 0.09, respectively. Since the JS is much deeper and
has much weaker tidal currents than the KS, we simply let
µK1 = µM2 = 0 for both Area2 and Area3.

For the collocation approach, we take 10 km as the spacing
between collocation points. Thus in this model, a total of 198
collocation points are used to establish 256 equations, and

the parameters of 3 pairs of Kelvin waves and 125 pairs of
Poincaré modes can be obtained. Along the open boundary
of the KS, the open-boundary condition Eq. (8) is employed,
with the value of ζ̂ equal to the observed harmonic constants
from the global tide model DTU10 (Cheng and Anderson,
2011). Along the cross sections connecting Area1 with Area2
and Area2 with Area3, the matching conditions Eq. (9) are
applied. Along the solid cross sections, condition Eq. (6) is
used.

3.2 Model results and validation

The obtained analytical solutions of the K1 and M2 tides us-
ing the extended Taylor method are shown in Fig. 5a and
b, respectively. The maximum amplitude of the K1 tide is
0.34 m, which appears at the southwest corner of the KS.
The amplitude decreases from southwest to northeast, and a
counter-clockwise tidal wave system occurs in the northeast
part of the KS, with amplitudes less than 0.05 m near the am-
phidromic point. A co-tidal line with a phase lag of 210◦ runs
from the amphidromic point in the KS into the southwest JS.

The maximum amplitude of the M2 tide is 1.02 m, which
appears at the westernmost corner of the KS. The amplitude
decreases gradually from southwest to northeast along the
direction of the strait, and the amphidromic point occurs at
the junction of the KS and JS. The amplitudes near the am-
phidromic point are lower than 0.1 m, and the phase lags in
most parts of the JS vary from 150 to 210◦. A degenerated
amphidromic point appears near the entrance of the Tartar
Strait. The comparison with the tidal charts based on data
from DTU10 (Fig. 5c, d) shows that the model-produced tidal
systems agree fairly well with the observations.

To quantitatively validate the model results, we first extract
the data along the solid boundary of the model for compari-
son as shown in Fig. 6. For the K1 tide, the model-produced
amplitudes and phase lags along the boundary in the JS both
agree well with the observed data, although small differences
occur at the northern corner of the JS. For the M2 tide, the
greatest phase-lag errors are approximately 64◦ near the en-
trance of the Tartar Strait due to the existence of a degener-
ated amphidromic point near this area (Fig. 2b).

For further validation, we select 16 tide gauge stations
where harmonic constants are available from the Interna-
tional Hydrographic Bureau (1930). The station locations are
shown in Fig. 4. The result of the comparison is given in Ta-
ble 2, which also shows that the model results are consistent
with the data obtained from gauge observations: the RMS
(root mean square) differences of amplitudes of K1 and M2
are 0.014 and 0.032 m, respectively; and those of the phase
lags are 7.0 and 5.2◦, respectively.

Although the theoretical model greatly simplifies the to-
pography and boundary, the amplitude and phase-lag differ-
ences of these two tidal constituents are very small in the
KS and its surroundings, and the basic characteristics of the
tidal patterns are well retained (Fig. 5). These findings show
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Figure 5. Comparison of tidal system charts. (a) K1 and (b) M2 tides from the present theoretical model and (c) K1 and (d) M2 tides from
DTU10 (Cheng and Andersen, 2011).

Figure 6. Comparison of model results (blue) and observations based on DTU10 (orange) along the coasts. (a) K1 amplitudes, (b) K1 phase
lags, (c) M2 amplitudes, and (d) M2 phase lags. The locations of the points A, B, C, D, G, H, I, J K, L and M are shown in Fig. 4.

that the simplification of the model is reasonable and the ex-
tended Taylor method is appropriate for modelling the tides
in the KS–JS basin. Therefore, it is meaningful to use the
model results for theoretical analysis.

3.3 Tidal waves in the Korea Strait

To reveal the relative importance of the Kelvin waves versus
Poincaré modes in the modelled Korea Strait, the superpo-
sition of Kelvin waves and that of the Poincaré modes are
given in Fig. 7a–b for K1 and in Fig. 8a–b for M2.

For theK1 tide in the KS, the superposition of the incident
(northeastward) and the reflected (southwestward) Kelvin
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Table 2. Comparison between harmonic constants from the observations and models at coastal tide gauge stations.

