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Abstract. Two feature-based verification methods, thus far
only used for the diagnostic evaluation of atmospheric mod-
els, have been applied to compare ∼ 7 km resolution pre-
operational analyses of chlorophyll-a (Chl-a) concentrations
to a 1 km gridded satellite-derived Chl-a concentration prod-
uct. The aim of this study was to assess the value of applying
such methods to ocean models. Chl-a bloom objects were
identified in both data sets for the 2019 bloom season (1
March to 31 July). These bloom objects were analysed as
discrete (2-D) spatial features, but also as space–time (3-D)
features, providing the means of defining the onset, duration
and demise of distinct bloom episodes and the season as a
whole.

The new feature-based verification methods help reveal
that the model analyses are not able to represent small coastal
bloom objects, given the coarser definition of the coastline,
also wrongly producing more bloom objects in deeper At-
lantic waters. Model analyses’ concentrations are somewhat
higher overall. The bias manifests itself in the size of the
model analysis bloom objects, which tend to be larger than
the satellite-derived bloom objects. The onset of the bloom
season is delayed by 26 d in the model analyses, but the sea-
son also persists for another month beyond the diagnosed
end. The season was diagnosed to be 119 d long in the model
analyses, compared to 117 d from the satellite product. Ge-
ographically, the model analyses and satellite-derived bloom
objects do not necessarily exist in a specific location at the
same time and only overlap occasionally.

1 Introduction

The advancements in atmospheric numerical weather predic-
tion (NWP) such as the improvements in model resolution
began to expose the relative weaknesses in so-called tradi-
tional verification scores (such as the root-mean-squared er-
ror, for example), which rely on the precise matching in space
and time of the forecast to a suitable observation. These met-
rics and measures no longer provided adequate information
to quantify forecast performance (e.g. Mass et al., 2002).
One key characteristic of high-resolution forecasts is the ap-
parent detail they provide, but this detail may not be in the
right place at the right time, a phenomenon referred to as the
“double penalty effect” (Rossa et al., 2008). Essentially, it
means that at any given time the error is counted twice be-
cause the forecast occurred where it was not observed, and
it did not occur where it was observed. This realisation cre-
ated the need within the atmospheric community for creating
more informative yet robust verification methods. As a re-
sult, a multitude of so-called “spatial” verification methods
were developed, which essentially provide a number of ways
for accounting for the characteristics of high-resolution fore-
casts.

In 2007, a spatial verification method intercomparison
(Gilleland et al., 2009, 2010) was established with the aim
of providing a better collective understanding of what each
of the new methods was designed for, and categorising what
type of forecast errors each could quantify. A decade later,
Dorninger et al. (2018) revisited this intercomparison, adding
a fifth category so that all spatial methods fall into one of
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the following groupings: neighbourhood, scale separation,
feature-based, distance metrics or field deformation.

The use of spatial verification methods has therefore be-
come commonplace for atmospheric NWP (see Dorninger
et al., 2018 and references within). Neighbourhood-based
methods in particular have become popular due to the relative
ease of computation and intuitive interpretation. Recently,
one such neighbourhood spatial method was demonstrated as
an effective approach for exploring the benefit of higher res-
olution ocean forecasts (Crocker et al., 2020). Another class
of methods focuses on how well particular features of inter-
est are being forecast. Forecasting specific features of interest
is one of the main reasons for increasing horizontal resolu-
tion. Feature-based verification methods, such as the Method
for Object-Based Diagnostic Evaluation (MODE, Davis et
al., 2006) and the Time Domain version (MTD) (Clark et al.,
2014), enable an assessment of such features, focusing on the
physical attributes of the features (identified using a thresh-
old) and how they behave at a given point in time and evolve
over time. These methods require a gridded truth to compare
to. Whilst the initial intercomparison project was based on
analysing precipitation forecasts, over recent years their use
has extended to other variables, provided gridded data sets
exist that can be used to compare against (e.g. Crocker and
Mittermaier, 2013, considered cloud masks and Mittermaier
et al., 2016, considered more continuous fields in a global
NWP model such as upper-level jet cores, surface lows and
high-pressure cells using model analyses). Mittermaier and
Bullock (2013) detailed the first study to use MODE-TD pro-
totype tools to analyse the evolution of cloud breaks over the
UK using satellite-derived cloud analyses.

In the ocean, several processes have strong visual signa-
tures that can be detected by satellite sensors. For example,
mesoscale eddies can be detected from sea surface temper-
ature or sea level anomaly (e.g. Chelton et al., 2011; Mor-
row and Le Traon, 2012; Hausmann and Czaja, 2012). Phy-
toplankton blooms are seasonal events which see rapid phy-
toplankton growth as a result of changing ocean mixing, tem-
perature and light conditions (Sverdrup, 1953; Winder and
Cloern, 2010; Chiswell, 2011). Blooms represent an impor-
tant contribution to the oceanic primary production, a key
process for the oceanic carbon cycle (Falkowski et al., 1998).
Their spatial extent and intensity in the upper ocean make
them visible from space with ocean colour sensors (Gordon
et al., 1983; Behrenfeld et al., 2005). Biogeochemical models
coupled to physical models of the ocean provide simulations
for the various parameters that characterise the evolution of
a spring bloom, such as Chl-a concentration which can also
be estimated from spaceborne ocean colour sensors (Antoine
et al., 1996).

Validation of marine biogeochemical models has tradition-
ally relied on simple statistical comparisons with observa-
tion products, often limited to visual inspections (Stow et al.,
2009; Hipsey et al., 2020). In response to this, various papers
have outlined and advocated using a hierarchy of statistical

techniques (Allen et al., 2007a, b; Stow et al., 2009; Hipsey
et al., 2020), multivariate approaches (Allen and Somerfield,
2009) and novel diagrams (Jolliff et al., 2009). Many of
these rely on matching to observations in space and time,
but some studies have started applying feature-based veri-
fication methods (Mattern et al., 2010). Emergent properties
have been assessed in terms of geographical provinces (Vichi
et al., 2011), phenological indices (Anugerahanti et al., 2018)
and ecosystem functions (de Mora et al., 2016). In a previ-
ous application of spatial verification methods developed for
NWP, Saux Picart et al. (2012) used a wavelet-based method
to compare Chl-a concentrations from a model of the Euro-
pean Northwest Shelf (NWS) to an ocean colour product.

