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Abstract. In this study, we interpret the role played by ocean
circulation in sediment distribution on the southwestern At-
lantic margin using radiogenic Nd and Pb isotopes. The lati-
tudinal trends for Pb and Nd isotopes reflect the different cur-
rent systems acting on the margin. The utilization of the sed-
iment fingerprinting method allowed us to associate the iso-
topic signatures with the main oceanographic features in the
area. We recognized differences between Nd and Pb sources
to the Argentinean shelf (carried by the flow of Subantarctic
Shelf Water) and slopes (transported by deeper flows). Sed-
iments from Antarctica extend up to the Uruguayan margin,
carried by the Upper and Lower Circumpolar Deep Water.
Our data confirm that, for shelf and intermediate areas (the
upper 1200 m), the transfer of sediments from the Argen-
tinean margin to the north of 35◦ S is limited by the Sub-
tropical Shelf Front and the basin-wide recirculated Antarc-
tic Intermediate Water.

On the southern Brazilian inner and middle shelf, it is pos-
sible to recognize the northward influence of the Río de la
Plata sediments carried by the Plata Plume Water. Another
flow responsible for sediment transport and deposition on
the outer shelf and slope is the southward flow of the Brazil
Current. Finally, we propose that the Brazil–Malvinas Con-
fluence and the Santos Bifurcation act as boundaries of geo-
chemical provinces in the area. A conceptual model of sedi-

ment sources and transport is provided for the southwestern
Atlantic margin.

1 Introduction

Physical and oceanographic processes, including ocean cur-
rent circulation, river discharge, marine fronts, wind patterns,
and climate variability, have a crucial impact on sediment
transport variability and fate (Storlazzi and Reid, 2010; Qiao
et al., 2020). The southwestern Atlantic margin is located in
a key region concerning global ocean circulation and is an
excellent example of a complex interaction of physical forc-
ings in the sediment variability. Hydrodynamics are strongly
influenced by the Río de la Plata (RdlP) outflow, the second-
largest river basin in South America (discharge estimated at
23 000 m3 s−1; Depetris and Griffin, 1968), and by the en-
counter of subtropical and subantarctic water masses trans-
ported by the Brazil and Malvinas currents, which is known
worldwide as Brazil—Malvinas Confluence (BMC); there is
also an influence by the BMC’s shelf extension, the Sub-
tropical Shelf Front (STSF). At the BMC, water masses are
transported eastwards as part of the southern limb of the
basin-wide Anticyclonic Atlantic Subtropical Gyre (Boebel
et al., 1997; Schmid et al., 2000). Further north, the west-
ward flow of the gyre reaches the South American margin,
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where it splits into two branches, forming the Santos Bifur-
cation (SB; Boebel et al., 1999a; Legeais et al., 2013). The
southward branch of the bifurcation feeds the Brazil Current
(BC), flowing south until its eastward displacement at the
BMC (Schmid et al., 2000). The northward branch flows as
the Intermediate Western Boundary Current (IWBC) (Leg-
eais et al., 2013), which is an important mechanism for the
transport of the Antarctic Intermediate Water towards the
Northern Hemisphere (Boebel et al., 1999b).

Even though the distribution of sediments, sources,
and transport along the southwestern Atlantic margin has
been known since the 1950s (Teruggi, 1954; Etchichury
and Remiro, 1960, 1963; Berkowsky, 1978; Kowsmann
and Costa, 1979; Urien and Martins, 1979; Potter, 1984;
Berkowsky, 1986) and recently deepened based on geochem-
ical and mineralogical methods (Campos et al., 2008; de
Mahiques et al., 2008; Razik et al., 2013; Nagai et al., 2014a)
important issues regarding hydrological controls are still un-
resolved.

Radiogenic Nd and Pb isotopes are efficient tools in study-
ing sediment transport in continental margins (Weldeab et al.,
2002; Kessarkar et al., 2003; Maccali et al., 2012, 2018;
Subha Anand et al., 2019). A recent synthesis of potential
sources and water mass transport in the South Atlantic was
provided by Beny et al. (2020). In that study, the authors
combined grain size, clay mineralogy, and Nd, Pb, and Sr
isotopes to propose a deepwater mass evolution for the last
ca. 30 000 years in the region. The first regional character-
ization of Nd and Pb isotope signatures of the upper mar-
gin surface sediments in the southwest Atlantic was provided
by de Mahiques et al. (2008), filling a gap for an exten-
sive area without information about εNd signatures (Jean-
del et al., 2007; Blanchet, 2019). In that work the authors
(1) recognize the isotopic signatures of the sediments from
the Argentinean, southern, and southeastern Brazilian mar-
gins; and (2) describe potential source areas of the sediments,
such as the Andes, the basalts of the Paraná Basin, and the
pre-Cambrian rocks of the Brazilian shield.

Notwithstanding, geographic gaps in information preclude
a thorough understanding of the role of key hydrological fea-
tures such as the STSF, BMC, and SB in the sediment dis-
tribution and the associated geochemical boundaries, which
are key for paleoceanographic studies. Moreover, in another
approach for sediment sources and pathways in the south-
western Atlantic margin provided by Razik et al. (2015), the
authors argued for a mixed Río de la Plata–Andean origin for
the upper slope sediments off southern Brazil.

