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Abstract. Given current threats to ocean ecosystem health,
there is a growing demand for accurate biogeochemical hind-
casts, nowcasts, and predictions. Provision of such prod-
ucts requires data assimilation, i.e., a comprehensive strategy
for incorporating observations into biogeochemical models,
but current data streams of biogeochemical observations are
generally considered insufficient for the operational provi-
sion of such products. This study investigates to what de-
gree the assimilation of satellite observations in combination
with a priori model calibration by sparse BGC-Argo pro-
files can improve subsurface biogeochemical properties. The
multivariate deterministic ensemble Kalman filter (DEnKF)
has been implemented to assimilate physical and biologi-
cal observations into a three-dimensional coupled physical–
biogeochemical model, the biogeochemical component of
which has been calibrated by BGC-Argo float data for the
Gulf of Mexico. Specifically, observations of sea surface
height, sea surface temperature, and surface chlorophyll were
assimilated, and profiles of both physical and biological vari-
ables were updated based on the surface information. We
assessed whether this leads to improved subsurface distri-
butions, especially of biological properties, using observa-
tions from five BGC-Argo floats that were not assimilated.
An alternative light parameterization that was tuned a priori
using BGC-Argo observations was also applied to test the
sensitivity of data assimilation impact on subsurface biolog-
ical properties. Results show that assimilation of the satellite
data improves model representation of major circulation fea-
tures, which translate into improved three-dimensional dis-
tributions of temperature and salinity. The multivariate as-

similation also improves the agreement of subsurface nitrate
through its tight correlation with temperature, but the im-
provements in subsurface chlorophyll were modest initially
due to suboptimal choices of the model’s optical module.
Repeating the assimilation run by using the alternative light
parameterization greatly improved the subsurface distribu-
tion of chlorophyll. Therefore, even sparse BGC-Argo ob-
servations can provide substantial benefits for biogeochemi-
cal prediction by enabling a priori model tuning. Given that,
so far, the abundance of BGC-Argo profiles in the Gulf of
Mexico and elsewhere has been insufficient for sequential as-
similation, updating 3D biological properties in a model that
has been well calibrated is an intermediate step toward full
assimilation of the new data types.

1 Introduction

Given the multiple and increasing pressures of ocean warm-
ing, acidification, deoxygenation, and changes in primary
productivity on ocean ecosystem health, accurate model sim-
ulations are urgently needed to assess past and current states
of marine ecosystems, forecast future trends, and predict the
ocean’s response to different scenarios of climate change and
management policies. In practice, numerical models are im-
perfect representations of the natural system, and their accu-
racy is limited by many factors including insufficient model
resolution, inaccuracies in discretization schemes and model
formulations, parameterization of unresolved processes, and
uncertainties in model inputs. Data assimilation is a practi-
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cal approach used to compensate for these model deficien-
cies. It is a statistical method to interpolate and extrapolate
sparse observations into the regular model space in a dy-
namically consistent way. Its success critically depends on
well-resolved observations. While any practice to constrain
a model by observations can be referred to as data assimi-
lation, in this paper we specifically refer to state estimation,
i.e., sequential updates of the model state.

Data assimilation is well developed in physical oceanog-
raphy (Edwards et al., 2015) but less mature in biogeo-
chemical ocean modeling, largely due to insufficient ob-
servations (Fennel et al., 2019). Thus far, satellite data on
ocean color (e.g., chlorophyll) have been the major source
of observations to be assimilated (e.g., Ford and Barciela,
2017; Gregg, 2008; Hu et al., 2012; Mattern et al., 2013;
Pradhan et al., 2019; Teruzzi et al., 2018) because of their
relatively high resolution and routine availability. More re-
cent advances have focused on the incorporation of other
satellite-derived products including size-fractionated chloro-
phyll (e.g., Ciavatta et al., 2018, 2019; Pradhan et al., 2020;
Skákala et al., 2018) and optical properties (e.g., Ciavatta
et al., 2014; Gregg and Rousseaux, 2017; Jones et al., 2016;
Shulman et al., 2013; Skákala et al., 2020). However, these
measurements are limited to the surface ocean and provide
little information about the subsurface and ocean interior. In
addition, it has been acknowledged that assimilating satel-
lite data on ocean color often fails to improve and even de-
grades simulation of unobserved biological variables (Cia-
vatta et al., 2018; Fontana et al., 2013; Ford and Barciela,
2017; Skákala et al., 2018; Teruzzi et al., 2018). Problems
also remain in accounting for the codependencies or covari-
ances between biological variables. For instance, Fontana
et al. (2013) found that subsurface nitrate was barely im-
pacted by assimilating the satellite surface chlorophyll be-
cause of its weak correlations with surface chlorophyll. Al-
though BGC-Argo floats may ultimately provide us with
abundant subsurface measurements of multiple key biogeo-
chemical properties (Biogeochemical-Argo Planning Group,
2016; Chai et al., 2020; Roemmich et al., 2019), the pro-
filing observations will likely remain insufficient for three-
dimensional data assimilation for a number of years, making
satellite data the main observation streams for sequential data
assimilation in biogeochemical models (Ford, 2021).