No. Station name K1 M2

Amplitude (m) Phase lag (◦) Amplitude (m) Phase lag (◦)

Obs. Model Obs. Model Obs. Model Obs. Model

1 Reisui Ko 0.21 0.20 50 39 1.02 0.93 357 10
2 Toei Ko 0.16 0.12 46 39 0.80 0.76 355 2
3 Takesiki Ko, Aso Wan 0.12 0.11 83 87 0.66 0.66 1 6
4 Aokata 0.23 0.23 90 85 0.80 0.81 356 358
5 Konoura, Uku Sima 0.20 0.22 92 88 0.78 0.79 354 2
6 Usuka Wan, Hirado Sima 0.19 0.21 102 97 0.74 0.78 2 8
7 Kottoi 0.12 0.13 174 155 0.32 0.34 31 33
8 Sitirui 0.04 0.04 206 211 0.06 0.04 152 148
9 Nakai Iri,Hoku Wan 0.06 0.05 215 214 0.07 0.07 172 164
10 Ryotu Ko, Sado 0.05 0.05 211 215 0.05 0.07 181 167
11 Kamo Ko 0.06 0.05 211 216 0.07 0.07 174 169
12 Akita 0.06 0.05 220 216 0.05 0.07 174 170
13 Hamamasu 0.05 0.06 211 219 0.05 0.09 185 180
14 Zyosin Ko 0.06 0.05 227 227 0.08 0.06 187 185
15 Sokcho 0.04 0.05 236 228 0.07 0.05 189 188
16 Uturyo To 0.04 0.04 222 226 0.04 0.04 194 180

RMS difference 0.014 7.0 0.032 5.2

waves appears as a counter-clockwise amphidromic system,
with the amphidromic point located near the middle of the
strait, but closer to the southeast coast of Korea (Fig. 7a). The
highest amplitude of the superposed Kelvin waves is 0.3 m,
and the mean difference from the observations is less than
0.03 m. The superposition of all Poincaré modes has ampli-
tudes of approximately 0.1 m near the cross sections on both
left and right sides, and a counter-clockwise amphidromic
point exists nearly at the centre of the strait (Fig. 7b). Since
the amplitudes of the superposed Poincaré modes are signifi-
cantly smaller than those of the superposed Kelvin waves, the
latter can basically represent the total tidal pattern, including
the counter-clockwise amphidromic system.

For theM2 tide, the highest amplitude of the superposition
of two Kelvin waves is approximately 0.95 m, which appears
at the southwest corner of the strait (Fig. 8a). The amplitude
decreases from southwest to northeast along the strait, and
the amphidromic point appears near the cross section con-
necting to the JS, where a topographic step exists. The max-
imum deviation of the amplitudes of the superposed Kelvin
waves from the observations is 0.06 m, and the structure of
the superposed Kelvin waves is consistent with the observa-
tion. The amplitudes of the superposed Poincaré modes are
generally less than 0.2 m on both left and right sides of the
KS, and they decay rapidly towards the middle of the strait,
thus forming a counter-clockwise amphidromic system struc-
ture (Fig. 8b). Therefore, theM2 tide in the KS is also mainly
controlled by Kelvin waves.

The above results show that the Poincaré modes only ex-
ist along the open boundary and the connecting cross section

and their amplitudes quickly approach zero away from these
cross sections. In fact, these properties of the Poincaré wave
are inherent in any narrow strait. Therefore, in the following,
we will focus on Kelvin waves and analyse the characteris-
tics of the incident (northeastward) and reflected (southwest-
ward) Kelvin waves.

The incident and reflected K1 Kelvin waves are shown in
Fig. 7c and d, respectively. The area-mean amplitude of the
incident Kelvin wave in the KS is 0.248 m, and that of the re-
flected Kelvin wave is 0.190 m, which is 77 % of the incident
Kelvin wave. On the connecting cross section, the section-
mean amplitude of the incident Kelvin wave is 0.243 m, and
the section-mean phase lag is 151.6◦. The section-mean am-
plitude of the reflected Kelvin wave is 0.194 m, which is 80 %
of the incident Kelvin wave. The section-mean phase lag
is 295.8◦, indicating that the phase lag increases by 144.2◦

when the wave is reflected. The amphidromic point of the
superposed Kelvin wave is 137 km away from the step and
close to the northwest shore of the KS.