In this paper, we extend the Nd and Pb dataset along the
southwestern Atlantic margin and use the concept of sedi-
ment fingerprinting to deepen the role played by hydrody-
namic forcing in sediment transport and deposition. The ge-
ographical distribution of the new samples presented here,
covering the Argentinean margin and the Punta del Este,
Pelotas, and Santos basins and covering a bathymetry range
between 5 and 4066 m, allows focusing on the role of the

Figure 1. Location of the study area, displaying the main flows,
oceanographic boundaries, and sampling stations. Thick violet line:
Malvinas Current (MC); thin blue line: Subantarctic Shelf Water
(SASW); thin brown line: Río de la Plata Plume (RdlPP); thick
red line: Brazil Current (BC); shaded rectangles: Subtropical Shelf
Front (STSF) and Brazil–Malvinas Confluence (BMC); dashed red
line: Santos Bifurcation (SB) and Intermediate Western Boundary
Current (IWBC). Other abbreviations: Antarctic Intermediate Wa-
ter (AAIW), Upper Circumpolar Deep Water (UCDW), North At-
lantic Deep Water (NADW), and Lower Circumpolar Deep Water
(LCDW). Bottom scale: topography in meters.

STSF, BMC, and BS in the distribution of sediments. The
results are interpreted with the aid of the output of a state-of-
the-art circulation model to understand the role of oceano-
graphic boundaries in the distribution of sediments along the
area.

2 Study area

The study area comprises a southwestern Atlantic margin
sector from the parallels 23◦00′ S to 54◦10′ S, correspond-
ing to a linear extension of about 3500 km (Fig. 1). Synthe-
ses of the main geological and oceanographic processes can
be found in Hernandez-Molina et al. (2009, 2015), Franco-
Fraguas et al. (2014, 2016), Nagai et al. (2014a, b), Violante
et al. (2014, 2017a), Burone et al. (2018), Piola et al. (2018),
and Piola and Matano (2019), among several others.

2.1 Morphology

The southwestern Atlantic margin is a typical segmented
volcanic-rifted margin, where several transverse basins are
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recognized (Bassetto et al., 2000; Moulin et al., 2010; Soto
et al., 2011). Its origin and evolution are intrinsically related
to the opening of the South Atlantic (Nürnberg and Müller,
1991), whose rifting processes first started in the Triassic
(Lovecchio et al., 2020) but effectively occurred during the
Jurassic and Cretaceous.

There is a general trend of narrowing the margin towards
the north (Urien and Ewing, 1974; Zembruscki, 1979; Parker
et al., 1996; Violante et al., 2017a). The shelf width varies
from 850 km to the south to 70 km in its northernmost limit;
the shelf-break depth ranges from 80 m in southern Brazil
to 200 m in Uruguay (Zembruscki, 1979; Muñoz et al., 2010;
Lantzsch et al., 2014). The shelf morphology is relatively flat,
but sequences of scarps and terraces are recognized along
the continental shelf at varying water depths (Corrêa, 1996;
Parker et al., 1996; Baptista and Conti, 2009).

The continental slope presents a highly variable morphol-
ogy, including contouritic terraces, channels, mounds, ero-
sive surfaces, and sediment drifts all along the area (Duarte
and Viana, 2007; Hernández-Molina et al., 2010, 2015; Preu
et al., 2013) as well as canyons (Voigt et al., 2013; Boz-
zano et al., 2017; Franco-Fraguas et al., 2017; Violante et al.,
2017b; Warratz et al., 2019). The contouritic features and
submarine canyons actively interact along the margin so that
mixed contouritic–gravitational erosive and depositional fea-
tures are common. Mega-slides (Reis et al., 2016; Franco-
Fraguas et al., 2017) and carbonate mounds (Carranza et al.,
2012; Maly et al., 2019; Steinmann et al., 2020) are also
present along the margin.

2.2 Sedimentary cover

The southwestern Atlantic margin is dominated by a ter-
rigenous, siliciclastic sedimentary cover, with extensive
sand sheets (Lonardi and Ewing, 1971; Frenz et al., 2003;
Figueiredo and Madureira, 2004). The Argentinean and
Uruguayan shelves are capped mainly by a 5 to 15 m thick
post-Last Glacial Maximum transgressive sandy sheet (with
decreasing thickness towards the south) composed of domi-
nant medium to fine sands (sometimes muddy), with varying
quantities of shells (more abundant in the Uruguayan shelf)
and gravels (more abundant in the Patagonian shelf).

Sandy and shelly sediments are mainly relicts of coastal
and inner shelf environments that evolved during Pleis-
tocene transgressive–regressive events (Kowsmann and
Costa, 1979; Urien et al., 1980; Lantzsch et al., 2014). There-
fore, they are considered relict and palimpsest, whereas grav-
elly dominated sediments on the southern Argentinean shelf
result from glaciofluvial origin. More recent works empha-
size the existence of mud depocenters as potential fates of
modern sediments on the southern Brazilian shelf (Nagai
et al., 2014a; de Mahiques et al., 2017, 2020; Lourenço et al.,
2017).

In the slope and rise, there is a prevalence of very fine
sands and silty sands, resulting from exclusively submarine

processes occurring across- (gravitational) and along- (con-
touritic) slope, together with pelagic sedimentation (Violante
et al., 2010; Bozzano et al., 2011; Franco-Fraguas et al.,
2016; Schattner et al., 2020). However, coarse sands and
gravels occur at or near the head of submarine canyons and
in contouritic channels and moats (Lonardi and Ewing, 1971;
Bozzano et al., 2011; Reis et al., 2016; Franco-Fraguas et al.,
2017). Razik et al. (2015) indicate increasing grain size to-
wards coarse sands due to sediment remobilization and redis-
tribution due to upwelling and downwelling resulting from
eddies and vertical water movement generated by the slope
off southern Brazil and the meandering Brazil Current.

