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Tidal wave propagation in one-dimensional channels with abrupt

depth/width changes

S1. Basic Equations

We study tidal wave propagation in channels with abrupt depth/width changes. To be specific, we consider a one-dimensional
problem corresponding to the model shown in Fig. 3 of our paper. For simplicity, Area3 is combined into Area2, and the

Coriolis force and friction are neglected, then Eqs. (10) and (11) in the Sect. 2.2 of our paper can be simplified as follows:

uy _(x) = —ay explik, (x — )] (S1)
01,-(x) = pray expliky (x — 1] (82)
Uy 4 (x) = by exp[—ik, (x — 1))] (S3)
{1,+(x) = p1by exp[—ik, (x — 1] (S4)
Uy _ (%) = —a, explik, (x — 1,)] (S5)
{5~ (x) = paa, explik, (x — 1)] (86)
Uy 4 (%) = by exp[—ik,(x — )] (S7)
{2,+(x) = p2b;y exp[—ik,(x — 15)] (S8)

where k; = o/c; is the wave number, with ¢; = \/g_h} representing the wave speed in Areaj, /=1, 2; p; = \/h]T; l; isthe
x coordinate at the opening of Areal; and [, = l; + L; is the x coordinate of the connecting point of Areal and Area?2,
where an abrupt change in depth and/or width occurs. In Egs. (S1) to (S8), we have changed the notations u;;, {;, u;, and
{j» in Egs. (10) and (11) of Wu et al. (2021) to w;_, {;_, u; 4, and {;, (j=1, 2), respectively, to indicate the directions of
wave propagation. That is, {; . (x) and u;,(x) represent the complex amplitudes of tidal level and tidal current of the tidal
waves that travel in the positive x direction in Areaj, respectively; and {;_(x) and u;_(x) represent those travelling in the
negative x direction in Areaj, respectively.

The open boundary condition at x = l; can be specified as follows:

¢1,+(l1) = Hyexp (—i6y), (89)

where H; and 6; represent the amplitude and phase lag of the incident wave at the opening of Areal, respectively. From Egs.

(S9) and (S4) we obtain

p1by = Hyexp (—i6;), (S10)
and

{1+ (x) = Hyexp{—i[k,(x — ;) + 64]}. (S11)
Therefore,



10

15

20

25

(1,+(l2) = Hyexp [—i(x; + 61)], (S12)
where
X1 =kqly. (S13)

The matching conditions at x = [, = [; + L; are as follows:

{1+ + G -(R) = G (L) + & - (L), (S14)
and
[u1,+(lz) + ul,—(l2)]h1W1 = [uy 4+ (1) + uy (1) ]h,Ws. (S15)

To use the relationship among tidal elevations instead of tidal currents, we multiply Eq. (S15) by p;/h,W; and obtain

51,+(l2) - (1,—(12) = P[(2,+(lz) - fz,—(lz)]y (S16)
where
_ pihaWy _ JhoW, (S17)

T opahawy NEA
S2. Solution for the case with semi-infinite Area2

Here, we first investigate a simpler case that has been previously studied by Dean and Dalrymple (1984). In this case, Area2
is assumed to be semi-infinitely long so that the wave can propagate freely in the positive x direction without reflection,
meaning that a, = 0. Thus, the terms {, _ in Egs. (S6), (S14) and (S16) are all equal to zero. From Egs. (S14) and (S16) with

{o-(l;) = 0 we obtain

$1,-2) = kgly 4+ (L), (S18)
and
{2+ (2) = k{4 (L), (S19)

where kp and k; are called reflection and transmission coefficient respectively. These coefficients are equal to the following:

1_
Kp = ﬁ , (S20)
and
2
Ky = 1o (S21)

If p > 1, namely, if \/h_zwz > \/h_1W1, then kg < 0. It is more desired to write Eq. (S20) in the following form:
—pr1 —i
Kp = 1 €Xp (—im), (S22)
which is Eq. (33) in the text.
From Egs. (S2), (S12), (S18) and (S22) we obtain
-1 ;
G1,-(0) = S Hiexp{—i[—ky (x — 1) + 2), + 6y + ]}, (823)

and from Egs. (S8), (S12), (S19) and (S21) we obtain



2 .
{o+(x) = EHI exp{—i[k2(x — 1) + x1 + 61]}. (524)
Finally, we obtain the following solution:

{(x) =H, (exp {—i[k;(x -l)+6,13+ 2—jexp {=i[-ki(x=1)+2y; +6, + n]}), I, K x L1y, 825)
{(x) = EHI exp{—i[k,(x — [p) + x1 + 04]}, l, Kx,

which is Eq. (34) in the text of our paper.
S3. Solution for the case with finite Area2

In the following, we investigate a more complicated case that is more suitable to the KS-JS basin. In this case, Area2 is closed
at its right end, and a boundary condition is thus involved:

Uy (I + L) +uy (I, +L,) =0. (S26)

From Egs. (S5) to (S8), we see that Eq. (S26) is equivalent to the following:

$o4la+ L) =3 (I, + L) = 0. (527)

This further gives us

b, = a, exp (i2x,), (528)
where
X2 = k3L, (S29)

Hence we have
(o,- (1) = om (Ip)exp (—i2y,). (S30)

Therefore, Egs. (S14) and (S16) can be rewritten in the following respective forms:

{1+ + G - (L) = [1 + exp(—i2)x3)]¢3,+ (12), (S31)
and
f1,+(l2) - (1,—(12) =p[1- eXP(_iZ)(z)](z,+(lz)- (832)

Eliminating {, ,(l,) in above two equations results in

_ [1+exp(=i2xs)]-p[1-exp(~i2yx)]
-8 = e ooz S+ (2) (S33)

A few steps of algebra give us

1—exp(—i2y3) _ isin 2y, (S34)
1+exp(—i2);)  1+cos2y,

Substitution of Eq. (S34) in Eq. (S33) yields

Oy (ly) = s 2otz (1), (S35)

14+cos 2)z+ipsin 2y,

Let
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1+cos2y,

[(1+cos 2x2)2+(p sin 2y,)2]1/2”’
psin2y,

[(1+cos 2x2)2+(psin2yz)?]1/2’

cosd =

sind =
then (S35) reduces to
1,-(2) = ¢+ (1) exp(—i26),
which is an equivalent form of Eq. (34) in the text of our paper.
From Egs. (S4) and (S10) we have
,+(x) = Hyexp {—i[k,(x — 1) + 64]},
and from Eqgs. (S12) and (S37) we have
{1-(ly) = Hyexp[—i(x; + 01 + 26)].
Meanwhile, Eq. (S2) gives us
¢1,-(12) = p1ay exp(ixy).
Comparison of Eq. (S40) with Eq. (S39) gives
pia; = Hyexp[—i(2y; + 6, + 20)].
On substituting Eq. (S41) into Eq. (S2) we have
{1-(x) = Hyexp{—i[—k;(x — I;) + 2y, + 6, + 25]}.

From Egs. (S31) and (S32) we obtain

{2,+(l2) =2[(p+1)—(p—1)cos2y, +i(p—1)sin 2)(2]_1(1,+(lz)-

Let

{Ecosqb=(p+1)—(p—1)c052)(2,
Esing = (p —1)sin2y,,

and

e=2E"1,

then (S43) reduces to

2,4+ (L2) = eexp (—ig) ¢y + (L)

Inserting Eq. (S12) into Eq. (S46) yields

$2+(l2) = eHrexp [i(x1 + ¢ + 61)].

From Eq. (S8), we know that p,b, = {5 ,(I;), thus we further have

{2+ (x) = eHexp{—i[k,(x — [;)+(x1 + ¢ + 61)]}.

Likewise, we can obtain the following solution for {, _(x) from Eqs. (S6) and (S47):

{o-(x) = eHjexp{—i[—ky(x — L)+Q2x2 + x1 + ¢ + 6,)]}.

Finally from Egs. (S38), (S42), (S48) and (S49), we obtain the solution for {(x):

(S36)

(S37)

(S38)

(839)

(S40)

(S41)

(542)

(S43)

(S44)

(845)

(S46)

(847)

(S48)

(S49)



{ {(x) = H;(exp {—i[ks(x — 1) + 64]} + exp {—i[—k1(x — L)) + 21 + 01 + 26]}), L Kx L1,
{(x) = eH(exp{—i[k,(x — L)+ (x1 + ¢ + 0]} + exp{—i[—k,(x — L)+ + X1 + ¢+ 0]}, L Kx <3,

(S50)

which is Eq. (37) in the text of our paper.