For this paper, both MODE and MODE-TD (or MTD for
short) were applied to the latest pre-operational analysis (at
the time) of the Met Office Atlantic Margin Model (AMM7)
at 7 km resolution (O’Dea et al., 2012; Edwards et al., 2012;
O’Dea et al., 2017; King et al., 2018; McEwan et al., 2021)
for the NWS, in order to evaluate the spatiotemporal evo-
lution of the bloom season in both model and observation
fields. For comparison with the MODE and MTD results, a
few traditional metrics are included here, based on the Coper-
nicus Marine Environment Monitoring Service (CMEMS)
quality information document for the model (McEwan et al.,
2021). Traditional verification of a previous version, prior to
the introduction of ocean colour data assimilation, was pre-
sented by Edwards et al. (2012), who used various metrics
and Taylor diagrams (Taylor, 2001) to compare model anal-
yses to satellite and in situ observations. Ford et al. (2017)
presented further validation to understand the skill of the
model at representing phytoplankton community structure
in the North Sea. A similar version of the system used in
this study, including ocean colour data assimilation, was as-
sessed in Skákala et al. (2018), who validated both analy-
sis and forecast skill using traditional methods. The assim-
ilation improved analysis and forecast skill compared with
the free-running model, but when assessed against satellite
ocean colour the forecasts were not found to beat persis-
tence. On the NWS, the spring bloom usually begins between
February and April, varying across the domain and interan-
nually (Siegel et al., 2002; Smyth et al., 2014), and lasts until
summer. Without data assimilation, the spring bloom in the
model typically occurs later than in observations (Skákala et
al., 2018, 2020), a bias which is largely corrected by assim-
ilating ocean colour data. The purpose of this study using
feature-based methods is to further explore and quantify the
benefit and impact of the data assimilation on the evolution
of modelled Chl-a concentrations. In Sect. 2, the data sets
used in the verification process are introduced. Section 3 de-
scribes MODE and MTD. Section 4 contains a selection of
results and their interpretation. Conclusions and recommen-
dations follow in Sect. 5.
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2 Data sets for the 2019 Chl-a bloom

As stated in Sect. 1, feature-based methods such as MODE
and MTD require the fields to be compared to be on the same
grid. The model grid is the coarser grid and is used here, with
the satellite-derived gridded ocean colour products interpo-
lated to the model grid.

2.1 Satellite-derived gridded ocean colour products

A cloud-free gridded (space–time interpolated, L4) daily
product delivered through CMEMS (Le Traon et al., 2019)
catalogue provides Chl-a concentration at ∼ 1 km resolu-
tion over the Atlantic (20–66◦ N, 46◦ W–13◦ E). The L4 Chl-
a product is derived from merging of data from multi-
ple satellite-borne sensors: MODIS-Aqua, Visible Infrared
Imaging Radiometer Suite (VIIRS) and Ocean and Land
Colour Instrument – Sentinel 3A (OLCI-S3A). The repro-
cessed (REP) products available nearly 6 months after the
measurements (OCEANCOLOUR_ ATL_ CHL_L4_REP_
OBSERVATIONS_009_098) are used here as it is the best-
quality gridded product available for comparison. The satel-
lite derived Chl-a concentration estimate is an integrated
value over optical depth.

Errors in satellite-derived chlorophyll a (Chl a) can be
more than 100 % of the observed value (e.g. Moore et al.,
2009). The errors in the L4 Chl-a values are often at their
largest near the coast, especially near river outflows. How-
ever, in the rest of the domain, smaller values of Chl a mean
that even large percentage observation errors result in errors
typically smaller than the difference between model and ob-
servations. As will be shown, the models at 7 km resolution
cannot resolve the coasts in the same way as is seen in the
satellite product as some of the coastal Chl-a dynamics are
sub-grid scale for a 7 km resolution model.

For this study, the ∼ 1 km resolution L4 satellite product
was interpolated onto the AMM7 grid using standard two-
dimensional horizontal cubic interpolation. This coarsening
process retained some of the larger concentrations present in
the L4 product.

2.2 Model description

Operational modelling of the NWS is performed using the
Forecast Ocean Assimilation Model (FOAM) system. This
consists of the NEMO (Nucleus for European Modelling of
the Ocean) hydrodynamic model (Madec et al., 2016; O’Dea
et al., 2017), the NEMOVAR data assimilation scheme (Wa-
ters et al., 2015; King et al., 2018) and for the NWS region
the European Regional Seas Ecosystem Model (ERSEM),
which provides forecasts for the lower trophic levels of the
marine food web (Butenschön et al., 2016). The version of
FOAM used in this study is AMM7v11, using the ∼ 7 km
horizontal resolution domain stretching from 40◦ N, 20◦ W,
to 65◦ N, 13◦ E. Operational forecasts of ocean physics

and biogeochemistry for the NWS are delivered through
CMEMS; for a summary of the principles underlying the ser-
vice, see, e.g. Le Traon et al. (2019).

AMM7v11 uses the CO6 configuration of NEMO, which
is configured for the shallow water of the shelf sea and is a
development of the CO5 configuration described by O’Dea
et al. (2017). The ERSEM version used is v19.04, coupled
to NEMO using the Framework for Aquatic Biogeochemical
Models (FABM, Bruggeman and Bolding, 2014). The
NEMOVAR version is v6.0, with a 3D-Var method used
to assimilate satellite and in situ sea surface temperature
(SST) observations, in situ temperature and salinity pro-
files, and altimetry data into NEMO (King et al., 2018),
and chlorophyll derived from satellite ocean colour into
ERSEM (Skákala et al., 2018). The introduction of ocean
colour assimilation in AMM7v11 is a major development
for the biogeochemistry over previous versions of the
system (Edwards et al., 2012). The satellite ocean colour
observations assimilated are from a daily L3 multi-sensor
composite product based on MODIS and the Visible Infrared
Imaging Radiometer Suite (VIIRS) with resolutions of
1 km for the Atlantic (for further information, see OCEAN-
COLOUR_ATL_CHL_L3_NRT_OBSERVATIONS_009_
036 on the CMEMS catalogue). The L3 product is based
on two of the same three ocean colour sensors used in
the L4 product described in Sect. 2.1 but with different
processing and no gap filling.

In this study, daily mean Chl-a concentrations for the pe-
riod of 1 March–31 July 2019 from AMM7v11 were used to
illustrate the verification methodology. AMM7v11 entered
operational use in December 2020, and the data used here
came from a pre-operational run of the system. Note only
the analysis of AMM7v11 (i.e. no corresponding forecasts)
was available at the time of the assessment, and the results
presented in this paper show how close the data assimilation
draws the model to the observed state.