2.3 Ocean circulation

The southwestern Atlantic margin is characterized by com-
plex hydrography (Matano et al., 2010). It presents two
main oceanographic boundaries, the Subtropical Shelf Front
(STSF), as the shelf extension of the Brazil—Malvinas Con-
fluence (BMC) (Piola et al., 2000; Severov et al., 2012),
and the less-studied Santos Bifurcation (SB) (Boebel et al.,
1997, 1999a). The region is also influenced by the Río de
la Plata (RdlP), the second-largest hydrographic basin in
South America, whose average discharge is 22 000 m3 s−1

(Framiñan and Brown, 1996). This regional circulation sys-
tem experiences seasonal latitudinal shifts in response to
wind regimes (Schmid et al., 2000; Piola and Matano, 2001;
Piola et al., 2018).

At the BMC, centered at 37–39◦ S (Maamaatuaiahutapu
et al., 1992), the southward-flowing Brazil Current (BC)
encounters the northward-flowing Malvinas Current (MC)
(Schmid and Garzoli, 2009), transporting and mixing wa-
ter masses with contrasting thermohaline characteristics. The
BC is a baroclinic boundary current that concentrates its
main flow in the upper 500 m of water depth upstream
of 28◦ S, carrying the Tropical Water (TW) at the surface
(Emilsson, 1961; Palma et al., 2008) and the South Atlantic
Central Water (SACW) at pycnoclinic levels (Emilsson,
1961; Signorini, 1978). Near the BMC, a significant frac-
tion of the BC transport is below 500 m. The MC is a strong
barotropic boundary current that advects the Subantarctic
Water (SAW) near the surface (Spadone and Provost, 2009)
and the Antarctic Intermediate Water (AAIW) at intermedi-
ate levels (Tomczak and Godfrey, 1994b, a).

At the BMC, water masses are transported eastwards as
part of the southern limb of the basin-wide Anticyclonic At-
lantic Subtropical Gyre (Boebel et al., 1997, 1999a; Schmid
et al., 2000; Núñez-Riboni et al., 2005; Legeais et al., 2013).
At the intermediate levels of the westward flow of the gyre,
the water reaches the South American margin near 28◦ S,
where it splits into two branches, forming the Santos Bi-
furcation (Boebel et al., 1999a; Legeais et al., 2013). From
the bifurcation, one-quarter of the transport at 40◦W flows
northward along the continental slope (mainly between the
800 and 1200 m isobaths), forming the Intermediate West-
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ern Boundary Current (IWBC) (Fernandes et al., 2009; Biló
et al., 2014). About three-quarters feed the BC, flowing south
until its separation from the coast at the BMC (Schmid et al.,
2000; Piola and Matano, 2019). This configuration leads to
an overall southward flow on the outer shelf and the outer to
middle slope from 28◦ S up to the BMC.

Concerning deep circulation, the North Atlantic Deep Wa-
ter (NADW) (Sverdrup et al., 1942), transported from the
Northern Hemisphere high latitudes by the Deep Western
Boundary Current, occupies the region between the 2000 and
3000 m isobaths. The NADW flows between two northward-
flowing branches of the Circumpolar Water (i.e., Upper and
Lower Circumpolar Deep Water). The abyssal circulation
(> 3500 m) is dominated by the Antarctic Bottom Water
(AABW), which is partially trapped in the Argentine Basin
(Tarakanov and Morozov, 2015).

Over the shelf, the extension of the BMC, known as the
Subtropical Shelf Front (STSF), separates Subtropical Shelf
Water (STSW, formed by the mixture of the TW and SACW)
and Subantarctic Shelf Water (SASW) (Piola et al., 2000).
This narrow and sharp front extends between 32◦ S at 50 m
of water column depth and 36◦ S over the shelf break, and its
position appears to be stable throughout the year (Piola et al.,
2000; Berden et al., 2020). The main branch of the STSF is
mixed with waters transported by the BC and exported off-
shore along with the BMC. A secondary branch is diluted
with the PPW and TW and returns along the shelf (Berden
et al., 2020).

At the surface, the low-salinity RdlP plume flows north-
ward along the inner Uruguayan continental shelf during the
austral winter. In the summer and during El Niño events, the
plume remains off the RdlP mouth and extends along the en-
tire upper continental margin (Piola et al., 2000, 2005; Möller
et al., 2008).

3 Materials and methods

3.1 Geochemical analyses

The samples were organized in five distinct sectors in this
study, corresponding to the Santos, Pelotas, and Punta del
Este marginal basins, the RdlP estuary, and the Argentinean
margin. Due to the small number of samples, the sediments
from Argentina were not divided into the corresponding sed-
imentary basins (Fig. 1). Geographic coordinates and water
depth of the samples are presented in the Supplement.

The results of 156 sediment samples were used as a
dataset, including 83 new samples, 53 samples published in
de Mahiques et al. (2008), 6 samples published in Basile et al.
(1997), 8 samples published in Franco-Fraguas et al. (2016),
and 3 core top samples published in Lantzsch et al. (2014).
The analytical methods used in those ancillary papers are
described in the original references. The new samples were
collected with box corers and multiple corers in distinct sur-

veys on board the research vessels Alpha Crucis (Brazilian
margin), Miguel Oliver, Capitán Saldaña, and Sarmiento de
Gamboa (Uruguayan margin). Only the superficial samples
(the upper 1 cm) of each core were used in this work.