The incident and reflected M2 Kelvin waves are shown in
Fig. 8c and d, respectively. The area-mean amplitude of the
incident Kelvin wave in the KS is 0.471 m, and that of the re-
flected Kelvin wave is 0.439 m, which is 93 % of the incident
Kelvin wave. This ratio is larger than the K1 tide because
the bottom friction of M2 is smaller and less energy is lost in
the propagation process. On the connecting cross section, the
mean amplitude of the incident Kelvin wave is 0.462 m, and
the phase lag is 97.9◦. The mean amplitude of the reflected
Kelvin wave is 0.447 m, which is 97 % of the incident Kelvin
wave, and the phase lag is approximately 266.4◦, with a
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phase-lag increase of 168.5◦, which is closer to 180◦ as com-
pared to the corresponding value of theK1 tide. Accordingly,
the M2 amphidromic point of the superposed Kelvin wave
shifts to approximately 21 km away from the step. A com-
parison between Figs. 7a and 8a shows that the amphidromic
point of K1 is located west of that of M2. This result repro-
duces well the observed phenomenon as seen from Fig. 2.

The above results indicate that the relation of the ampli-
tudes and phase lags of the reflected Kelvin wave with the
incident wave plays a decisive role in the tidal system in the
KS, especially in the formation of amphidromic points, for
both the K1 and M2 tides.

4 Discussion on the formation mechanism of
amphidromic points

To explore the tidal dynamics of the KS–JS basin, espe-
cially the formation mechanism of amphidromic points, we
consider the simplest case: a one-dimensional tidal model
in channels. In the one-dimensional case, the amphidromic
point is equivalent to the wave node. As previously men-
tioned, an important feature of the topography of the KS–
JS basin is that there is a steep continental slope between
the KS and JS, and to the northeast of this slope, the JS is
much deeper and wider than the KS. Thus, the channel is
idealized to contain two areas, with the first one (Area1) hav-
ing uniform depth h1 and uniform width W1 and the second
one (Area2) having uniform depth h2 and uniform widthW2.
Therefore, the idealized channel contains abrupt changes in
depth and width at the connection of these two areas. An in-
cident wave enters the first area and propagates toward the
second area passing over the topographic step. For simplic-
ity, we neglect friction.

If the second area is semi-infinitely long, allowing for the
wave radiating out from the second area freely, then a part
of the wave is reflected at the connecting point and another
part is transmitted into the second area. The amplitude of the
transmitted wave is (see for example Dean and Dalrymple,
1984)

HT = κTHI , (28)

where HI is the amplitude of the incident wave and κT is
called the transmission coefficient, which is equal to

κT =
2

1+ ρ
, (29)

where

ρ =
c2W2

c1W1
=

√
h2
√
h1

W2

W1
, (30)

with cj =
√
ghj representing the wave speed in the j th area;

j = 1, 2. cj is in fact proportional to
√
hj . The amplitude of

the reflected wave HR is

HR = κRHI , (31)

where κR is called the reflection coefficient and is equal to
the following:

κR =
1− ρ
1+ ρ

. (32)

If ρ > 1, namely, if
√
h2W2 >

√
h1W1, then κR < 0, Eq. (32)

can be rewritten in the form

κR =
ρ− 1
ρ+ 1

exp(−iπ). (33)

The above equation indicates that at the connecting point, the
reflected wave changes its phase lag by 180◦. Therefore, the
superposition of incident and reflected waves in Area1 has
the minimum amplitude at the connecting point. This theory
explains how the reflected wave can be generated by abrupt
increases in water depth and basin width, and why the re-
flected wave there has a phase lag opposite to the incident
wave.

The complete solution for this case is as follows (see also
Dean and Dalrymple, 1984):

ζ (x)=HI

(
exp{−i [k1 (x− l1)+ θ1]}+ ρ−1

ρ+1

exp{−i [−k1 (x− l1)+ 2χ1+ θ1+π ]}
)
,

l1� x� l2
ζ (x)= 2

1+ρHI exp{−i [k2 (x− l2)+χ1+ θ1]},
l2� x

(34)

where θ1 represents the phase lag of the incident wave at
the opening of Area1; kj = σ/cj is the wave number, with
cj =

√
ghj representing the wave speed in Areaj , j = 1,

2; and χ1 = k1L1. This solution for the K1 and M2 con-
stituents for h1 = 99 m, L1 = 350 km, W1 = 230 km, h2 =

2039 m and W2 = 700 km is plotted with the blue curves in
Fig. 9.