2.3 Visual inspection of data sets

Ideally, Chl-a concentration from the model should be in-
tegrated over optical depth to be equivalent to the satellite
derived value defined in Sect. 2.1 (Dutkiewicz et al., 2018).
However, this is currently a non-trivial exercise and can-
not be accurately calculated from offline outputs. Therefore,
the commonly accepted practice is to use the model surface
Chl a (Lorenzen, 1970; Shutler et al., 2011). Here, it is as-
sumed that the difference between surface and optical depth-
integrated Chl a is likely to be small in comparison with the
actual model errors.

Figure 1 shows the L4 ocean colour product (a) and
AMM7v11 analysis (b) for 1 June 2019 on the top row, using
the same plotting ranges. The second row shows the differ-
ence field that is provided with the L4 ocean colour product
(c), and the AMM7v11 minus L4 difference field (d). The
mean error (bias) is generally positive with the AMM7v11
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Figure 1. (a) Daily mean L4 multi-sensor observations regridded on the 7 km resolution model grid and (c) AMM7v11 Chl a for 1 June
2019. (c) Error estimates on the multi-sensor L4 Chl a and (d) difference between AMM7v11 and the L4 product.

analysis containing higher Chl-a concentrations, especially
in the deeper North Atlantic waters. The exceptions are along
the coast where the AMM7v11 analysis is deficient, but it
should be noted that these are also the zones where some of
the largest satellite retrieval errors occur and where a 7 km
resolution model, with a coarse representation of the coast,
does not fully represent complex coastal and estuarine pro-
cesses.

3 MODE and MTD

3.1 Description of the methods

This section provides a brief description of MODE, first de-
scribed in Davis et al. (2006), and its time extension MTD.

MODE and MTD can be used on any temporal sequence
of two gridded data sets which contain features that are of in-
terest to a user (whoever that user may be, model developer
or more applied). By extracting only the feature(s) of inter-
est, the method allows one to mimic what humans do, but
in an objective way. Once identified the features can then be
mathematically analysed over many days or seasons to com-
pute aggregate statistics of behaviour. MODE can be used in
a very generalised way. The key requirements are to (1) have
gridded fields to compare and (2) be able to set a threshold
for identifying features of interest.

In this instance, the comparison will involve the
AMM7v11 model data assimilation analysis and the gridded
L4 satellite product. MODE identifies the features (called ob-
jects), as areas for which a specified threshold is exceeded;
here, it is a Chl-a concentration. Consider Fig. 2, which

shows a number of objects that have been identified after a
threshold has been applied to two fields (blue and orange).
The identified objects in the two fields are of different sizes
and shapes and do not overlap in space, though they are not
far apart. Object characteristics or attributes such as the area
and mass-weighted centroid are computed for each single ob-
ject. Simple (also known as single) objects can be “merged”
(to form clusters) within one field (illustrated here for the or-
ange field). This may be useful to do if it is clear that there
are many small objects close together which should really
be treated as one. Furthermore, objects in one field can be
“matched” to objects in the other field. To find the best match,
an interest score is computed for each possible pairing be-
tween all identified objects. The components used for com-
puting the interest score can be tuned to meet specific user
needs. In Fig. 2a, it is based on the area ratio, intersection–
area ratio, minimum boundary distance and centroid differ-
ence. Furthermore, the components can be weighted accord-
ing to relative importance. Given a scenario where there are
two identified objects in the blue field and three in the orange
field, Fig. 2b shows the interest score for each possible pair-
ing in this hypothetical example. Only the pairing with the
highest score is analysed further, and only if it exceeds the set
threshold for defining an acceptable match. The default value
for this is 0.7. In the example in Fig. 2b, blue object 1 is best
matched against orange object 1, and this match is used in the
analysis. Note that there is another good match with orange
object 2, as it is above the threshold of 0.7, but it, as well
as orange object 3, would not be used, with orange object 3
below the 0.7 threshold. In all likelihood, a scenario such
as that shown in Fig. 2b would be assessed as clusters with
blue objects 1 and 2 forming a cluster and orange objects 1
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and 2 also forming a cluster. An interest score for the clus-
ter pairing above 0.7 would then create a matched pair. Once
these matches are completed, summary statistics describing
the individual objects (both matched and unmatched) and
matched object pairs are produced. These statistics can be
used to identify similarities and differences between the ob-
jects identified in two different data sets, which can provide
diagnostic insights on the relative strengths and weaknesses
of one compared to the other.

The important steps for applying MODE can be sum-
marised as follows (which are described in detail in Davis
et al., 2006):

1. Both forecast and observation (or analysis) need to be
on the same grid. Typically, this means interpolating the
observations to the model grid to avoid the model being
expected to resolve features which are sub-grid scale.

2. Depending on how noisy the fields are, they should
be smoothed. Gridded observations (not analyses) can
be noisy and usually need some smoothing. Models
and model analyses are built on numerical methods
which come with discretisation effects. Depending on
the method this implies that any model’s true resolution
(i.e. the scales which the model is resolving) is between
2 and 4 times the horizontal grid (mesh) resolution. The
number of objects identified will vary inversely with the
smoothing radius.

3. Define a threshold which captures the feature of interest
and apply it to both the smoothed forecast and observed
fields to identify simple objects as shown in Fig. 2.

4. Any smoothing is only for object identification pur-
poses. The original intensity information within the ob-
ject boundaries is analysed.

5. Lastly, the object matching is accomplished using a
fuzzy logic engine (low-level artificial intelligence),
which is expressed as the so-called “interest” score as
shown in Fig. 2b. The higher the score, the stronger the
match. All objects are compared in both fields and inter-
est scores are computed for all combinations. A thresh-
old is set on the interest score value (typically 0.7) to
denote which are the best matches, and on the unique
pairing with the highest score is kept for analysis pur-
poses. Some objects will remain unmatched (either be-
cause there are none or because there are no interest val-
ues above the set threshold to provide a credible match),
and these can be analysed separately.

MODE is highly configurable. Gaining an optimal com-
bination of configurable parameters for each application re-
quires extensive sensitivity testing to gain sufficient under-
standing of the behaviour of the data sets to be examined and
to achieve, on average, heuristically the right outcome. Ini-
tial tuning requires user input to check whether the method
is replicating what a human would do.

The sensitivity to threshold and smoothing radius should
be explored. The threshold and variability in the fields can af-
fect the number of objects which are identified. The process
of exploring the relationship between threshold and smooth-
ness helps to identify what would heuristically be considered
a reasonable number of objects.