The insufficient availability of subsurface and interior
ocean biogeochemical observations is reflected not only in
the immaturity of biogeochemical data assimilation but also
its skill assessment. When compared with the surface, the
subsurface has received less attention in skill assessments
of biogeochemical data assimilation systems. Although there
have been studies that compared vertical structures with
in situ observations and/or climatological datasets (e.g.,
Fontana et al., 2013; Ford and Barciela, 2017; Mattern et al.,
2017; Ourmières et al., 2009; Teruzzi et al., 2014), these val-
idations were often limited to low spatiotemporal resolution.
The recent growth of autonomous observation systems, es-

pecially BGC-Argo floats and gliders, makes it possible to
evaluate biogeochemical data assimilation systems below the
surface in high resolution (e.g., Cossarini et al., 2019; Salon
et al., 2019; Skákala et al., 2021; Verdy and Mazloff, 2017).

Finally, since physical processes affect biological prop-
erties through advection and diffusion of biological trac-
ers as well as some temperature-dependent biological activ-
ities (e.g., phytoplankton growth), deficiencies in biological
models can arise from imperfect simulation of the physics
(Doney, 1999; Doney et al., 2004; Oschlies and Garçon,
1999). Although there have been studies demonstrating a
positive effect of physical data assimilation on biological
properties (Fiechter et al., 2011; Ourmières et al., 2009), of-
ten this approach degrades biological distributions because
of elevated vertical velocities and violation of consistency
between physical and biological properties (Anderson et al.,
2000; Raghukumar et al., 2015; Yu et al., 2018). To address
these issues, joint assimilation of physical and biological ob-
servations (Song et al., 2016a, b) or multivariate updates
based on the cross-covariances between physical and biolog-
ical properties (Goodliff et al., 2019; Yu et al., 2018) have
been suggested.

In this study, a multivariate physical–biological data as-
similation scheme is applied to a coupled physical–biological
model in the Gulf of Mexico. The rationale for choosing the
Gulf of Mexico is that the dominant circulation, including the
Loop Current and its associated mesoscale eddies, is stochas-
tic and can influence the subsurface biological distributions,
e.g., deep chlorophyll maximum (Fommervault et al., 2017).
In addition, we test how data assimilation impacts depend
on model calibration when using two alternative light pa-
rameterizations. By comparing forecast results from the as-
similative model with independent observations from five
BGC-Argo floats that are not assimilated but used in a priori
tuning of the biogeochemical model, we rigorously evaluate
whether the main biological observation stream (satellite es-
timates of surface chlorophyll) in combination with physical
observations (satellite estimates of sea surface height and sea
surface temperature) can inform the 3D ocean distributions
in high spatial and temporal resolution.

2 Tools and methods

2.1 Coupled physical and biological model

The coupled physical and biological model used in this study
is based on the Regional Ocean Modeling System (ROMS;
Haidvogel et al., 2008) configured in the Gulf of Mexico (red
rectangle in Fig. 1 shows the model domain) with a horizon-
tal resolution of ∼ 5 km and 36 vertical sigma levels (Wang
et al., 2020; Yu et al., 2019). The model used a multidimen-
sional positive definitive advection transport algorithm (MP-
DATA; Smolarkiewicz and Margolin, 1998) to solve the hor-
izontal and vertical advection of tracers, a Smagorinsky-type
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Figure 1. Bathymetric map of the Gulf of Mexico with a schematic
pattern of the Loop Current (black curve with arrows) and Loop
Current eddies (black circle with arrows). Trajectories of five BGC-
Argo floats (colored lines) in 2015 are also shown in the figure. The
model domain is represented by the red rectangle.