However, Sect. 3.3 shows that the phase-lag changes of the
reflected waves relative to the incident waves are not exactly
equal to 180◦ but rather are smaller than 180◦, and the dis-
crepancy increases with the decreasing angular frequency. To
explain this discrepancy, we improve the above theory by in-
troducing the reflected wave in the second area. In fact, the JS
is represented with a semi-closed area in the two-dimensional
model (Sect. 3.1), namely, all boundaries except those con-
nected to KS are solid ones (Fig. 4). Therefore, in the fol-
lowing one-dimensional model, the second area is closed at
its right end so that the reflection will occur at this end. In
this case, the solution becomes more complicated and is de-
pendent on the length of the second area L2. The reflection
coefficient κR now has the following form (see Supplement
for derivation):

κR = exp(−i2δ), (35)
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Figure 7. Decomposed charts for the model-produced K1 tide in the Korea Strait: (a) contribution of Kelvin waves, (b) contribution of
Poincaré modes, (c) northeastward (incident) Kelvin wave and (d) southwestward (reflected) Kelvin wave.

Figure 8. Same as in Fig. 7 but for M2.
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in which δ is determined by the following equations: cosδ = 1+cos2χ2[
(1+cos2χ2)

2
+(ρ sin2χ2)

2]1/2 ,
sin δ = ρ sin2χ2[

(1+cos2χ2)
2
+(ρ sin2χ2)

2]1/2 , (36)

where χ2 = k2L2. Equation (36) indicates that the length,
width and depth of Area2 are also important in determin-
ing the phase-lag increase of the reflected wave relative to
the incident wave in Area1. Comparison of Eq. (35) with
Eq. (33) indicates that the phase-lag increase is now 2δ in-
stead of π . The difference1= π−2δ characterizes the influ-
ence of Area2 upon the phase-lag increase at the connection
of two areas. To show the influence of the length, width and
depth of Area2 on the value of 1, we first retain the width
and depth unchanged and increase the length by 10 %; it is
shown that the value of 1 for K1 is reduced by 15 % (re-
duced to 10.44◦ from 12.27◦) and that the value of 1 for M2
is reduced by 37 % (reduced to 2.37◦ from 3.78◦). Next we
retain the length and depth unchanged and increase the width
by 10 %; it is shown that the value of 1 for K1 is reduced by
9 % (reduced to 11.16◦ from 12.27◦) and that the value of
1 for M2 is reduced by 9 % (reduced to 3.44◦ from 3.78◦).
Then we retain the length and width unchanged and increase
the depth by 10 %; it is shown that the value of 1 for K1 in-
creases by 1 % (increases to 12.42◦ from 12.27◦) and that the
value of 1 for M2 increases by 9 % (increases to 4.12◦ from
3.78◦).

The complete solution for this case is as follows:

ζ (x)=HI

(
exp{−i [k1 (x− l1)+ θ1]}

+exp{−i [−k1 (x− l1)+ 2χ1+ θ1+ 2δ]}
)
,

l1� x� l2

ζ (x)= εHI

(
exp{−i [k2 (x− l2)+ (χ1+φ+ θ1)]}

+exp{−i [−k2 (x− l2)+ (2χ2+χ1+φ+ θ1)]}
)
,

l2� x� l3

(37)

where ε = 2E−1. E and φ are determined by the following
relations:{
E cosφ = (ρ+ 1)− (ρ− 1)cos2χ2,

E cosφ = (ρ− 1)sin2χ2.
(38)

The first terms on the right-hand side of the two equations
in Eq. (37) represent the waves propagating in the posi-
tive x direction, and the second terms are those propagat-
ing in the negative x direction. This solution for the K1 and
M2 constituents for the case h1 = 99 m, L1 = 350 km, W1 =

230 km, h2 = 2039 m, L2 = 1150 km and W2 = 700 km is
plotted with the red curves in Fig. 9.