The sensitivity to the merging option must also be inves-
tigated. In this instance, the merging option had very little
impact.

The behaviour of the matching can also be configured,
with a number of options ranging from the simple to the more
complicated, which added computational expense. There
may be very little difference in outcomes, but it is worth
checking. Here the merge_both option was used but it was
not strictly necessary as there was little difference between
the available options.

Note also that a minimum size (area) is set for object
identification. This is often a somewhat pragmatic choice.
If the size is set too small, too many objects are identi-
fied, which end up being merged. If it is too large, very
few objects are identified. Here, a minimum area of 10 grid
squares (∼ 70 km2) was used for an object to be included
in the analysis. For this study, the default settings were
used for matching and computing the interest score (as pro-
vided in the default configuration file; see example configura-
tion files at https://github.com/dtcenter/MET/tree/main_v8.
1/met/scripts/config, last access: November 2018). The de-
fault threshold of 0.7 for the interest score was also used to
identify acceptable matches.

Identical to MODE, identifying time–space objects in
MTD uses smoothing and thresholding. Applying a thresh-
old yields a binary field where grid points exceeding the
defined threshold are set to 1. At this stage, each region of
non-zero grid points in space and time is considered a sep-
arate object, and the grid points within each object are as-
signed a unique object identifier. For MTD, the search for
contiguous grid points not only means examining adjacent
grid points in space but also the grid points in the same or
similar locations at adjacent times to define a space–time ob-
ject. The same fuzzy logic-based algorithms used for merg-
ing and matching in MODE apply to MTD as well. Similarly
to MODE, a minimum volume must be set. Here, a volume
threshold of 1000 grid squares (a summation of the daily
object areas identified to be part of the space–time object)
was imposed for space–time object identification to be in-
cluded in the analysis. This represents the accumulated num-
ber of grid squares associated with an object over consec-
utive time slices. Otherwise, the default settings were used
for object matching. For MTD, a lower interest score of 0.5
was used for matching objects. Finally, it is worth noting that
the MODE and MTD tools, though similar, are completely
independent of each other and were set up differently here.
MODE is ideal for understanding the identified features in in-
dividual daily fields in some detail. MTD, it was felt, would
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Figure 2. Schematic illustrating some of the key components of identifying objects using MODE. (a) Defining some of the terminology and
key components for computing matched pairs. (b) Example of how the best matched pair is identified.

be best used to look at larger scales. Here it was set up to cap-
ture the most significant (in size) and long-lasting blooms.

3.2 Defining Chl-a concentration thresholds and other
choices on tuneable parameters

Chl a can vary over several orders of magnitude. Often log10
thresholds are used to match the fact that Chl a follows a log-
normal distribution (e.g. Campbell, 1995). Defining thresh-
olds can be difficult: on the one hand, there is the desire
to only capture events of interest, so the thresholds should
not be too low; on the other hand, if the thresholds are too
high, no events are captured and there is nothing to anal-
yse. From a regional (NW European Shelf) perspective, the
values of interest are typically in the range of 3–5 mg m−3

(Schalles, 2006), though higher Chl-a concentrations can be
measured in situ or diagnosed in satellite products. For this
study, the data sets were not log transformed but thresholds
were selected in such a way that they would correspond to
being equally spaced in logarithmic space (where the Chl-a
concentrations are approximately Gaussian), better reflecting
the skewed underlying distribution shape of Chl-a concen-
trations. Three thresholds analysed: 2.5, 4 and 6.3 mg m−3.
Here, the primary focus is on the results for the 2.5 mg m−3

threshold, though some results for the 4 and 6.3 mg m−3

thresholds are also presented.
In addition to the interpolation of the L4 ocean colour

product onto the ∼7 km AMM7v11 grid, it is important to
ensure that MODE and MTD use optimal settings for the
fields under study. Results are sensitive to characteristics of
the fields (how smooth or noisy). Right at the start, the em-
phasis was on finding the right combination of Chl-a con-

centration threshold and smoothing, balancing the need for
identifying objects with keeping the number of objects man-
ageable. The guiding principles in identifying the right com-
bination were to ensure that the daily object count remained
low enough, recalling that these methods were developed to
mimic what a human would do. The human brain would
struggle to cope with as many as 30, but this was consid-
ered to be an acceptable upper limit after considerable visual
inspection of output. Furthermore, the smoothing applied
needs to be reduced with increasing concentration thresholds
because objects become smaller and are less frequent. This
is to ensure that too much smoothing does not remove more
intense objects from the analysis. However, pushing the con-
centration threshold too high may also be detrimental; de-
pending on the input fields, identified objects may be spu-
rious (due to, for example, a failure of quality control pro-
cesses removing such). Too few objects also make the com-
pilation of robust aggregated statistics impossible.

For the lower thresholds, 2.5 and 4.0 mg m−3, a smooth-
ing radius of five grid squares (∼35 km) was applied to both
L4 and AMM7v11 fields, but for highest threshold (here
6.3 mg m−3) the smoothing radius was reduced to three grid
squares, to prevent the higher peak concentrations, which
are often small in spatial extent, from being lost due to the
smoothing. Tests of thresholds above 6.3 mg m−3 yielded too
few objects to be analysed with any rigour. The smoothing
was particularly necessary for the L4 product, which, be-
cause of its native 1 km resolution, is able to resolve very
small (noisy) objects typically found near the coast and
which a 7 km resolution model cannot resolve. For the MTD
analysis, objects in the L4 ocean colour product and the
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Figure 3. Map showing the subregions over which statistics are
computed.

AMM7v11 analyses were only defined using a Chl-a con-
centration threshold of 2.5 mg m−3.

4 Results

4.1 Traditional statistics

Traditional verification metrics are based on a set of observa-
tions and a set of model outputs matched in time and space.
The statistics that are typically considered (McEwan et al.,
2021) are the median error (bias), median absolute difference
(MAD) and Spearman rank correlation coefficient. The me-
dian bias gives indication of consistent differences between
the model and observations, with a positive bias indicating
the model concentration is higher than observed. The MAD
provides an absolute magnitude of the difference. The Spear-
man rank correlation coefficient is the Pearson correlation
coefficient between the ranked values of the model and ob-
servation data, so that if the model data increase when the ob-
servations do, they are positively correlated. It has the same
interpretation as the more common Pearson correlation co-
efficient where a correlation of 1 shows perfect correlation
and 0 shows no correlation. Figure 3 provides a map of the
model domain and the subregions over which traditional met-
rics are computed. Table 1 shows results for log(Chl a) as-
sessed against the L4 ocean colour product.