formula (Smagorinsky, 1963) to parameterize horizontal vis-
cosity and diffusivity, and the Mellor–Yamada 2.5-level clo-
sure scheme (Mellor and Yamada, 1982) to calculate the
vertical turbulent mixing. Atmospheric forcing is provided
by the European Centre for Medium-Range Weather Fore-
casts ERA-Interim product (ECMWF reanalysis; Dee et al.,
2011) with a horizontal resolution of 1/8◦ (approximately
12 km× 14 km) to calculate the surface wind stress as well
as the net heat fluxes and freshwater fluxes.

The biological model uses a nitrogen-based model (Fen-
nel et al., 2006) to simulate transportation and transformation
of seven pelagic variables, i.e., nitrate (NO3), ammonium
(NH4), chlorophyll (Chl), phytoplankton (Phy), zooplank-
ton (Zoo), small detritus (SDet), and large detritus (LDet).
As a separate state variable, chlorophyll accounts for photo-
acclimation based on Geider et al. (1997). In our coupled
model, the biological tracers are advected and diffused as
part of the 3D circulation but provide no feedback to the
physical model. Biological parameters are from the param-
eter optimization study of Wang et al. (2020) except that the
half-saturation constant of nitrate was subjectively re-tuned
based on the BGC-Argo float data from 0.5 mmol N m−3 to
about 1.4 mmol N m−3 because the previous model underes-
timated the nitrate in the euphotic zone.

The coupled model receives freshwater and nutrient in-
puts from the Mississippi–Atchafalaya river systems, which
are specified by daily measurements from the US Geolog-
ical Survey river gauges and those from other major rivers
that utilize climatological estimates (Xue et al., 2013). To
ensure a dynamically consistent biological field, a 1-year
spin-up is performed in 2014 wherein the physical model

is initialized from the output of the 1/12◦ data-assimilative
global HYCOM/NCODA (Chassignet et al., 2005) and the
biological model starts from a regressed 3D field of nitrate
based on its climatological relationship with temperature (see
Fig. S1). A semi-prognostic method is used during the spin-
up period to reduce model drift by replacing model density
with a linear combination of model and climatological den-
sity fields when calculating the horizontal pressure gradient
(Greatbatch et al., 2004; Sheng et al., 2001). After the spin-
up, experiments are performed for a year from January 2015
to December 2015.

2.2 Data assimilation technique

In this study, the data assimilation scheme uses the determin-
istic formulation of the ensemble Kalman filter (DEnKF),
which was first introduced by Sakov and Oke (2008). The
approach consists of two steps: (1) the forecast step in which
an ensemble of state variables is integrated forward in time
by the model and (2) the analysis step in which observations
are assimilated to update the forecasted ensemble following
the Kalman filter equations:

xa
= xf
+K

(
d −Hxf

)
, (1)

K= PfHT
(

HPfHT
+R

)−1
, (2)

where x represents the model state estimate, d represents the
available observations, H represents the observation operator
mapping the model state onto observations, and K represents
the Kalman gain matrix, which is determined by the model
error matrix P and observation error matrix R (Eq. 2). Su-
perscripts “a” and “f” represent analysis (i.e., updated) and
forecast (i.e., prior to the update) estimates, and T represents
the matrix transpose. Unlike the original stochastic EnKF,
which updates each ensemble member with perturbed ob-
servations, the DEnKF updates the ensemble mean (x) and
anomalies (A= x− x) separately without perturbating ob-
servations; i.e., the former is updated as in Eq. (1), while the
latter is updated by

Aa
=Af

−
1
2

KHAf. (3)

More details on the DEnKF can be found in Sakov and Oke
(2008) and Yu et al. (2018).