The Nd and Pb isotopic analyses of the lithogenic fraction
were conducted at the Geochronological Research Centre of
the University of São Paulo, Brazil.

All chemical procedures were performed in a class 10 000
clean room equipped with laminar flow hoods of class 100.
All reagents were purified before use. Water was distilled and
then purified on a Milli-Q system (®Millipore Corporation)
(“ultrapure” water – “Type 1”). The acids were purified in
sub-boiling distillers (DST-1000, ®Savillex) and sub-boiling
stills (®Savillex) at low temperatures.

All of the samples were previously decarbonated with
HCl. Sediment powder (70 mg) was dissolved with HF,
HNO3, and HCl acids. Dissolution was done on a MARS-5
microwave oven. Both Pb and Nd were purified by the ion ex-
change technique. The first stage of ion exchange chromatog-
raphy involves separating Pb from the other matrix elements
using columns packed with anion exchange AG1-X8, 200–
400 mesh (Biorad) resin. After Pb collection, the remaining
solution is dried out, and the residue is retaken to separate
the rare Earth elements (REEs) using RE resin (EIChroM In-
dustries Inc.) from the bulk solution. Nd was then separated
using Ln resin (EIChroM Industries Inc.).

Pb isotopic compositions were measured on a Finnigan
MAT 262 mass spectrometer. Samples were loaded
on Re filaments with H3PO4 and silica gel. Every
single analysis consisted of 60 ratio measurements.
The Pb ratios were corrected for mass fractionation
of 0.13 %a.m.u.−1 based on repeated analysis of the
NBS-981 standard (206Pb/204Pb= 16.893± 0.003,
207Pb/204Pb= 15.432± 0.004, and
208Pb/204Pb= 36.512± 0.014; n= 11), which yielded
mass discrimination and fractionation corrections of
1.0024 (206Pb/204Pb), 1.0038 (207Pb/204Pb), and 1.0051
(208Pb/204Pb). The combination of these uncertainties and
within-run uncertainties is typically 0.15 %–0.48 % for
206Pb/204Pb, 0.13 %–1.07 % for 207Pb/204Pb, and 0.10 %–
0.45 % for 208Pb/204Pb, all at the 2σ (95 %) confidence
level. The total Pb blank contribution, < 1 ng, is negligible.

The Nd analyses, here reported as εNd values, were pre-
pared with standard methods according to the analytical pro-
cedures described by Sato et al. (1995) and Magdaleno et al.
(2017), involving HF–HNO3 dissolution plus HCl cation ex-
change using a Teflon powder column to separate REEs. No
visible solid residues were observed after dissolution. Sam-
ples with incomplete dissolution were discarded.

Nd determinations were performed on a Thermo Nep-
tune Plus ICP-MS. Nd isotopic ratios (143Nd/144Nd) were
normalized to the value of 146Nd/144Nd= 0.7219 (De-
Paolo, 1981) and 143Nd/144Nd= 0.512103 of the JNDi-1
standard (laboratory average of the last 12 months). Usu-
ally, a single analysis consisted of 60 measurements of
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Nd. The 143Nd/144Nd mean average of the JNDi stan-
dard during the analyses was 0.512095± 0.000007 (n= 3)
and 0.512096± 0.000005 between July and November 2013
(n= 56). The daily average of 143Nd/144Nd of the JNDi-1
standard was 0.512101± 0.000002 (n= 18). The analytical
blank during the analyses varied from 51 to 53 pg.

The parameter εNd was calculated as follows:
εNd= ((143Nd/144Ndsample/

143Nd/144NdCHUR)− 1)×
104, where 143Nd/144NdCHUR= 0.512638 (Jacobsen and
Wasserburg, 1980).

Reproducibility analysis was made for both Pb and Nd iso-
topes using Buffalo River sediment (NIST-RM8704) (n= 7),
with the following results.

143Nd/144Nd= 0.51203± 0.00001 (SD)
206Pb/204Pb= 18.846± 0.018 (SD)
207Pb/204Pb= 15.646± 0.005 (SD)
208Pb/204Pb= 38.503± 0.016 (SD)
Statistical analyses were performed using the software

PAST (Palaeontological Statistics) version 4.05 (Hammer
et al., 2001).

To recognize the distinct isotopic domains over the study
area, we applied the geochemical fingerprinting procedure,
similar to the approaches proposed by Walling (2013), Miller
et al. (2015), and Palazon and Navas (2017). First, a Kruskal–
Wallis nonparametric analysis of variance was applied for
each variable, followed by a Mann–Whitney pairwise post
hoc test to identify which variables presented statistically
significant differences. Finally, a discriminant analysis with
standardized values was used to determine the correct classi-
fication for the previously assigned groups.

3.2 The LLC2160 circulation model

To support the geochemical data distribution interpretation,
we analyzed the output of the LLC2160 simulation, a global
1/24◦ forward run of the Massachusetts Institute of Technol-
ogy General Circulation Model (MITGCM) that was spun up
from Estimating the Circulation and Climate of the Ocean
(ECCO). The ECCO state estimate is similar to an ocean re-
analysis and assimilates millions of observations, starting in
1992. With 90 vertical levels and a horizontal resolution of
about 4 km in the South American margin, the LLC2160 sim-
ulation resolves the main ocean circulation features on the
continental slope and shelf of the southwestern Atlantic. Our
analysis focuses on a 12-month average spanning September
2011 through August 2012. Details of the simulation, includ-
ing a description of the spin-up hierarchy and forcing, are
available in Chen et al. (2018).