Compared with the L4 product, the AMM7v11 analysis
slightly overestimates Chl a off-shelf and underestimates
Chl a in the on-shelf regions (Table 1). Regions show mod-
erate to strong positive correlations, highest in the Southern
North Sea and lowest in the Irish Sea. These statistics give
useful insight into model skill but provide limited informa-
tion about how model performance changes as the bloom
season progresses (McEwan et al., 2021; Skákala et al., 2018,
2020). As will be shown, the output from MODE and MTD

Figure 4. Empirical cumulative distribution functions of the log10
Chl-a concentration for the L4 ocean colour product and AMM7v11
analyses for the 2019 bloom season.

provides a very different perspective from these traditional
verification metrics, allowing a more detailed understanding
of model performance.

4.2 Chl-a distributions

It is important to understand the nature of the underlying L4
and AMM7v11 Chl-a distributions and any differences be-
tween them. This can be done by creating cumulative dis-
tribution functions (CDFs) of the log10 L4 and AMM7v11
Chl-a concentrations, by taking all grid points in the domain
and all dates in the study period. These are plotted in Fig. 4,
showing that there is an offset between the distributions, the
AMM7v11 analysis having more low concentrations, though
the distributions appear to be converging in the upper tail.

Exploring this further, the AMM7v11 and L4 Chl-a con-
centration CDFs can be derived for each individual day,
rather than for the season as a whole. From these, the
quantile where the L4 product is less than or equal to
2.5 mg m−3 (29.7 %) can be compared to the corresponding
AMM7v11 concentration associated with the same quantile
of 29.7 %. From Fig. 4, this gives an equivalent concentra-
tion of 1.15 mg m−3 for the season. The daily matched quan-
tile Chl-a values provide an estimate of the daily bias. This is
plotted in Fig. 5 as a time series for the 2019 bloom season. It
shows that the daily AMM7v11 corresponding quantile val-
ues are mainly in the range of ∼1.5–4.5 mg m−3, averaging
out to 2.9 mg m−3 over the season, which suggests a mod-
est difference overall. The larger day-to-day variations show
some cyclical patterns. There are notable peaks at the end of
May and the beginning of July. An inspection of the fields
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Table 1. Statistics for daily model surface log(Chl a) outputs and satellite ocean colour Chl a for the full domain and subregions for the
period March to July 2019. See Fig. 3 for the location of the regions. The Continental Shelf includes all regions except those that are off-shelf
(reproduced from McEwan et al., 2021).

Region Median bias MAD Spearman correlation
(log(mg m−3)) (log(mg m−3)) coefficient

Full Domain < 0.01 (0.004) 0.21 0.62

Continental shelf −0.09 0.17 0.71
Off-shelf 0.06 0.23 0.51
Norwegian Trench −0.04 0.18 0.61
Northern North Sea −0.05 0.17 0.64
Southern North Sea −0.17 0.19 0.82
English Channel −0.13 0.16 0.68
Irish Sea −0.13 0.19 0.49
South Western Approaches −0.07 0.15 0.69
North Western Approaches <0.01 (0.006) 0.18 0.51

Figure 5. The day-to-day AMM7v11 quantile Chl-a value corre-
sponding to the L4 product quantile representing 2.5 mg m−3 de-
rived from the L4 daily CDFs. The mean AMM7v11 Chl-a equiva-
lent quantile value for the 2019 season is 2.9 mg m−3.

(not shown) suggests that at these times the AMM7v11 ap-
pears to have higher Chl-a concentrations over large portions
of the domain compared to the L4 product.

In employing a threshold-based approach, generally the
same threshold is applied to both data sets. In the presence of
a bias, this requires a little bit of thought. In extreme cases, it
could mean the inability to identify objects in one of the data
sets, which would then mean objects cannot be matched and
paired, negating the purpose of a spatial method like MODE
or MTD. Not being able to identify any objects does provide
some useful information, though arguably not enough con-
text. The lack of objects does suggest the presence of a bias,
but it does not provide any sense of whether the model is pro-
ducing a constant value of Chl a, for example, which would
be of no use to the user, or whether it does capture regions of

enhanced Chl a, albeit with an offset which means it does not
exceed the set threshold. Therefore, a more likely scenario is
that a bias could partially mask relevant signals in the derived
object properties, which could lead to the potential misinter-
pretation of results. If there is a significant risk of this occur-
ring the bias could be addressed before features are identified
to ensure that the primary purpose of using a feature-based
assessment can be achieved, i.e. identifying features of inter-
est in two sets of fields to assess their location, timing and
other properties and assessing their skill. The fact that there
is an intensity offset should not prevent the method from pro-
viding information about the skill of identified features. As is
seen here, though there is bias (as seen in Figs. 4 and 5), it
does not prevent the method from successfully identifying
objects using the same threshold for both data sets, though it
will be shown that the effect of the bias can affect some ob-
ject attributes, e.g. object areas. However, a more prohibitive
bias could compromise the methods, e.g. being unable to
identify objects in a data set. This would have a dispropor-
tionate effect on the statistics for the matched pairs in partic-
ular. Under such circumstances, the quantile-mapping func-
tionality within MODE (to remove the effect of the bias) is
strongly recommended.

4.3 Visualising daily objects

Figure 6 shows the daily Chl-a concentration fields as rep-
resented in the L4 ocean colour product and the AMM7v11
analyses for 21 April 2019, which is near the peak of the
bloom season. The respective fields are plotted in (a) and (b),
noting that the 1 km resolution L4 product has been inter-
polated onto the ∼ 7 km AMM7 grid. Applying a threshold
of 6.3 mg m−3 to both with a smoothing radius of ∼ 21 km
(three grid lengths) yields eight objects in the AMM7v11
analysis (seven visible in this zoomed region) and 11 ob-
jects in the L4 product. As discussed, the bias described in
Sect. 4.1 does not appear to prevent the identification of ob-
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jects in the L4 product and the AMM7v11 analyses, and the
process of finding matches is possible.

4.4 Spatial characteristics

This section demonstrates the kinds of results that can be ex-
tracted from the two-dimensional MODE objects. Aspects
of the marginal (AMM7v11 or L4 product only) and joint
(matched/paired) distributions can be examined. This in-
cludes object size (as a proxy for area) but also the proportion
of areas that are matched or unmatched.