The data assimilation framework and configurations are
the same as in Yu et al. (2019) wherein twin experiments
were performed in the same model domain. In this study,
we extend the work to jointly assimilate the physical and
biological observations into a coupled model. For the sake
of keeping our data assimilation experiments computation-
ally affordable, we chose an ensemble size of 20, which has
been successfully used in previous studies including an ideal-
ized channel (Yu et al., 2018), the Middle Atlantic Bight (Hu
et al., 2012; Mattern et al., 2013), and the Gulf of Mexico
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(Yu et al., 2019). Spurious correlations, which can arise with
relatively small ensembles, are avoided here by applying a
distance-based localization with a radius of 50 km (Evensen,
2003). Vertical localization is not applied. Ensemble anoma-
lies are inflated by 1.05 in each update step to account for
unrepresented sources of model uncertainty (Anderson and
Anderson, 1999). Values of the localization radius and infla-
tion factor were determined in Yu et al. (2019).

In order to account for uncertainties in the model’s initial,
boundary and atmospheric forcing conditions, and biologi-
cal parameters, the ensemble is initialized from 20 different
daily outputs, centered on the initial date of 1 January 2015,
from a previous deterministic model simulation (as described
above in Sect. 2.1) and is forced by open boundary con-
ditions, which are lagged by up to ±10 d for the different
ensemble members. Furthermore, each ensemble member is
forced by a perturbed version of the wind forcing. Specif-
ically, the wind forcing from the deterministic run is de-
composed into empirical orthogonal functions (EOFs) and
then the first four EOFs are perturbed by multiplying ran-
dom numbers with zero mean and variance of 1 as in Li et al.
(2016) and Thacker et al. (2012). In addition, four sensitive
biological parameters, namely the mortality rate of phyto-
plankton, the maximum ratio of chlorophyll to carbon, the
grazing rate of zooplankton, and the growth rate of phyto-
plankton at 0 ◦C, were identified in sensitivity experiments.
Specifically, a 1D version of model, described in Wang et al.
(2020) was run multiple times while incrementally perturb-
ing one parameter at a time by factors ranging from 0.25 to
1.75 with an increment of 0.25. The four sensitive parame-
ters were selected based on the normalized absolute differ-
ences between the perturbed and unperturbed run. In the data
assimilation experiments, these parameters are subject to a
Gaussian perturbation with a relative variance of 75 %, but
they are not updated. The parameters are resampled from
their distributions before each forecast step to prevent some
extreme parameter values from being used throughout the
whole data assimilation experiment.

2.3 Observations

In this study, physical and biological observations are jointly
assimilated to constrain the coupled model. The observations
assimilated include sea surface height (SSH), sea surface
temperature (SST), Argo T –S profiles, and satellite estimates
of surface chlorophyll.

The SSH observations for assimilation are obtained by
adding the 1/4◦ mapped sea level anomaly (SLA) from
Archiving Validation and Interpretation of Satellite Oceano-
graphic Data (AVISO) to a mean dynamic topography
(MDT) from Rio et al. (2013), and they are adjusted by re-
moving the spatially averaged mismatches between assimi-
lated and forecasted SSH to account for differences in refer-
ence time between the SLA data (1993–2012) and our cou-
pled model (2015) (Haines et al., 2011; Song et al., 2016b;

Xu et al., 2012). This is equivalent to assimilating the SSH
gradient into the model, as it is the only dynamically mean-
ingful quantity for driving the geostrophic component of
ocean currents and adjusting subsurface thermohaline struc-
tures. The SST observations are the Advanced Very High
Resolution Radiometer (AVHRR; Martin et al., 2012) prod-
uct with a horizontal resolution of 0.01◦. Observation errors
are specified as 0.02 m for SSH and 0.3 ◦C for SST (Song
et al., 2016b; Yu et al., 2018, 2019).

The surface chlorophyll is provided by the Ocean-Colour
Climate Change Initiative project (OC-CCI; Sathyendranath
et al., 2018) at a daily frequency with a spatial resolution
of 1/24◦. However, for the daily chlorophyll field, a large
portion of data can be missing due to cloud cover and inter-
orbit gaps. In 2015 for the Gulf of Mexico, the spatial cov-
erage of surface chlorophyll varies from 0 % to 63 % with a
mean coverage of 9.5± 9.0 %. Hence, to increase the avail-
ability of observations, an asynchronous data assimilation
method (Sakov et al., 2010) is applied so that not only the
daily records of surface chlorophyll at the date of update but
also the daily records within the preceding 7 d are assimi-
lated. Errors associated with the surface chlorophyll are set
to be 35 % of the measured concentrations, which has been
commonly used in previous applications (e.g., Fontana et al.,
2013; Ford, 2021; Ford and Barciela, 2017; Hu et al., 2012;
Mattern et al., 2017; Santana-Falcón et al., 2020; Song et al.,
2016b; Yu et al., 2018). In this study, the update is performed
on actual chlorophyll concentrations because our prior tests
showed that it outperforms assimilating log-chlorophyll in
the open gulf (with depth > 1000 m). There are previous ex-
amples in which the actual chlorophyll values have been as-
similated successfully (e.g., Hu et al., 2012; Yu et al., 2018),
although we note that assimilating the actual chlorophyll val-
ues is theoretically suboptimal because of their non-Gaussian
distribution.

