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Abstract. Using data from the Global Tropical Moored Buoy
Array, we study the validation process for satellite measure-
ment of sea surface salinity (SSS). We compute short-term
variability (STV) of SSS, variability on timescales of 2–17 d.
It is a proxy for subfootprint variability over a 100 km foot-
print as seen by a satellite measuring SSS. We also compute
representation error, which is meant to mimic the SSS satel-
lite validation process where footprint averages are compared
to pointwise in situ values. We present maps of these quan-
tities over the tropical array. We also look at seasonality in
the variability of SSS and find which months have maximum
and minimum amounts. STV is driven at least partly by rain-
fall. Moorings exhibit larger STV during rainy periods than
during non-rainy ones. The same computations are also done
using output from a high-resolution global ocean model to
see how it might be used to study the validation process. The
model gives good estimates of STV, in line with the moor-
ings, although tending to have smaller values.

1 Introduction

Sea surface salinity (SSS) has been measured by satellites for
more than a decade. Along the way there have been remark-
able advances in the quality of the data and their applications
(Reul et al., 2020; Vinogradova et al., 2019). SSS is mea-
sured by satellites using L-band radiometers, combined with
ancillary measurement of sea surface temperature (SST), sea
ice, rain rate, and wind speed as well as corrections for fac-
tors such as galactic radiation, Faraday rotation in the at-
mosphere, and radio frequency interference (Meissner et al.,
2018; Olmedo et al., 2021).

As the database of satellite-based SSS measurements
grows, the need to fully document the errors in the measure-
ments becomes more acute. Many of the sources of error are

well known and quantified (Lagerloef et al., 2008; Meissner
et al., 2018); however, an important source has not been as
well studied, that of representation error (RE). The accuracy
of SSS measurements is often assessed by comparison with
individual in situ readings, such as might be taken by an Argo
float (e.g., Abe and Ebuchi, 2014; Kao et al., 2018b; Olmedo
et al., 2017; Dinnat et al., 2019), mooring, glider, or ship, a
process known as validation. RE is when two measurements
being compared do not represent the same quantity. That is,
the validation measurement and the satellite measurement
are mismatched somehow in scale or timing. In the case of
comparisons with float measurements, there may be differ-
ences between satellite and validation measurement not due
to error or inaccuracy in in situ instruments nor to retrieval,
but to a mismatch in scale between the two systems. One ex-
ample of RE is that of subfootprint variability (SFV; Boutin
et al., 2016; Bingham, 2019). SFV occurs because the SSS
satellite measurement is made over a large footprint, whereas
individual float measurements are made at a single point. The
footprint of the satellite is 100 km in the case of the Aquar-
ius satellite (Lagerloef et al., 2008) and ∼ 40 km in the case
of the Soil Moisture Active Passive (SMAP) satellite (Meiss-
ner et al., 2019). The other major SSS satellite, SMOS (Soil
Moisture and Ocean Salinity), does not have a simple foot-
print due to its interferometric method of sensing and wide
field of view, but ranges from 35 to 63 km depending mostly
on the viewing angle relative to nadir (González-Haro, per-
sonal communication 2021).

SFV has been discussed in detail by Bingham (2019).
That paper quantified SFV for a 100 km satellite footprint
at two locations, the SPURS-1 (Salinity processes in the
Upper-ocean Regional Studies-1) region in the subtropical
North Atlantic and the SPURS-2 region in the eastern tropi-
cal North Pacific, using a combination of drifter salinity, ther-
mosalinograph, and wave glider data. The paper computed
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not just SFV but also its impact on satellite SSS error at those
two locations. The analysis was further extended to include a
variable footprint size by Bingham and Li (2020). One clear
result of these two efforts is the difference between the two
regions, and the time variability of SFV. The SPURS-2 re-
gion has a higher amount of SFV than SPURS-1, less depen-
dence on footprint size, and less seasonal variability. This
difference may have been due to the influence of differences
in rainfall and/or internal ocean variability at the two sites.
The analysis of Bingham (2019) also included a comparison
of SFV computed from in situ data with short-term variabil-
ity (STV) computed from moorings located at the two sites.
The two were similar in magnitude and had similar season-
ality, indicating that STV from a mooring could be used as
a reasonable proxy for SFV from distributed in situ data. In
this paper, we take that conclusion and go further with it. We
make use of data from the Global Tropical Moored Buoy Ar-
ray (GTMBA) to compute STV as a proxy for SFV over the
global tropics and quantify SSS SFV, RE, and their magni-
tude, variability, and geographic distribution.