We used annual mean fields of the LLC2160 simulation
to identify two key features: the Santos Bifurcation (SB) and
the Subtropical Shelf Front (STSF). The SB is recognized as
the region on the continental slope where the flow within the
AAIW depth range (550–1400 m) is negligible. Specifically,
we search different isobaths ranging from 500 to 1500 m for
the region where the AAIW flow is weaker than 0.01 ms−1.

Figure 2. Box plots of the distributions of (a) εNd,
(b) 206Pb/204Pb, (c) 207Pb/204Pb, and 208Pb/204Pb. Outliers are
shown as dots.

We emphasize that the SB is not a stagnation point at which
the flow is zero but a shadow zone that spans nearly 100 km,
wherein the intermediate flow is feeble (see the schematic
SB in Fig. 1). In our discussion below, we present the mean
position and the latitudinal extension of the SB as a function
of depth.

To identify the mean position of the STSF, we searched
for the local maximum of the potential temperature gradient,
which is a very distinct feature on the northern Argentina–
southern Brazil shelf. We compute the potential temperature
gradients at 40 m to avoid contamination by RdlP water (e.g.,
Piola et al., 2008). When applied to the LLC2160 output us-
ing seasonal averages, our method yielded frontal locations
consistent with those identified by applying the isothermal
criteria at 40 m proposed by Piola et al. (2008). In the yearly
fields, the front approximately follows the 14 ◦C isotherm.
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Figure 3. Latitudinal variations of (a) εNd, (b) 206Pb/204Pb,
(c) 207Pb/204Pb, and 208Pb/204Pb.

4 Results

The results of isotopic analyses are presented in the Supple-
ment and summarized in the box plots shown in Fig. 2. We
also present the latitudinal variation of each isotope (Fig. 3).
εNd values show a northward trend to lower radiogenic

values, varying from −0.1 (Argentina) to −17.1 (Santos
Basin) (Fig. 3a). The latitudinal variation of the Pb isotopes
is less clear but still visible for 207Pb/204Pb and 208Pb/204Pb
(Fig. 3c and d). On average, the Argentina sector presents
the highest εNd values (−2.1± 1.3) and lowest 206Pb/204Pb,
207Pb/204Pb, and 208Pb/204Pb values (18.620± 0.104,
15.615± 0.016, and 38.520± 0.149, respectively). On the
other hand, the Santos sector shows the lowest εNd
(−12.0± 1.1) and highest 207Pb/204Pb and 208Pb/204Pb av-
erage values (15.664± 0.008 and 38.909± 0.016, respec-
tively). Values of 206Pb/204Pb did not show any evident lati-
tudinal trend. For 206Pb/204Pb, the values range from 18.045
in the Punta del Este sector to 19.409 on the Santos Basin
shelf. 207Pb/204Pb values range from 15.558 to 15.768 in the
same areas. Finally, 208Pb/204Pb values vary from 37.986 to
39.949, also in the same sectors.

Figure 4. Scatter plot of the samples according to the first two axes
generated from the discriminant analysis.

From the Kruskal–Wallis analysis, we observe that except
for 206Pb/204Pb, the variables show significant differences
among the compartments, thus allowing us to proceed with
the discriminant analysis. Furthermore, the Mann–Whitney
analysis allowed us to recognize the pairwise differences
among the other variables (Table 1). Finally, it is to be noted
that sediments from Argentina showed statistically signifi-
cant differences with all of the variables analyzed, suggesting
that they are distinct from those located towards the north. On
the other hand, sediments from the Río de la Plata are statis-
tically similar to those from the Pelotas sector for all of the
variables.

The first two axes of the discriminant analysis account
for 99.72 % (99.09 % for axis 1) of the total variance con-
sidering the standardized values of εNd,207Pb/204Pb, and
208Pb/204Pb (Fig. 4). It is possible to recognize that samples
from Argentina are detached from the other sectors. On the
other hand, samples from Pelotas Basin show a transitional
character between Santos Basin on one side and, on the other
side, Río de La Plata and Punta del Este Basin.

Graphical representations of the LLC2160 output are pre-
sented for both the Santos Bifurcation (Fig. 5) and Subtropi-
cal Shelf Front (Fig. 6). The Santos Bifurcation is identified
as the maximum horizontal velocity divergence region at the
AAIW level, identified in Fig. 5a close to 26◦ S. The visu-
alization based on the horizontal fields is more complicated
but still visible as the sector with velocities close to 0 ms−1

(Fig. 5b). The Subtropical Shelf Front (Fig. 6a) is identi-
fied as a maximum subsurface temperature gradient (Fig. 6b).
Vertically it is well marked below the 30 m isobath (Fig. 6c).
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Table 1. The p values of the Mann–Whitney pairwise test. Statistically significant differences are in bold.