Profiling observations are from the International Argo
project (hereafter referred to as Argo floats) and five BGC-
Argo floats, which were funded by the Bureau of Ocean En-
ergy Management (hereafter referred to as BOEM floats). In
2015, the Argo floats provided nearly 800 T –S profiles ex-
tending from the surface to a depth of 2000 m in the Gulf of
Mexico. These are treated either as independent observations
for model skill assessment or, in the DAargo experiment (see
Sect. 2.4), assimilated with uncertainties of 0.3◦C for temper-
ature and 0.01 for salinity. The BOEM floats collected more
than 500 profiles of temperature, salinity, chlorophyll, and
backscatter at a biweekly frequency from 2011 to 2015, 114
of which were collected in 2015 (see Fig. 1 for their loca-
tions) and are used as independent observations. Backscatter
is converted into phytoplankton and particulate organic car-
bon (POC) concentrations following Wang et al. (2020). In
the absence of direct measurements for nitrate, we estimate
it along the BOEM float trajectories based on their climato-
logical relationship with temperature (Fig. S1).
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2.4 Simulation strategy

We performed five 1-year simulations in 2015. The first one
is a deterministic model simulation without data assimila-
tion (henceforth referred to as the Free simulation). The
second one is an ensemble run assimilating satellite data
(SSH, SST, and satellite surface chlorophyll) only (hence-
forth DAsat), and the third one is an ensemble run assimi-
lating Argo T –S profiles in addition to satellite data (hence-
forth DAargo). The calculations (Att= 0.04+ 0.025×Chl)
used in these three simulations are from the literature (e.g.,
Fennel et al., 2006, 2011); the light attenuation coefficient,
Att, is strongly determined by water depth and not very sen-
sitive to chlorophyll concentrations. The Free run and DAsat
run are repeated by using an alternative light parameteriza-
tion (henceforth referred to as Free-alt and DAsat-alt simula-
tions, respectively) to evaluate its effect on the data assimila-
tion impact on subsurface biological properties. This alterna-
tive light parameterization (Att= 0.027+ 0.075×Chl1.2) is
subjectively tuned based on the BGC-Argo observations and
emphasizes the self-shading effect of chlorophyll on light at-
tenuation.

A two-step update is used on a weekly data assimilation
cycle in the assimilative experiments, in which the physi-
cal observations are first assimilated to update both phys-
ical and biological state variables through the multivari-
ate covariance, and chlorophyll observations are assimilated
next to update only biological state variables. Although the
DEnKF can update all state variables based on their cross-
covariance, we limit updates to two physical variables (tem-
perature and salinity) and four biological variables (nitrate,
chlorophyll, phytoplankton, and zooplankton) that are key to
the coupled physical–biogeochemical system. As the circu-
lation features in the open gulf (the Loop Current and its
associated mesoscale eddies) are primarily in geostrophic
balance, an update of temperature and salinity can improve
three-dimensional circulation features in large scales effec-
tively, as shown in the twin experiments in Yu et al. (2019).
All these state variables are updated throughout the whole
water column, while other variables are adjusted by internal
model dynamics.

To evaluate the prediction skill, we calculate the root mean
square errors (RMSEs), the bias, and the correlation coeffi-
cient (Corr) of the model forecast (M) with respect to assim-
ilated and independent observations (O):

RMSE=

√
1
N

∑
(M −O)2, (4)

bias=
1
N

∑
(M −O), (5)

where N represents the number of model–data pairs avail-
able. To account for the overestimation of nitrate in warm
waters, which typically occurs in the euphotic zone (Fig. S1),
an unbiased root mean square error (unbiased RMSE) is used

to quantify the model–data misfit of nitrate.

unbiased RMSE=

√
1
N

∑
(M −O − bias)2 (6)

3 Results

3.1 Assimilation impacts on physical properties

As the biological model provides no feedback to the physical
model, the alternative light parameterization does not affect
physical properties. The physical results from Free-alt and
DAsat-alt runs are thus not displayed in this section.