Another type of RE that is commonly thought of is tempo-
ral aliasing. SSS satellites have a limited footprint extent and
limited temporal coverage. In the case of Aquarius, the satel-
lite repeated every 7 d, whereas SMAP repeated every 2–3 d
(Reul et al., 2020). Thus, an in situ measurement may not be
simultaneous with a satellite overpass in time, leading to a
potential difference between the two or resulting in temporal
aliasing. In this paper, due to our use of temporal sampling as
a proxy for spatial sampling, we cannot distinguish between
SFV (or spatial aliasing) and temporal aliasing. However, we
will briefly discuss the temporal aliasing issue.

SSS data from the GTMBA have been used in the past
for comparison with satellites. Most comparisons have been
done at Level 3 (L3; Bao et al., 2019; Tang et al., 2017; Qin et
al., 2020; Tang et al., 2014), although some have been done
at Level 2 (L2; Abe and Ebuchi, 2014; Kao et al., 2018a,
b; Tang et al., 2014). For example, Bao et al. (2019) com-
puted root-mean-square (RMS) differences and bias between
mooring, satellite (SMOS and SMAP), and in situ gridded
(EN4; Good et al., 2013) data, where the mooring data used
were 8 d moving averages. Tang et al. (2017) computed sim-
ilar statistical comparisons between moorings and SMAP,
again using 8 d average values. Qin et al. (2020) reported the
RMS error and bias between satellite SSS and a small set of
moorings. While the GTMBA moorings have been a useful
point of comparison for validation, as indicated by the num-
ber of studies we have just cited, they have not (to date) been
used to study the process by which validation is carried out.
As the mooring data are generally high quality, sampled at a
high frequency, dispersed broadly over a diverse set of tropi-
cal regimes, and are placed very near the surface, they make
an ideal platform for this.

One complementary aspect that we will study here is the
use of high-resolution model output for exploring STV. Bing-
ham (2019) and Bingham and Li (2020) both compared SFV

from a high-resolution model (different from the one we will
use here) and from in situ data and found that the two agreed
reasonably well, especially in the subtropical SPURS-1 re-
gion. We would like to use such model output to study SFV
on a global scale. The comparison of statistics from the moor-
ings and the global model can give us confidence that model
output may be used for this purpose.

2 Data and methods

We use two sources of in situ data: velocity data from the OS-
CAR (Ocean Surface Current Analysis Real-time) dataset,
and SSS and rainfall from the GTMBA. We will also use
data from the MITgcm (Massachusetts Institute of Technol-
ogy general circulation model) as described below.

In this paper, we use practical salinity from the 1978 prac-
tical salinity scale. This scale is unitless; thus, following
Millero (1993), we do not use the terms “psu” or “pss” as
a substitute for units.

2.1 GTMBA SSS

The GTMBA is a vast network of buoys stretching across
the global tropics (Fig. 1). It was originally set up in the
mid-1980s to measure El Niño-related variability in the trop-
ical Pacific (McPhaden et al., 1998, 2010) and has since
been expanded to the Atlantic (Foltz et al., 2019) and Indian
(McPhaden et al., 2009) basins. The moorings have sensors
that measure SSS at ∼ 1 m depth with a Sea-Bird SBE 37
MicroCAT instrument (Freitag et al., 2018). GTMBA SSS
measurements are reported hourly. No quality control was
carried out beyond that done by the agencies operating the
array. Bao et al. (2019) identified a small number of moor-
ings with suspicious drifts in their SSS records. We exam-
ined the same records and did not judge them to be prob-
lematic. As the analysis done here uses short bursts of data
to study variability, usually on timescales of ∼ 7 d or less,
the absolute accuracy of the sensor is not crucial. SSS in the
tropics tends to be quite spiky, with many low outliers, (e.g.,
Bingham et al., 2021a, their Fig. 2). Overly stringent quality
control could eliminate many valid data points and alter the
statistics of the record.

Many of the GTMBA moorings also recorded precipita-
tion using an R. M. Young 50203 self-siphoning rain gauge
(Freitag et al., 2018). The available records are at 1 min in-
tervals, from which we computed hourly averages.