εNd Argentina Río de la Plata Punta del Este Pelotas

Argentina
Río de la Plata 0.00
Uruguay 0.09 0.00
Pelotas 0.00 0.32 0.00
Santos 0.00 0.00 0.00 0.00
206Pb/204Pb Argentina Río de la Plata Punta del Este Pelotas

Argentina
Río de la Plata 0.21
Uruguay 0.59 0.59
Pelotas 0.02 0.31 0.08
Santos 0.08 0.69 0.37 0.08

207Pb/206Pb Argentina Río de la Plata Punta del Este Pelotas

Argentina
Río de la Plata 0.07
Uruguay 0.42 0.29
Pelotas 0.00 0.06 0.00
Santos 0.00 0.02 0.00 0.01
208Pb/204Pb Argentina Río de la Plata Punta del Este Pelotas

Argentina
Río de la Plata 0.04
Uruguay 0.59 0.29
Pelotas 0.01 0.11 0.02
Santos 0.00 0.02 0.01 0.47

5 Discussion

The integration of both isotopic signatures (εNd,
207Pb/204Pb, and 208Pb/204Pb) and hydrographic (wa-
ter masses) and hydrodynamic (currents) information is
presented in Figs. 7 to 9, respectively. This information is
essential to infer both sediment sources and the role played
by ocean circulation in the distribution of sediments in the
study area.

5.1 Sediment sources

Recognizing the role of circulation in the deposition of sed-
iments requires an association of the sedimentary provinces
with potential source areas. Indeed, radiogenic isotopes are
considered good sediment source fingerprints (Owens et al.,
2016). Two seminal papers by Goldstein et al. (1984) and
Bayon et al. (2015) used Nd isotopes and other proxies from
the world’s rivers and provided the basis for comprehend-
ing distribution detrital Nd in the world’s oceans. Beny et al.
(2020) provided the summary of Nd, Pb, and Sr signatures
in the South Atlantic, looking for the potential sources and
circulation in the area. More recently, a work by Höppner
et al. (2021) provided new data on the isotopic signatures
of the river sediments that feed the RdlP basin. It is worth

noting that the RdlP–Paraná–Uruguay riverine system drains
several types of terranes, such as pre-Cambrian rocks of the
Brazilian shield, Paleozoic sediments, tholeiitic basalts from
the Paraná Basin, and Cenozoic Andean rocks.

Table 2 provides a list of Nd and Pb isotopic signatures of
potential continental materials (rocks and sediments) for the
study area. It is possible to recognize a trend of decreasing
values of εNd towards the north, as already observed in our
samples. Concerning Pb isotopes, the small number of data
hampers the recognition of a trend.

Isotopic distinctions and similarities among the sectors are
recognized from the interpretation of the results of the dis-
criminant analysis (Fig. 4). Sediments from Argentina and
part of the Punta del Este Basin present isotopic signatures
similar to the values obtained for Patagonia (Gaiero et al.,
2007; Bayon et al., 2015; Khondoker et al., 2018). The deep-
est samples of the dataset, located in the Punta del Este Basin
at water depths between 3579 and 4066 m, present εNd val-
ues of −5.33 and −4.26, respectively. These values are con-
sistent with those from the Antarctic Peninsula and West
Antarctica (Roy et al., 2007). They can indicate a provenance
of sediments via the flow of the Upper and Lower Circum-
polar Deep Water masses (UCDW and LCDW, respectively)
(Beny et al., 2020) or even from ice-rafted debris (Bozzano
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Table 2. Nd and Pb isotopic values of distinct continental materials from Antarctica and southeastern South America.

Material εNd 207Pb/204Pb 208Pb/204Pb Source

Sediments from the Antarctic Peninsula and western Antarctica −4.3± 1.0 n/a n/a Roy et al.
(2007)

Riverbed sediments from Patagonia −2.0± 0.7 n/a n/a Gaiero et al.
(2007)

Topsoils and riverbed sediments from southern Patagonia −1.7± 1.6 15.63± 0.01 38.61± 0.12 Khondoker et al.
(2018)

Clay and silt fractions from the Chubut River (Patagonia) −0.4 n/a n/a Bayon et al.
(2015)−1.6

Bulk sediment from the Paraná River −10.3 n/a n/a Goldstein et al.
(1984)

Suspended sediments from the Paraná River −10.8± 0.5 n/a n/a Henry et al.
(1996)

Low-Ti basalts from the southern Paraná Igneous Province −8.0± 1.2 15.68± 0.02 38.97± 0.24 Barreto et al.
(2016);
Melankholina and
Sushchevskaya
(2018)

Ribeira River sediments. The river drains Proterozoic low- to
middle-rank metamorphic rocks from southeastern Brazil (river
mouth located at 24.68◦ S–047.42◦W).

n/a 15.55± 0.02 37.67± 0.4 Moraes et al.
(2004)

Neoarchean and Proterozoic metasediments from the coastal re-
gion of southeastern Brazil.

−21.5± 5.6 n/a n/a Ragatky et al.
(2000)

Proterozoic granites from the coastal region of southeastern
Brazil.

−18.7± 1.4 n/a n/a Mendes et al.
(2011)

Paraíba do Sul River sediments. The river drains middle-rank
to high-rank metamorphic rocks from southeastern Brazil (river
mouth located at 21.61◦ S–41.02◦W).

−19.3± 1.4 n/a n/a Roig et al.
(2005)

Proterozoic metasediments from southeastern Brazil. −8.8± 1.9 n/a n/a Mantovanelli et al.
(2018)

Proterozoic granites from southeastern Brazil. −18.2± 1.2 n/a n/a Mantovanelli et al.
(2018)

n/a: not applicable.

et al., 2021). Another sample, located at 2378 m, presents an
εNd value of −4.80 but is presently under the influence of
the NADW southward flow (Fig. 7). The distinct character
of these samples also resides in the fact that they are lower
207Pb/204Pb and higher 208Pb/204Pb radiogenic than those
located in shallower areas (Figs. 8 and 9). The remainder of
the Punta del Este Basin samples, situated on the shelf, might
represent a mixture of Patagonian and Río de la Plata sedi-
ments.