The dominant circulation features in the Gulf of Mex-
ico, the Loop Current and Loop Current eddies, are assessed
by comparing their fronts, defined here as the 10 cm SSH
contour, from satellite data, the Free run, and two data-
assimilative runs (i.e., the DAsat and DAargo runs). In the
first 2 months, all model estimates of the Loop Current are
different from satellite observations due to the influence of
initial conditions (Fig. 2). After March, the SSH field shows
a similar northward and westward extension of the Loop Cur-
rent intrusion between two assimilative runs and satellite ob-
servations, but large deviations from observations remain in
the Free run. In addition, all estimates except for the Free
run reproduce the satellite-observed timing of eddy shedding
well, as well as the size, shape, and position of Loop Current
eddies.

For a more quantitative assessment, the daily output of
SSH and SST fields from the three runs is compared with the
satellite estimates. The spatial distribution of RMSE from the
Free run and the RMSE changes in two data-assimilative runs
are shown in Fig. 3. In the regions influenced by the Loop
Current and Loop Current eddies, this figure shows high
RMSE for SSH in the Free run (Fig. 3a) and large RMSE
reductions in two data-assimilative runs (Fig. 3b–c). In con-
trast, the reductions in SST RMSEs are more spatially homo-
geneous. A summary of the overall RMSE, the bias, and the
correlation coefficient (Coef) for physical variables from the
Free run and two data-assimilative runs are shown in Table 1.
In general, the two data-assimilative runs both significantly
improved SSH and SST with reduced RMSEs and increased
correlation coefficients. Although the two data-assimilative
runs tend to underestimate the satellite observations of SST,
the bias (−0.06 ◦C) is relatively small.

The correction of mesoscale features by data assimilation
was not limited to the surface but extended to the subsur-
face and even deep waters. Specifically, the two assimilative
runs corrected the position, the amplitude, and the polarity of
mesoscale eddies and hence better represented the elevated
and depressed thermoclines within these eddies (Fig. 4). The
most noticeable improvement (by 60 %–61 %) was witnessed
by float 287, which captured a newly detached Loop Current
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Figure 2. Monthly averaged Loop Current and Loop Current eddies based on the 10 cm SSH contour from satellite data (black), the Free run
(blue), the DAsat run (orange), and the DAargo run (yellow). The gray contours represent the isobaths of 200, 1000, and 3000 m.

Figure 3. Spatial map of root mean square error (RMSE) in the Free run (a, d) and its differences between the Free run and the two data-
assimilative runs for SSH and SST (b, c, e, f). Positive values represent improvements, while negative values represent deteriorations by data
assimilation. Gray contours represent the 300, 1000, and 3000 m isobaths.
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eddy with features of high SSH and depressed thermoclines
during July and October. In addition, assimilation of Argo
T –S profiles in the DAargo run led to slight further improve-
ments in the subsurface temperature distributions when com-
pared with the DAsat run. For instance, although the DAsat
run greatly improved subsurface temperature distributions
along the trajectory of float 285, an underestimation of tem-
perature at a depth of about 200 m remains within the peak
of the anticyclonic eddy. Corrections imposed by assimilat-
ing Argo profiles increased temperature here and decreased
the bias from observations. These small but localized further
improvements can also be observed by other floats, e.g., in
July–October for float 289 and February for float 290.

In general, assimilating the satellite data in the DAsat run
resulted in large reductions in RMSEs of 3D temperature (by
46 %–48 %; Table 1) and salinity (by 36 %–39 %; Table 1)
with respect to Argo floats and BOEM floats (Fig. 5). The
reductions extend to over 1000 m and a depth of about 800 m
for temperature and salinity, respectively. It should be noted
again that data from both Argo and BOEM floats are inde-
pendent in the DAsat run. Although assimilating the Argo
profiles in the DAargo run only yields marginal further im-
provements in RMSEs of temperature (∼ 3 %) and salinity
(∼ 5 %), it notably reduces the overestimation of temperature
that occurs below the surface in the DAsat run (Table 1).