2.2 OSCAR currents

Ideally, in order to determine SFV, we would have a spatially
distributed set of ocean measurements taken simultaneously,
like those from SPURS-1 and 2 (Bingham, 2019; Bingham
and Li, 2020). Instead, we have intensively sampled time se-
ries of SSS measurements (Sect. 2.1) at a set of discrete lo-
cations. Our assumption is that one can be substituted for the
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Figure 1. The small black dots represent GTMBA mooring loca-
tions. The red lines represent the mean OSCAR current speed over
the 1992–2020 time period at each mooring location. Line lengths
indicate the average speed, with a scale in blue (top center). The
length of the scale corresponds to 25 cm s−1. At that speed, it takes
4.6 d to travel 100 km. Thus, the line length also corresponds to
the time span used in the computation of short-term variability dis-
cussed in the text. A shorter line (slower speed) means a longer
time span. The directions of the lines have no meaning. Panel (a)
shows the Pacific Basin, and panel (b) shows the Atlantic and In-
dian basins.

other. To tie space and time together, we use the OSCAR
dataset, which is an estimate of surface current derived from
satellite altimetry, SST, and surface vector winds (Bonjean
and Lagerloef, 2002). The values of surface current come on
a 1/3◦ grid at 5 d intervals (ESR, 2009). We computed av-
erage speed (not average velocity) over the 1992–2020 time
period at each mooring location (Fig. 1). This average speed
was then turned into a short-term ensemble time period by di-
viding 100 km by the average speed. The time periods varied
from 2 to 17 d, with a median value of 5 d. The main assump-
tion is that within the short-term ensemble time period, the
mooring samples about a 100 km area of ocean at the given
average speed, and this 100 km sample gives an estimate of
the SFV.

2.3 MITgcm

We will use the MITgcm with a latitude–longitude polar cap
grid, the “LLC-4320” (Su et al., 2018). The nominal horizon-
tal resolution is 2.3 km (1/48◦) near the Equator. The very
high resolution of the model should help to make the statis-
tics as close as possible to the real ocean. Su et al. (2018)
successfully used this same model to simulate the global sub-
mesoscale variability. The model output was available for
the 1 November 2011 to 31 October 2012 time period. The
model is free-running, i.e., no ocean data assimilation, and
forced with 6 h atmospheric fields from the ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) 0.14◦

atmospheric operational model analysis. For this reason, it is
not expected that there would be detailed agreement between
model and mooring data, but the statistics of each should be
similar. We obtained the SSS field from the model and ex-
tracted time series for each of the locations of the GTMBA
moorings. We carried out many of the same analyses with
model SSS data as we did with the real mooring data – see
below – with the exception of computing the seasonal cycle.
Only 1 year of output is not enough to get a robust estimate
of the seasonal variability.

In addition, at all the mooring sites, we computed values
of SFV once daily from the model grid surrounding each
site. SFV is computed as a Gaussian weighted standard devi-
ation using a 50 km decay scale, i.e., a 100 km footprint. The
method is the same as that of Bingham et al. (2021b).

2.4 Short-term variability

To compute STV from the SSS data, each record was divided
into weekly evaluation times. At each of these times, we iso-
lated an ensemble of SSS measurements, surrounding it in
the time interval given by the ensemble time period com-
puted from the OSCAR data. The STV was computed as the
standard deviation of SSS within the ensemble time period.
Figure 2 shows an example of a mooring SSS record. The
weekly evaluation times are indicated by red symbols. The
ensemble time periods surround each of these, as shown by
the red lines. The STV, or standard deviation, is computed
over each of the times shown by the red lines. This then forms
a time series of STV.

To mimic the process of validating satellite measurements,
we also computed a mean SSS within each ensemble time pe-
riod (red symbols and lines in Fig. 2). The mean over this in-
terval is an approximation of the footprint mean that Aquar-
ius would have seen in one L2 sample. For illustration, we
show the SSS record for one ensemble time period (∼7 d)
for one mooring in Fig. 3a; the mean and the STV are also
shown (respective red symbol and red lines in Fig. 3a). The
STV in Fig. 3a makes up part of the distribution for the en-
tire record at this location shown in Fig. 3b (red line). The
median value of STV for this record (green line in Fig. 3b)
is reported for each mooring (Fig. 4). As stated above, the
validation process for satellite L2 measurements might com-
pare them with a single in situ measurement. To get a sense
of this, we choose a random value from the ensemble to sim-
ulate a float popping up into the satellite footprint or nearby
in space or time (blue symbol in Fig. 3a), and compare it
with the ensemble mean. This forms a time series of differ-
ences, summarized as a histogram in Fig. 3c, over the length
of the record from which we can compute the RMS (green
lines in Fig. 3c). This RMS is what we will call the “RE”,
a single number from each mooring. The root-mean-square
difference (RMSD) between the “float” value and the satel-
lite value is what is commonly reported in validation stud-
ies (e.g., Kao et al., 2018b). In this case there is no satellite
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Figure 2. Sample salinity record from mooring at 1.5◦ S, 80.5◦ E
for the month of September 2008. The weekly evaluation times are
shown by red “O” symbols. The ensemble time period for this moor-
ing was found to be ∼ 3.7 d. These time periods surround the eval-
uation times and are indicated by the red lines, which are 3.7 d long
from beginning to end. The red symbols are at the mean SSS value
for each ensemble time period.