Most of the samples from the Pelotas Basin are under the
influence of the RdlP. Apart from Nd and Pb isotope values,
other independent proxies confirm the Plata Plume Water
(PPW) as a source of the sediments to the southern Brazilian
margin (Pelotas Basin) and part of the southeastern margin
(Santos Basin). Campos et al. (2008) and Nagai et al. (2014a)
used clay mineralogy to indicate sediments from the Río de
la Plata to the north. Also, the maps presented by Govin et al.
(2012) show similarities in ln(Ti/Al) and ln(Fe/K) between
the Uruguayan and southern Brazilian upper margin. Mathias

et al. (2014) used magnetic properties of sediments in a core
located at the latitude of 25◦30′ S to recognize the influence
of the Río de la Plata on the southern Brazilian shelf since
2 calkyrBP. Finally, in a study that included the analysis of
potential source rocks from the continent, Mantovanelli et al.
(2018) confirmed the contribution of the Paraná Basin basalts
along the Holocene off the southern Brazilian shelf (27◦ S).
The authors observed a remarkable change to less radiogenic
Nd in the sedimentary column further north (23◦ S).

The samples from the Santos Basin present lower radio-
genic Nd and higher radiogenic Pb values, thus indicating
a pre-Cambrian source, as Mantovanelli et al. (2018) stated.
Nevertheless, the values obtained for Pb isotopes differ sig-
nificantly from those reported in the literature for the pre-
Cambrian metasediments and granites of the southeastern
Brazilian coast (Ragatky et al., 2000; Moraes et al., 2004;
Mendes et al., 2011). A possible explanation for this discrep-
ancy is that the input of sediments from the adjacent coast is
hampered by the Serra do Mar mountain chain, limiting the
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Figure 5. Graphical outputs of the LLC2160 focused on the San-
tos Bifurcation. (a) The bifurcation is identified as the white zone
located around 26◦ S between the 800 and the 1200 m isobath.
(b) The bifurcation is recognized as the zone of velocities tending
to 0 cms−1 at 26◦ S–44◦W.

development of expressive drainage basins in the area (Ric-
comini et al., 2010; Cogné et al., 2011). In this sense, we
cannot rule out the possibility that a significant part of sed-
iments that presently cover the shelf and upper slope of the
Santos Basin originates further north and is transported by
the Brazil Current and derived shelf dynamics (Castro and
Miranda, 1998; Silveira et al., 2017).

5.2 Isotope fingerprinting and ocean circulation

The geochemical fingerprinting approach confirmed the suit-
ability of using Nd and Pb isotopes (except 206Pb/204Pb) as
reliable proxies for discrimination among the distinct sectors
of the southwestern Atlantic margin. Indeed, the first axis

provided more than 99 % of explained variance (Fig. 4). The
distribution of the samples, together with the recognition of
the potential sources (Table 2), allows tracing a correlation
among isotopic signatures, sediment sources, and ocean cir-
culation.

Figures 7 to 9 present the bathymetrical variations of the
isotopes and positions of the STSF (continuous line) and
SB (continuous line with horizontal bars) identified in the
LLC2160 output. The positions of both oceanographic fea-
tures in the LLC2160 simulation are broadly consistent with
previous studies (e.g., Boebel et al., 1999a b; Piola et al.,
2008). The LLC2160 output, together with the isotopic val-
ues, allows us to present the bathymetrical variations of those
features. As observed, there are clear distinctions in the sig-
nature corresponding to both fronts. The STSF presents only
minor seasonal variations, and its control is probably related
to the interaction between the RdlP plume and the subsurface
water mass distribution. During austral summer, the strong
stratification (Möller et al., 2008) inhibits RdlP sedimenta-
tion southward of the STSF. During austral winter, the north-
eastward RdlP plume promotes the offshore displacement of
subtropical waters (Möller et al., 2008), enabling the deposi-
tion of fine sediments on the shelf north of the STSF. On the
upper and middle slope, the southward displacement of the
thickened Brazil Current, carrying the recirculated AAIW,
likely limits RdlP sedimentation (Schmid et al., 2000). There
are apparent differences in the Nd and Pb signatures in the
intermediate zone at about 34–35◦ S; this boundary might
represent the northernmost limit of the BMC (Benthien and
Müller, 2000; Pezzi et al., 2009).

This integrated analysis suggests no transport of sediments
from the Argentinean sector to the southern Brazilian margin.
On the other hand, based on the same analysis, we can con-
firm that sediments from the Río de la Plata reach, at least
partially, the Santos sector, i.e., to the north of 28◦ S. Con-
cerning the SB, there is a clear distinction in isotopic signa-
tures below the 500 m isobath, with less radiogenic Nd pre-
vailing to the north of the bifurcation. We thus argue that both
STSF and SB also separate distinct geochemical provinces
on the southwestern Atlantic margin.

The Argentinean and part of the Uruguayan upper margins
are covered by Andean–Patagonian sediments redistributed
by the shelf circulation and Malvinas Current. The STSF and
BMC block the transport of these sediments to the north.
This finding corroborates Hernández-Molina et al. (2016)
and Franco-Fraguas et al. (2016), who defined the northern-
most limit of a mega-contouritic feature on the Uruguayan
slope. Sediments located deeper than the 2000 m isobath
present an Antarctic signature, transported either by the bot-
tom circulation (UCDW and LCDW) or ice-rafted debris.