Firstly, how similar is the L4 ocean colour product and the
AMM7v11 analysis in terms of the features of most interest,
i.e. the Chl-a blooms? Figure 7 shows the evolution of the
proportion of matched object areas (to total combined area)
through the 2019 season, when using MODE to compare the
L4 product and AMM7v11 analyses, to further explore the
differences (and similarities) between them. A value of 1
would indicate that all identified areas are matched. Values
less than 1 suggest that some objects remain unmatched. The
relatively high values of matched object to total area during
April are due to the large numbers of well-matched, phys-
ically small coastal objects in addition to the larger Chl-a
bloom originating in the Dover Straits (not shown). There is
a notable minimum at the beginning of July. Inspecting the
MODE graphical output reveals this is in part due to only a
few small objects being identified, and this is compounded
by their complete mismatch; the L4 objects are all coastal,
whilst the AMM7v11 objects are either coastal (but not in
the same location as L4 objects) or in the deep waters of the
North Atlantic, to the northwest of Scotland. The relatively
high proportions on either side of this time arise from a better
correspondence in placement of the coastal objects (noting
that there is a distance limit on how far objects can be apart
for the matching process to have a positive contribution to
the interest score).

Overall, the AMM7v11 analysis is similar, but clearly not
identical, to the L4 product. The best correspondence appears
to be during the first half of the bloom season. Later in the
season, the model’s determination to produce blooms in deep
North Atlantic waters is a model deficiency that the assimila-
tion is (at this stage) unable to fix. The AMM7v11 analyses
could conceivably be used as a credible source for assessing
the AMM7 Chl-a forecasts in the future. The major benefit
of using a model analysis is that it is at the same spatial reso-
lution, with the same ability to resolve Chl-a bloom objects,
especially along the coast (i.e. the analysis limits the uncer-
tainty due to whether an object could be missing due to the
inability of the model to resolve the feature).

The day-to-day number of objects identified through the
2019 bloom season is shown in Fig. 8, illustrating how el-
ements of the marginal and joint distribution provided by
MODE can be used together. Here, numbers of total and
matched (joint) objects are shown. If the AMM7v11 anal-
yses are good (i.e. similar to the L4 product), there should be

fewer unmatched (marginal) objects than matched ones (indi-
cated by the proximity of the solid and dashed lines); ideally,
there would be no unmatched objects in either the L4 product
or the AMM7v11 analysis. In Fig. 8, the number of objects
in AMM7v11 starts off small and increases as the bloom de-
velops. For the L4 product, there are already many objects
identified at the start of the time series, leading to many un-
matched L4 objects (these could be considered misses in a
more categorical analysis). A spike in the number of matched
objects seen in early April can be attributed to several coastal
locations, which appear to be spatially well matched. In addi-
tion, a larger Chl-a bloom is seen in the Dover Straits region
in the L4 product and although not exactly spatially collo-
cated, the objects are matched. There is a consistently large
number of unmatched objects seen in the AMM7v11 analysis
and L4 ocean colour product from the end of May onwards.
In the AMM7v11 analysis, this appears to be due to an in-
crease in small objects identified, mainly to the west, north
and east of the United Kingdom. The increase in unmatched
objects in the L4 ocean colour product is of a different origin,
being due to an increase in localised coastal blooms. Gener-
ally, the AMM7v11 analyses do not have the resolution to
resolve these. Overall, there are 2632 AMM7v11 bloom ob-
jects identified in the season using the 2.5 mg m−3 threshold,
and 2341 L4 bloom objects, with 56 % of AMM7v11 objects
matched and 59 % of L4 objects matched.

The identified objects in AMM7v11 and the L4 product
can also be considered spatially over the season by composit-
ing the objects. This is done by counting the frequency with
which a given grid square falls within an identified object on
any given day, essentially creating a binary map. These can
be added up over the entire season to produce a spatial com-
posite object or temporal “frequency-of-occurrence” plot.

Figure 9 shows this spatial composite for the 2019 bloom
season for the L4 ocean colour product objects (a) and the
AMM7v11 objects (b). These are the composites based on
the 2.5 mg m−3 threshold objects. There are areas, for exam-
ple, in the South Western Approaches (SWAs; see Fig. 3),
where there appears to be a good level of consistency.
AMM7v11 analyses have elevated Chl-a values along the
northern and western edges of the domain, for a low pro-
portion of the time, which are not seen in the L4 product.
This is likely due to the way that nutrient and phytoplankton
boundary conditions are specified in AMM7v11. Overall, the
low temporal frequency extent of the AMM7v11 objects is
greater than that for the L4 product.

Thus far, all the attributes have been based on only the
AMM7v11 or L4 objects. The distribution of object proper-
ties, derived for the season from the daily comparisons, can
be summarised using box-and-whisker plots. Recall that the
box encompasses the interquartile range (IQR, 25th to 75th
quantiles) and the notch and line through the box denotes
the median or 50th quantile. The dashed line represents the
mean, and the whiskers show ±1.5 times the IQR. For clar-
ity, values outside that range have been filtered out of the
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Figure 6. Daily Chl-a concentrations (in mg m−3 for 21 April 2019: (a) AMM7v11 analysis and (b) L4 ocean colour product. The MODE
objects shown in panels (c) and (d) are identified using a threshold of 6.3 mg m−3 and a smoothing radius of ∼ 21 km. Note that panels (c)
and (d) show a smaller (inner) domain. The colours show the matching clusters. Objects denoted with −1 (grey) are unmatched.

plots shown here. Figure 10 shows the intersection-over-area
paired object attribute distribution as box-and-whisker plots
for all object pairs during the 2019 bloom season, comparing
the AMM7v11 analyses to L4 for three of the thresholds: 2.5
and 4.0 and 6.3 mg m−3. The intersection-over-area diagnos-
tic gives a measure of how much the matched (paired) objects
overlap in space. If the objects do not intersect, this metric is
0. The ratio is bounded at 1 because any area of overlap is al-
ways divided by the larger of the two object areas. The IQR
for the 2.5 mg m−3 threshold is 0.25 with 50 % of paired ob-
jects having an intersection-over-area ratio of 0.97 or greater.
However, the lower whisker spans a large range of values to
as low as 0.375, suggesting that there is a proportion of object
pairs with only small overlaps. There is quite a difference be-
tween the median (notch) and the mean (dashed line) for this
metric, suggesting the distribution is skewed with the mean

affected more by many small overlaps. For the 4.0 mg m−3

threshold paired objects, the intersection-over-area distribu-
tion is much broader, though the difference between the mean
and medians is similar. The proportion of paired objects with
smaller overlaps has also increased. This should not be sur-
prising given that the objects generally get smaller with in-
creasing threshold such that the ability for object pairs to
overlap actually decreases unless they are very closely col-
located. At the 6.3 mg m−3 threshold, the median is lower
(0.93) with a similar difference from the mean; however, the
sample size is much smaller (only 130 paired objects over the
season).
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Figure 7. Proportion of total object area which is matched. Under-
lying matched and unmatched object areas (in units of numbers of
grid squares) are taken from the MODE output. These areas are for
the 2.5 mg m−3 concentration threshold objects.