3.2 Assimilation impacts on biological properties

Assimilating satellite observations in the DAsat run re-
duced RMSEs of surface chlorophyll almost everywhere,
with only 3 % of the model domain experiencing degrada-
tion (Fig. 6b). Although large reductions in RMSE were
achieved in the coastal regions, e.g., in the northern Gulf
of Mexico, on Campeche Bank, and in Campeche Bay, the
simulated chlorophyll concentrations remained much lower
than the satellite estimates because of high observational un-
certainties and a large background misfit in the Free run
(Fig. 6a). This was expected because the biological model
was optimized for the open gulf (Wang et al., 2020). Ta-
ble 2 shows the RMSE, the bias, and the correlation coeffi-
cient for biological variables from the Free run and the data-
assimilative runs. A relative reduction in RMSE equal to or
exceeding 10 % is considered a significant improvement. In
the open gulf, encompassed by the 1000 m isobath, the over-
all RMSE of surface chlorophyll was reduced by 19 % from
0.13 mg m−3 in the Free run to 0.11 mg m−3 in the DAsat run
(Table 2). In addition, the correlation coefficient increased
from 0.52 to 0.68. Assimilating Argo T –S profiles in the
DAargo run led to lower reductions in the overall RMSEs of
surface chlorophyll (Table 2) and even more deteriorations
(Fig. 6c).

To evaluate the impacts of data assimilation on subsur-
face biological properties, the temporal evolution of nitrate
in different model experiments is shown in Fig. 7 in compar-
ison to nitrate estimated based on its climatological relation-

Figure 4. Vertical distributions of temperature from BOEM floats,
the Free run, the DAsat run, and the DAargo run. Gray lines rep-
resent isothermal lines with an interval of 2 ◦C. Thick black lines
represent SSH. The observed SSH is obtained from the matching
record of altimeter observations.

ship with temperature. The temperature-based nitrate tends
to be overestimated in the upper layers (Fig. S1). Because of
its high correlation with temperature, the nitrate distribution
was modulated in the two assimilative runs along with the
improvement in temperature fields. For instance, the two as-
similative runs reproduce the Loop Current eddy observed by
float 287 and hence capture the depressed thermoclines that
are not present in the Free run (Fig. 4). At the same time, the
nitraclines are also depressed and the nitrate concentrations
become lower within this Loop Current eddy (Fig. 7). As a
result, the unbiased RMSE of nitrate following this float is re-
duced by 40 % in the DAsat run and 38 % in the DAargo run.
These depressed (upwelled) nitraclines due to the increase
(decrease) in SSH by data assimilation can also be observed
elsewhere, e.g., in August for float 285, in April–July for float
286, January–April for float 287, and in August–October for
float 290, although the amplitude of these mesoscale eddies
is smaller. In general, data assimilation improved the overall
agreement of subsurface nitrate with correlation coefficients
and decreased RMSEs by 28 % and 30 % in the DAsat and
DAargo runs relative to the Free run (Table 2).

The impacts of assimilation on subsurface chlorophyll are
more complicated because of the high nonlinearity of the
model with regard to chlorophyll. Although the mean verti-
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Table 1. The root mean square error (RMSE), bias, and correlation coefficient (Corr) for SSH and SST, as well as vertical profiles of
temperature and salinity from Argo and BOEM floats. Percentages in the parentheses represent the relative reductions in RMSE values.
Since the spatial and temporal average of mismatch between the modeled and observed SSH is removed, the bias of SSH is not shown here.

SSH SST Argo BOEM

(m) (◦C) Temp (◦C) Salt Temp (◦C) Salt

RMSE

Free 0.17 0.88 1.70 0.22 1.55 0.18
DAsat 0.08 (54 %) 0.55 (37 %) 0.89 (48 %) 0.14 (36 %) 0.83 (46 %) 0.11 (39 %)
DAargo 0.08 (54 %) 0.56 (36 %) 0.86 (49 %) 0.13 (41 %) 0.79 (49 %) 0.10 (44 %)

Bias

Free – 0.00 0.07 0.02 0.26 0.03
DAsat – −0.06 0.12 0.02 0.24 0.02
DAargo – −0.06 0.06 0.02 0.21 0.02

Corr

Free 0.72 0.96 0.96 0.92 0.97 0.95
DAsat 0.94 0.98 0.99 0.97 0.99 0.98
DAargo 0.94 0.98 0.99 0.97 0.99 0.98