Sediments from the Río de la Plata estuary advance along
the inner shelf towards southern Brazil, and a mixture of
Pelotas and Santos signatures are observed between 28 and
30◦ S. This mixture is visible in the scatter plot presented in
Fig. 4, in which sediments of the Pelotas Basin constitute a
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Figure 6. Graphical outputs of the LLC2160 focused on the Subtropical Shelf Front. (a) Variations of temperature in the zone of the front.
(b) Temperature gradient; the front is recognized as the zone of maximum gradient (darker colors). (c) Vertical transect at 35◦ S showing the
location of the Subtropical Shelf Front (STSF) as the gradient of the Subantarctic Shelf Water (deep blue) and the Subtropical Shelf Water
(light green).

mixture of distinct populations, i.e., Santos Basin and Río
de la Plata. It is essential to highlight the fact that, on in-
terannual timescales, the influence of the El Niño–Southern
Oscillation (ENSO) in the precipitation regime determines
changes in the freshwater outflow of the RdlP. Cold and
warm episodes of ENSO cause drought and abundant rain-
fall in Uruguay, southern Brazil, and northeastern Argentina
(Pisciottano et al., 1994; Cazes-Boezio et al., 2003). In addi-
tion, changes in the wind patterns during the warm phase of
ENSO determine the influence of the PPW towards higher
latitudes. In conjunction with the Coriolis force, this phe-
nomenon determines that the PPW follows a NE direction
close to the shelf break, explaining the distribution up to
28◦ S and, in anomalous years, 25◦ S (Piola et al., 2005).

Finally, sediments located northward of 27◦ S originate
from the pre-Cambrian rocks that dominate the coastal do-
mains off SE and E Brazil, being mainly transported by the
intense flow of the BC on the outer shelf and upper slope.
Limited input comes from the small rivers that drain the
mountainous areas of the Serra do Mar, as previously re-
ported by Lourenço et al. (2017) and de Mahiques et al.
(2017).

6 Conclusions

In this paper, we use Nd and Pb radiogenic isotopes to recog-
nize the role of ocean circulation in the sediment distribution
of the southwestern Atlantic margin.

Andean and continental Patagonian sediments are the
primary source for the deposits of the Argentinean and
Uruguayan shelves, while the lower slope is more influenced
by more distant sources, such as the Antarctic Peninsula.
Nevertheless, sediments on the shelf and upper slope are car-
ried by the flows of the SASW and AAIW, while the UCDW
and LCDW transport sediments from the lower slope.

The Río de la Plata is the primary influencer of the sedi-
ments off southern Brazil up to the 27◦ S parallel. The sedi-
ments are transported northwards by the PPW, which is trans-
ported by a wind-driven current. A mixture of sediments
from the PPW and the north is transported towards the slope
between 34 and 28◦ S.
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Figure 7. Latitudinal and bathymetric variability of εNd in the
sector between 23 and 55◦ S. Water masses: Plata Plume Water
(PPW), Subantarctic Shelf Water (SASW), Tropical Water (TW),
South Atlantic Central Water (SACW), Antarctic Intermediate Wa-
ter (AAIW), and Lower Circumpolar Deep Water (LCDW). Cur-
rents: Malvinas Current (MC) and Brazil Current (BC). Fronts: Sub-
tropical Shelf Front (STSW), Brazil–Malvinas Confluence (BMC),
and Santos Bifurcation (SB). Vertical axis in log(10) scale.

Figure 8. Latitudinal and bathymetric variability of 207Pb/204Pb
in the sector between 23 and 55◦ S. Río de la Plata (RdlP). Wa-
ter masses: Plata Plume Water (PPW), Subantarctic Shelf Wa-
ter (SASW), Tropical Water (TW), South Atlantic Central Water
(SACW), Antarctic Intermediate Water (AAIW), and Lower Cir-
cumpolar Deep Water (LCDW). Currents: Malvinas Current (MC)
and Brazil Current (BC). Fronts: Subtropical Shelf Front (STSW),
Brazil–Malvinas Confluence (BMC), and Santos Bifurcation (SB).
Vertical axis in log(10) scale.

Finally, pre-Cambrian rocks are the primary sources of the
sediments deposited further north. They originate from rivers
located northward of the area of study and, on a smaller scale,
by the small drainages that face the ocean in the Serra do Mar
region.

We propose that the main oceanographic boundaries of
the southwestern South Atlantic margin, i.e., the Subtropi-

Figure 9. Latitudinal and bathymetric variability of 208Pb/204Pb
in the sector between 23 and 55◦ S. Río de la Plata (RdlP). Wa-
ter masses: Plata Plume Water (PPW), Subantarctic Shelf Wa-
ter (SASW), Tropical Water (TW), South Atlantic Central Water
(SACW), Antarctic Intermediate Water (AAIW), and Lower Cir-
cumpolar Deep Water (LCDW). Currents: Malvinas Current (MC)
and Brazil Current (BC). Fronts: Subtropical Shelf Front (STSW),
Brazil–Malvinas Confluence (BMC), and Santos Bifurcation (SB).
Vertical axis in log(10) scale.

cal Shelf Front and the Santos Bifurcation, separate distinct
geochemical provinces.
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