Figure 8. Time series of the number of matched and total objects
per day from MODE comparing AMM7v11 analyses (black) with
L4 satellite product (grey). Objects are identified using a threshold
of 2.5 mg m−3. Total object numbers for the season are 2341 for the
L4 satellite product and 2632 for AMM7v11.

4.5 Incorporating the time dimension

Having information in space and time enables one to ask,
and hopefully answer, questions such as “did the model pre-
dict the bloom to start in the observed location?” or “did
the model predict the onset at the right time?” and “did the
model predict the peak (in terms of extent) and duration of
the bloom correctly?”.

MTD identifies objects in space and time. As previ-
ously described, all MTD results are based on a 2.5 mg m−3

threshold applied to both the L4 ocean colour products and
AMM7v11 analyses. A time centroid is derived from a time

Figure 9. Object composites (the proportion of time for which
an object was present at the grid box throughout the 2019 bloom
season) for (a) the L4 ocean colour product objects and (b) the
AMM7v11 analysis objects.

series of the spatial (two-dimensional) centroids which are
computed for each (daily) time slice. In addition to this, each
identified MTD object has a start and end time, and a geo-
graphical location of the time centroid, which is the average
of the two-dimensional locations. The time component of the
time centroid is weighted by volume.

The temporal progression of the 2019 bloom season along
with spatial information as defined by the MTD objects’ is
shown in Fig. 11. The object start and end times as well as
the date of their time centroids in (a) provide a clear view
of the onset and demise of each object (bloom episode). In
total, there are 22 AMM7v11 and 11 L4 MTD objects. The
x axis in (a) represents elapsed time. The location of the ver-
tical lines along the x axis on any given date indicates the
date of the time centroid whilst the duration of the space–
time object can be gleaned from the y axis based on the start
and end of the vertical line which defines the time the object
was in existence. Solid lines represent the L4 product objects
whereas dashed lines represent the AMM7v11 objects. The
colour palette is graduated from grey and blue through green,
yellow, red and purple, denoting the relative time in the sea-
son. In (a), the first Chl-a bloom object in the AMM7v11
analysis was identified on 29 March 2019, whereas in the
L4 ocean colour product the first bloom object was identi-
fied on 3 March, 26 d earlier. The first time the L4 product
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Figure 10. Box-and-whisker plots of the paired object property intersection-over-area ]ratio computed by dividing the spatially collocated
area between the paired objects by the largest of either the AMM7v11 or L4 observed object areas (to keep the ratio to be bounded by 0
and 1). Three object thresholds are shown: 2.5, 4.0 and 6.3 mg m−3. Smoothing radii of 5, 5 and 3 grid lengths were applied for the three
thresholds, respectively. The sample sizes for each threshold were 1004, 401 and 130 paired objects, respectively.

and AMM7v11 analyses have concurrent objects (blooms)
is in late March. The L4 product also suggests that the sea-
son ends 30 June, whereas in the AMM7v11 analyses the
bloom season persists with objects identified until 23 July.
Most AMM7v11 objects are of relatively short duration, but
overall, most groups of AMM7v11 objects have some tem-
poral association with an L4 product object around the same
time. In this instance, it is also illuminating to consider the
daily object areas associated with the MTD objects (which
are used to compute the volume of MTD objects). These are
plotted in Fig. 11b showing all daily L4 object areas in the
filled circles, and the AMM7v11 object areas (crosses), in the
same colours as in (a). The main purpose is to highlight the
relative size of the L4 and AMM7v11 objects on any given
day, as well as how many objects there were. Recall that
these are the objects identified using a Chl-a concentration
threshold of 2.5 mg m−3. Some of the AMM7v11 objects are
considerably larger than those in L4 in the middle and lat-
ter parts of the bloom season from mid-May onwards, just
not necessarily at exactly the same time or location. As seen
in Fig. 11b, the area time series also illustrates the offsets
in the start and end of the bloom season. Some of the ob-
jects detected in AMM7v11 beyond the end of the observed
bloom season provided by L4 suggest that at least three sub-
stantial areas are still diagnosed to exceed the threshold of
2.5 mg m−3 into July. Taking the start of the earliest space–
time object as the onset of the bloom season and the end
of the last object as the end, the 2019 season is 119 d long
based on the L4 product, and 117 d in the AMM7v11 analy-

sis. Therefore, the overall length of the season as defined by
the space–time objects is comparable in the AMM7v11 anal-
ysis, albeit with a substantial offset. Finally, even if (a) and
(b) suggest that AMM7v11 and L4 objects exist at the nearly
the same time, this does not mean they are geographically
close to each other. This is illustrated in Fig. 11c, which pro-
vides the spatial context. The colours and symbols are con-
sistent across all panels and show that even when the MTD
objects are identified at the same time they may be geograph-
ically quite far apart, or more typically there is no L4 coun-
terpart (filled circle) to an AMM7v11 bloom object (cross).
The north- and westward progression of the bloom as the sea-
son unfolds can be seen through the use of the colours, with
the AMM7v11 analysis producing enhanced Chl a concen-
trations in deeper waters to the north and west of the domain
beyond the end of the observed season.

With only 22 AMM7v11 and 11 L4 product MTD objects,
which are temporally and geographically well dispersed,
three of the L4 objects remained unmatched, leaving only
eight matched MTD objects for the 2019 bloom season with
an overall interest score greater than 0.5. This represented
an insufficient sample for drawing any robust statistical con-
clusions. Nevertheless, some inspection of the paired MTD
object attributes is summarised below:

– The spatial centroid (centre of mass) differences can
be extensive, but the majority are within 0 to 100 grid
squares apart (i.e. up to ∼ 700 km).
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Figure 11. Space–time information from the L4 (filled circle) and AMM7v11 (cross) MTD objects. (a) The timing of each identified bloom
event (time centroid) plotted on the x axis against the duration of the bloom event, denoted by the vertical line which represents the start and
end time of each space–time object. (b) Daily object areas. (c) Spatial location of the time centroid shown in panel (a) to indicate that even
if AMM7v11 and L4 objects exist at the same time, they may not be geographically close. Colours are coordinated across all panels.
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– The majority of paired objects have time centroid dif-
ferences ± 10 d.