retrieval error, so the RMSD between averaged and individ-
ual values that we compute is due only to the RE. The mean
difference (instantaneous value – short-term mean) for each
mooring is also computed (e.g., blue line in Fig. 3c) and is
reported below as the bias.

The GTMBA mooring time series have many gaps and
missing data. The STV and RE were computed within each
ensemble time period only if there were 10 or more hourly
values of measured SSS.

3 Results

The median STV at each mooring (Figs. 4, 5a) mainly ranges
from 0.02 to 0.15, with most between 0.02 and 0.08. In the
Pacific, the values are smallest along the Equator and to the
south. Larger values are found along 8◦ N (0.06–0.11), along
95◦ W in the eastern basin (0.08–0.11) at the edge of the east-
ern Pacific fresh pool (Alory et al., 2012), and in the western
basin (0.04–0.10). The Atlantic Basin has some larger val-
ues, especially one of 0.3 close to the coast of Africa near
the outlet of the Congo River. In the Indian Basin, large val-
ues are seen in the Bay of Bengal (0.06–0.15). This is likely
due to the large input of freshwater from rivers (Akhil et al.,
2020). Of all the moorings, the median value of STV is 0.05,
although the distribution of values (Fig. 5a) shows a wide
range.

The RE (Figs. 5b, 6) is generally larger than the STV.
The difference is especially notable in the southwest In-

dian Basin. Most values of STV lie between 0.04 and
0.14 (Fig. 5b). This difference between the RE and STV may
be due to the presence of outlier values in the SSS distri-
bution (Bingham et al., 2002; Bingham, 2019). If the distri-
bution of the SSS was close to normal, these two quantities
would be about the same. This is illustrated in Fig. 3c. The
green bars, which represent the RMS difference between ran-
dom samples and the short-term mean, are larger than one
would expect from looking at the distribution shown; this is
due to the presence of a large outlier that is not pictured in
the histogram. This large RMS difference value, ∼ 0.12, the
green bar in Fig. 3c, is larger than the median STV for this
mooring, which is about 0.03.

Although one might have expected this due to low outlier
values, there is almost no bias error detected. The distribution
of the median bias error is centered closely around zero, with
most values less than 0.005 (Fig. 3c). There is no sign of a
tendency for the bias to be positive or negative. For brevity,
we do not show maps of bias error.

The STV computed from mooring data has been shown to
be highly seasonal by Bingham (2019) for the two SPURS
regions. To understand the degree of seasonality in the vari-
ability, we have computed the average STV in each month
for the entire record at each mooring location. We display
the month where STV is maximum as well as the ratio of the
maximum STV to the minimum STV (Fig. 7). The amount
of seasonality does depend on location. In the Pacific, it is
strong in the eastern basin and along the northern portion of
the GTMBA, but it is much weaker elsewhere. The season-
ality is notably weak in the western Pacific, in contrast to
the strong STV in this region (Fig. 4a). The Atlantic Basin
displays stronger seasonality than the other two basins, espe-
cially on the eastern and western sides. The Indian Basin has
relatively weak seasonality in the eastern part of the basin
but stronger seasonality in the southwest. The Bay of Ben-
gal moorings show very little seasonality, in contrast to their
RE (Fig. 6b).