Equation (35) indicates that the amplitude of the reflected
wave in the first area is equal to that of the incident wave.

Figure 9. Amplitude distribution along the channel. (a) K1
and (b) M2. Blue/red curves are solutions for semi-infinite/finite
Area2. The red arrow indicates the position of the connecting point
between the Korea Strait and the Japan Sea. Amplitudes are given
as ratios to the incident wave in Area1.

Figure 10. Phase-lag increase of the reflected wave relative to the
incident wave as a function of the angular velocity at the connecting
point. See the text for details.

This result is natural because friction is not considered and
no dissipation is present during wave propagation. Equa-
tion (35) also indicates that the phase lag of the reflected
wave at the connecting point is greater than that of the in-
cident wave at the same point by 2δ. Since the node of the
superposition of the incident and reflected waves appears at
the place where the phase lags of these two waves are oppo-
site, the first node should appear at 1x away from the con-
necting point with

1x = (π − 2δ)/(2k1) . (39)

The above relationship can also be obtained from the first
equation of Eq. (37). The dependence of 2δ on σ for the
case h1 = 99 m, L1 = 350 km, W1 = 230 km, h2 = 2039 m,
L2 = 1150 km and W2 = 700 km is plotted in Fig. 10. This
figure shows that 2δ = 0 when σ = 0 and 2δ increases with
increasing σ , although it is always less than 180◦. In par-
ticular, 2δ = 167.7◦ when σ = σK1 and 2δ = 176.2◦ when
σ = σM2 . Based on this theory, the M2 and K1 amphidromic
points should be located at 7.4 and 45.9 km away from
the connecting point, respectively. Compared with the two-
dimensional model results given in Sect. 3.3, this theory
roughly explains one-third of the changes. The remaining
two-thirds of the changes may be due to the effect of the
Coriolis force. The solution of phase-lag changes at the cross
section in the two-dimensional rotating basin involves in-
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teractions among three Kelvin waves (an incident and a re-
flected Kelvin wave in Area1 and a transmitted Kelvin wave
in Area2) and two families of Poincaré modes at the connect-
ing cross section (one family in each area). Taylor (1922),
Fang and Wang (1966) and Thiebaux (1988) have studied the
Kelvin-wave reflection at the closed cross section of semi-
infinite rotating two-dimensional channels. In their studies,
only two Kelvin waves and one family of Poincaré modes
were involved. In comparison to their studies, the present
problem is much more complicated. Because of the com-
plexity of the problem, we will presently leave it for a future
study.

5 Summary

In this paper, we establish a theoretical model for the KS–JS
basin using the extended Taylor method. The model idealizes
the study region as three connected flat rectangular areas, in-
corporates the effects of the Coriolis force and bottom fric-
tion in the governing equations, and is forced by observed
tides at the opening of the KS. The analytical solutions of the
K1 and M2 tidal waves are obtained using Defant’s colloca-
tion approach.

The theoretical model results are consistent with the satel-
lite altimeter and tidal gauge observations, which indicates
that the model is suitable and correct. The model reproduces
well theK1 andM2 tidal systems in the KS. In particular, the
model-produced locations of the K1 and M2 amphidromic
points are consistent with the observed ones.

The model solution provides the following insights into
the tidal dynamics in the KS. (1) The tidal system in each
rectangular area can be decomposed into two oppositely trav-
elling Kelvin waves and two families of Poincaré modes,
with Kelvin waves dominating the tidal system due to the
narrowness of the area. (2) The incident Kelvin wave from
the ECS through the opening of the KS travels toward the
JS and is reflected at the connecting cross section between
the KS and JS, where abrupt increases from the KS to JS in
water depth and basin width occur. (3) The phase lag of the
reflected wave at the connecting cross section increases by
less than 180◦ relative to that of the incident wave, thus en-
abling the formation of the amphidromic points in the KS.
(4) The phase-lag increase of the reflected wave relative to
the incident wave is dependent on the angular frequency of
the wave and becomes smaller as the angular frequency de-
creases. This feature explains why theK1 amphidromic point
is located farther away from the connecting cross section in
comparison to the M2 amphidromic point. (5) The length,
width and depth of the JS is also important in determining
the phase-lag increase of the reflected Kelvin wave in the
KS.
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