– Considering the volumes of the space–time objects, half
the paired objects have volume ratios of less than 1; i.e.
AMM7v11 objects tend to be smaller or similar in size.
The other pairs have ratios as high as 4.

– Overlaps between AMM7v11 and L4 MTD objects re-
main small and infrequent with only one pair with a sig-
nificant overlap in space and time.

5 Discussion and conclusions

The traditional statistics provided in Table 1 give useful in-
sights into overall performance, but even when the full do-
main is divided into subregions, they do not focus on the
events of interest enough to provide more detailed informa-
tion on the evolution of bloom events as the season pro-
gresses.

MODE and MTD, two distinct but related feature-based
diagnostic verification methods, provide more detailed di-
agnostic information in space and time. This was demon-
strated by using these two methods to evaluate and compare
the pre-operational AMM7v11 European Northwest Shelf
Chl a concentration bloom objects to those identified in the
satellite-based L4 ocean colour product. Nominally, blooms
were said to occur when the concentration threshold ex-
ceeded 2.5 mg m−3, and two higher thresholds were also con-
sidered. Sample sizes dwindle rapidly with increasing thresh-
old. Of specific interest were the similarities and differences
in respective bloom object sizes, their geographical location
and collocation and timing. For the timing component the on-
set, duration and demise of individual bloom objects (events)
could be considered. For the season, all the identified space–
time objects provided an estimate of the onset, duration and
end of the bloom season as a whole. The season was found
to be of similar length, but the onset was found to begin 26 d
later in the AMM7v11 analyses than in the L4 product, and
the AMM7v11 analyses persist the season for almost a month
beyond the diagnosed end identified in the L4 product. Using
traditional verification methods, data assimilation has been
shown to considerably reduce the delay in bloom onset in the
model (Skákala et al., 2020). Using feature-based verifica-
tion methods, this study suggests that a substantial delay still
remains.

There is a modest concentration bias in the AMM7v11
analyses compared to the L4 satellite ocean colour product.
In this study, we chose not to mitigate against this bias as
it was not considered to impede the identification of bloom
objects, which would prevent the ability of the methodology
to identify matches and create paired object statistics. Any
concentration bias does affect the results and this effect must
be understood or at least kept in mind when interpreting re-
sults; in this case, it will have contributed to the result that

the AMM7v11 bloom objects are generally larger. An alter-
native approach would be to mitigate against the impact of
the bias before using a threshold-based methodology such
as MODE or MTD. A quantile-mapping approach is avail-
able within the MODE tool (not yet available in MTD but
should be available at some point) to remove the biases be-
tween two distributions as each temporal data set is analysed.
Using this method, the one threshold is fixed, and the other
threshold varies day to day (as shown in Fig. 5). Another ap-
proach would be to analyse the bias for the whole season (as
shown in Fig. 4) and deriving an equivalent threshold from
this larger data set, thus applying a fixed threshold to all the
days in the season, though there would still be two different
thresholds applied to the two data sets.

MODE results suggest that the AMM7v11 bloom objects
are larger than those in the L4 product. AMM7v11 pro-
duces more objects (in number) than seen in the L4 ocean
colour product, yet many of the coastal objects seen in the
L4 product are not as well resolved in AMM7v11 due to the
coarseness of the coastline in the 7 km model. The additional
AMM7v11 objects are mainly found in deeper Atlantic wa-
ters. The diagnosis of coastal blooms should improve if the
model resolution was increased from 7 to 1.5 km.

Using MODE and MTD clearly gives extra information
not obtained from traditional verification metrics that are
more routinely used (McEwan et al., 2021). An alternative
approach to assessing the representation of phytoplankton
blooms might be to use phenological indices (Siegel et al.,
2002; Soppa, et al., 2016), which measure the day of the
year on which Chl a concentration first crosses a thresh-
old based on the median concentration. Phenological indices
have been used in observation and model-based process stud-
ies (e.g. Racault et al., 2012; Pefanis, 2021), but rarely for
model verification, and then usually in 1-D (Anugerahanti et
al., 2018) or at low temporal resolution (Hague and Vichi,
2018). One reason for this is that daily model Chl a will fre-
quently cross such a threshold throughout the bloom season,
meaning temporal smoothing and other processing (Cole et
al., 2012) would be required, which is not straightforward
to apply consistently. Objective methods such as MODE and
MTD, which consider individual bloom objects throughout
the season, rather than assuming a single spring bloom will
occur at each location, bypass these difficulties.

Other work that formed part of this study, but is not re-
ported on here, showed that constraining the Chl a using
assimilation of the satellite observations appears to benefit
the model in terms of fewer unmatched bloom regions. This
should translate to an improvement in the forecasts generated
from this analysis compared with previous versions of the
operational system and will be the subject of future work.

Code availability. Model Evaluation Tools (MET) was initially de-
veloped at the National Center for Atmospheric Research (NCAR)
through grants from the National Science Foundation (NSF), the
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National Oceanic and Atmospheric Administration (NOAA), the
United States Air Force (USAF), and the United States Depart-
ment of Energy (DOE). The tool is now open source and available
for download from https://doi.org/10.5281/zenodo.5567805 (Win-
Gildenmeister et al., 2021). Over the course of the project, MET
versions 8 to 9.1 were used, with local versions updated when they
became available. MET allows for a variety of input file formats,
but some pre-processing of the CMEMS NetCDF files was neces-
sary before the MODE package could be applied. This includes re-
gridding of the observations onto the model grid and the addition
of the forecast reference time variables to the NetCDF attributes.
All aspects of the use of MET are provided in the MET software
documentation available online.

Data availability. Data used in this paper were downloaded from
CMEMS.

– The Chl a satellite observations used for comparison are
provided by ACRI-ST Company (Sophia Antipolis, France)
and distributed through CMEMS (https://resources.marine.
copernicus.eu/product-detail/OCEANCOLOUR_ATL_CHL_
L4_REP_OBSERVATIONS_009_098/INFORMATION, last
access: 12 September 2021) (CMEMS, 2021a)

– The model outputs are produced by the Met Office and
distributed via CMEMS (https://resources.marine.copernicus.
eu/product-detail/NWSHELF_ANALYSISFORECAST_
BGC_004_002/INFORMATION, last access: 5 October 2021)
(CMEMS, 2021b).

The AMM7v11 analyses were not operational at the time of this
study, but part of the bloom season (from 4 May 2019) has become
publicly available since the study.
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