The timing of maximum STV varies substantially from
one part of the tropical ocean to another (Fig. 7) and is very
much dependent on local conditions. STV is maximum in
January–February in the eastern Pacific, as the eastern Pacific
fresh pool extends to the west (Melnichenko et al., 2019). It is
maximum in August–September under the Intertropical Con-
vergence Zone (ITCZ), mixed along the Equator, and maxi-
mum in May–June in the western Pacific. In the Atlantic,
STV is maximum in April–May in the eastern basin near
Africa but reaches a maximum in August–September in the
western basin. The western basin values are likely associated
with the extension of the Amazon River plume into the cen-
tral Atlantic along 5–10◦ N (Grodsky et al., 2014). The east-
ern basin timing is due to the extension of the Congo River
plume, which reaches its maximum extent in boreal spring
(Chao et al., 2015). In the southwestern Indian Ocean, the
seasonality is large, but the timing is varied from January–
February to April–May. In the Bay of Bengal (BoB), the STV
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Figure 3. An example of how the STV is computed, as explained in the text. (a) A ∼7 d piece of the SSS record from the indicated mooring.
The mean value is shown by the red mark, with the red bars representing ±1 standard deviation. The blue “+” is a random value picked from
the record. The blue line shows the difference between the random value and the mean value. (b) The distribution of STV from the entire
record at this mooring. One value is given by the standard deviation from panel (a) and is the same as the red bar in panel (b). The median
of the values in this distribution is indicated by the green bar. This is the single number from this mooring that is shown as STV in Fig. 3a.
(c) Distribution of differences between random samples and mean values. One value is given by the blue line in panel (a) and is the same as
the blue bar in panel (c). The RMS of this distribution is shown by the green bars, which is the mean ± RMS. These bars are the single RE
value that is shown for this mooring in Fig. 5b.

maximum is inconsistent, with two moorings giving maxi-
mum STV values in September–October and another giving
maximum values in January. We suspect that STV variability
in the BoB is closely related to river outflow (Akhil et al.,
2014).

A set of maps of STV from the MITgcm output (Fig. 8) has
many similarities to those derived from the moorings (Fig. 4);
however, the values are generally smaller. Larger values are
found in the eastern and western tropical Pacific, the Atlantic
north of the Equator, and the Bay of Bengal. Notably, the
row of locations along 8◦ N in the North Pacific does not ex-
hibit the large variability seen in the mooring data (Fig. 4a).
The STV in the outflow of the Congo River near the coast
of Africa is much smaller in the model than in the mooring
data, possibly due to the model’s use of climatological river
outflow (Feng et al., 2021; Fekete et al., 2002). A similar set
of maps for the RE was created for the model output but is
not included here for brevity. We do include histograms of

STV, RE, and bias (Fig. 9) for comparison with the mooring
data (Fig. 5). The distributions from the model are again sim-
ilar to those from the moorings, although somewhat smaller.
Table 1 gives median values of the distributions of STV and
RE, showing larger values for the observed data. A direct
comparison of STV from the moorings vs. the model indi-
cates that the mooring STV is larger in most cases (Fig. 10),
but the two have a close relationship. In only about 10 %
of the mooring locations is the model STV greater than the
mooring STV.

STV may be mainly caused by rainfall, by internal vari-
ability in the mesoscale or submesoscale SSS field of the
ocean, or by the motion of large-scale fronts (Drushka et
al., 2019). It is difficult to measure these effects separately
to disentangle them. One problem with measuring the im-
pact of rainfall on STV is that it has a strange distribution,
with hourly values being mostly zero even during rainy pe-
riods (e.g., Bingham et al., 2002, their Fig. 11). Many of the
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Figure 4. Median STV for each mooring for the (a) Pacific Basin
and (a) Atlantic and Indian basins. The sizes of the circles indicate
the magnitude of the STV, with the scale shown as blue circles near
the middle of each panel.

.

Figure 5. (a) Histogram of the median STV values shown in Fig. 4.
One mooring is not included in this figure, an outlier with an
STV ≈ 0.3 – the large symbol near the coast of Africa in Fig. 4b.
Panel (b) is the same as panel (a) but for the RMS representation
error shown in Fig. 6. Panel (c) is the same as panel (a) but for the
bias error. Positive bias error means an instantaneous value greater
than the short-term mean. Note that panels (b) and (c) rely on choos-
ing random values from each short-term ensemble. This was done
a number of times with different random values with only minor
differences in results. Also note that the distributions depicted here
included a small number of outliers that are not shown for clarity.
Note the different x axis limits in panel (c)

Figure 6. The RMS representation error at each mooring – that is,
the RMS difference between random samples and short-term mean
values. Panel (a) shows the Pacific Basin, and panel (b) shows the
Atlantic and Indian basins. The sizes of the circles indicate the mag-
nitude of the RE, with the scale shown as blue circles near the mid-
dle of each panel.

Figure 7. Ratio of the maximum value of STV to the minimum
value (sizes of symbols), and the month of the maximum STV
(symbol colors with scale at bottom in months, January–December).
Panel (a) shows the Pacific Basin, and panel (b) shows the Atlantic
and Indian basins. A size scale for the STV ratio is shown as blue
circles near the middle of each panel.

GTMBA moorings, 88 out of 123, have precipitation mea-
surements. To measure the impact of rainfall on STV, we
used those records to determine the maximum rain rate over
each ensemble period. We then found the STV during periods
when the maximum rain rate was greater than 1 mm hr−1 and
during periods when it was less than 1 mm hr−1. For almost
every mooring (78 out of 88) the STV during rainy periods
was greater than during non-rainy periods. A typical exam-
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Figure 8. The same as Fig. 4 but for STV computed from the MIT-
gcm. Panel (a) shows the Pacific Basin, and panel (b) shows the
Atlantic and Indian basins.

Table 1. Median values for all of the moorings and mooring loca-
tions from the distributions of Figs. 5 and 9.

Median STV Median RE

Mooring data 0.05 0.09
Model output 0.03 0.07

ple of this is presented in Fig. 11. Because of the way rainfall
is distributed, it does not make sense to compute correlations
between maximum rain rate and STV, which can be easily
seen in Fig. 11. Thus, we report the apparent connection here
in this simple way, concluding that STV is indeed at least
partly driven by rainfall.

A non-result that is important to report here is the lack
of temporal aliasing. One might expect, within the ensemble
time periods that we used, that the difference between the
short-term mean (e.g., red symbol in Fig. 3a) and the random
samples that we took (e.g., blue symbol in Fig. 3a) would in-
crease with the difference in time between the samples and
the mean times. We plotted this for each mooring and uni-
formly found there to be no relationship between the two.
The ensemble time periods that we used were too short for
there to be changes in the statistics of the SSS field.

4 Discussion

We have computed values for STV and RE that can be fac-
tored into error budgets of satellite SSS. The values in Table 1
are typical, but there is a large range (Figs. 4–6). If anything
is clear from the analysis done here, it is that STV and RE
depend on both time and space. In many areas studied here,
especially the equatorial Pacific, STV is small and would be
negligible compared with other sources of error in L2 satel-
lite estimates. In other areas, such as the Bay of Bengal, the

Figure 9. The same as Fig. 5 but for values computed from the
MITgcm.

Figure 10. Model STV vs. mooring STV. Each symbol represents
the median STV for one mooring. A couple of outlier points have
been omitted for clarity. The dashed line is a least-squares fit to the
data. It has a slope of about 1 and an intercept of about 0.02. The
light black line has a slope of 1. This plot indicates that the mooring
STV is generally larger than the model STV.

western North Atlantic, and the eastern and western Pacific,
STV is important and could play a larger or even dominant
role in the error budget.

As stated in Sect. 2, the STV is used here as a proxy for
SFV over a 100 km footprint – that is, it is the variability
over a 100 km spatial scale surrounding each mooring. This
use depends on the assumption that the velocity field that we
used, which is derived from OSCAR, is generally represen-
tative of that experienced by the mooring. This is needed to
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Figure 11. An example of how STV relates to precipitation at one
mooring location. Maximum hourly precipitation for each short-
term ensemble for the mooring (at 0◦ N, 10◦ W) vs. STV for the
same set of ensembles. The light line indicates a rain rate of
1 mm hr−1, separating rainy periods from non-rainy ones. Median
values for all ensembles with a maximum precipitation of less than
1 mm hr−1 (below the line) and greater than or equal to 1 mm hr−1

(above the line) are shown in the bottom right. These values indicate
that STV tends to be greater when there is rainfall. However, there
is not a clear correlation between rainfall and STV. This pattern
was consistent in most of the GTMBA moorings with precipitation
records.

make the jump from our estimate of STV to that of SFV.
More subtly, the region sampled is that parallel to the flow at
the mooring. The scheme that we have used does not sample
across the flow field. Thus, we have assumed that the spa-
tial variability across the direction of flow is similar to that
along the direction of flow. Without simultaneous sampling
in a spatial region surrounding the moorings (e.g., Bingham,
2019; Reverdin et al., 2015), it is impossible to know how
much variation is being missed. We were able to compute
SFV at each mooring location from the MITgcm for com-
parison to STV from the model (Fig. 12). This result shows
that STV and SFV have a close relationship and that it makes
sense to use one as a proxy for the other. Figure 12 suggests
that STV is about half of the true SFV. Thus, the values given
in Table 1 as estimates of STV might be multiplied by 2 to
get estimates of SFV at the mooring locations.

The main purpose of this work is to understand subfoot-
print variability and representation error and its impact on
the satellite measurement of SSS. This type of analysis is
a good test for the MITgcm and could be used for other
models. The fact that STV is lower in the model than for
the moorings suggests that either the model resolution is not
quite good enough to match the statistics of the real ocean or
(more likely) that the forcing fields used, especially the rain-

Figure 12. Median model SFV vs. model STV at each mooring
location. Each symbol represents one mooring. The light line has a
slope of 1. The dashed black line is a least-squares fit to the data
shown, with the slope indicated in the top right.

fall, are too coarse compared with the real forcing. It is clear
that rainfall occurs on a scale that is smaller than what the
typical ocean model is exposed to (Bingham and Li, 2020;
Thompson et al., 2019). The atmosphere continually adds
small-scale variance to the ocean in the form of freshwater
forcing. It would be interesting to see how the scale of the in-
put freshwater forcing variance affects the behavior of forced
models like the one that we used.

The numbers in Table 1 can be thought of as an estimate
of “snapshot error” (Bingham, 2019) due to representation.
This is the error in each L2 estimate captured by a SSS satel-
lite as it passes overhead due to variability within the satel-
lite footprint. Most estimates of SSS error are computed at
L3 (e.g., Qin et al., 2020; Olmedo et al., 2021). The pro-
duction of L3 values entails combining numerous individ-
ual L2 snapshots into a gridded product on a quasi-weekly
or monthly basis using some form of optimal interpolation
(Melnichenko et al., 2014, 2016) or bin-averaging (Vergely
and Boutin, 2017). Thus, the numbers in Table 1 and Fig. 4
are a worst case, consisting of errors that can be averaged out
in the process of moving from L2 to L3 – assuming they are
random. In a sense, this is a hopeful sign. The numbers in Ta-
ble 1 are much smaller than the total errors associated with
satellite retrieval including surface roughness, galactic reflec-
tion, etc. (Olmedo et al., 2021; Meissner et al., 2018). How-
ever, a more granular analysis, like that in Fig. 6, suggests
that it may not be that simple. There are times and places
where REs may be significant, such as the eastern Pacific,
the Bay of Bengal, and river plume regions. These are all
regions where higher-SSS open-ocean waters interact inter-
mittently with much lower-SSS coastal or river plume water.
Thus, it may make sense, when computing RMS errors for
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satellite retrievals, to leave these areas out of the analysis or
to somehow account for the larger amounts of RE that may
be present in the L2 measurements there.

There is a remarkable similarity between the STV in Fig. 3
and the amplitude of the annual cycle shown by Bingham et
al. (2021, their Fig. 3). The relative sizes of the symbols are
very similar in most cases. There are a few exceptions. Ar-
eas with relatively large STV but small seasonal amplitude
include the region of the South Pacific under the South Pa-
cific Convergence Zone, some areas of the central and west-
ern south Indian Ocean, the Bay of Bengal, and a couple of
the moorings in the western tropical North Atlantic. Most
of these areas have small amplitude in seasonal precipita-
tion compared with the rest of the tropics (see Bingham et
al., 2012, their Fig. 11e). Thus, regions with large (small)
seasonal variability are also ones with large (small) STV. As
STV appears to be somewhat driven by rainfall (Fig. 11), this
makes sense. Many tropical regions, like the Northern Hemi-
sphere ITCZ, with heavy rainfall are also areas that experi-
ence strong seasonality in rainfall.

The vague nature of the relationship between rainfall and
STV is highlighted in Fig. 11 and similar single-mooring
analyses that we do not show. The original concept for satel-
lite SSS is that it could be used as a rain gauge (Lagerloef
et al., 2008). This may be more complicated than originally
thought, at least for the short-term relationship. Work into the
use of SSS as a rain gauge (Supply et al., 2018), i.e., a way to
estimate precipitation over the ocean, is ongoing. Doing this
with mooring precipitation and SSS data will require a much
more sophisticated approach than we have attempted here.
At the very least, perhaps SSS can be used to detect whether
rain is happening or not.
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