Figure 5. Vertical profiles of root mean square error (RMSE) for
temperature and salinity with respect to Argo and BOEM floats.

cal profiles of chlorophyll are well reproduced in all three ex-
periments (Fig. S2), all failed to resolve the high spatiotem-
poral variability in subsurface chlorophyll, which is at least
partly due to the presence of mesoscale eddies (Fig. 8). As
a result, assimilation improved subsurface chlorophyll RM-

SEs marginally, even in the Loop Current eddy for float 287
for which the most noticeable improvements of temperature
(∼ 60 %) and nitrate (∼ 40 %) RMSEs were obtained. Re-
sults for phytoplankton and POC are similar to chlorophyll,
although the reductions in their RMSEs are larger because
assimilating the satellite data reduces their biases, especially
in the upper layer (Fig. S2, Table 2).

The model’s inability to reproduce the spatiotemporal
variability of subsurface chlorophyll is also reflected by the
positions of the deep chlorophyll maximum (DCM, denoted
by red lines in Fig. 8). As a ubiquitous phenomenon in the
oligotrophic regions, a distinct DCM is observed throughout
the whole year in the open Gulf of Mexico, and its depth is
inversely correlated with SSH (correlation coefficient −0.6).
Although the mean position and magnitude of the DCM are
well reproduced by the model with and without data assim-
ilation (Fig. S2), the simulated DCM depth is much more
stable and less sensitive to SSH variations. As a result, the
reduction in the RMSE of DCM depth is limited to 18 % in
DAsat run but is significant (Table 2).

3.3 Sensitivity of subsurface chlorophyll to the light
attenuation parameterization

Both with and without data assimilation, the alternative pa-
rameterization led to higher correlations between simulated
SSH and DCM depth with correlation coefficients of −0.60
in Free-alt run and −0.67 in DAsat-alt run. As a result, the
alternative parameterization produces slightly lower RMSEs
and a higher correlation coefficient for DCM depth (Table 2)
and yields larger improvements in chlorophyll within the
Loop Current eddy for float 287 (Fig. 8). To illustrate the
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Figure 6. The same as Fig. 3 except for surface chlorophyll.

Figure 7. Vertical distributions of nitrate, which are estimated based
on its climatological relationship with temperature and modeled
by different experiments, superimposed with the SSH (thick black
lines).

underlying reasons, the mean vertical profiles of nitrate, the
intensity of photosynthetically active radiation (PAR), the
chlorophyll, and the phytoplankton within the center of this
Loop Current eddy are shown in Fig. 9. When using the origi-
nal parameterization, assimilating the satellite data depresses
the DCM depth from 70 m in the Free run to 90 m in the
DAsat run but with a considerable bias of 20 m when com-
pared to the observations. However, the chlorophyll is under-
estimated in the DAsat run, and as a result its RMSEs are
barely improved. In contrast, in the DAsat-alt run the DCM
depth is corrected to 120 m, in agreement with the obser-

Figure 8. Same as Fig. 4 but for chlorophyll. Gray contours repre-
sent the simulated isolumes, and red lines represent the depth of the
deep chlorophyll maximum. Thick black lines represent SSH.

vations, and represents the vertical chlorophyll distribution
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Figure 9. Mean vertical profiles of nitrate, light intensity (photo-
synthetically active radiation, PAR), chlorophyll, and phytoplank-
ton within the center of the newly detached Loop Current eddy from
the Free run, the DAsat run, the Free-alt run, and the DAsat-alt run.

more accurately, although the nitrate profile is almost the
same as in DAsat run. This was because the alternative pa-
rameterization accounted for the elevated PAR intensity as a
response to reduced chlorophyll concentrations in the upper
layer, which in turn facilitated the synthesis of chlorophyll
and hence corrected their concentrations toward the observa-
tions.

4 Discussion

We implemented a coupled data assimilation scheme for
jointly assimilating physical and biological observations in a
biogeochemical model and evaluated to what degree satellite
observations can inform subsurface distributions, especially
of biological properties. The degree to which the data assim-
ilation impact can depend on model calibration was tested
by using an alternative light parameterization. Although bi-
ological data assimilation has received much attention in
recent years, observations that are assimilated and used in
skill assessment are typically limited to the surface ocean.
The increasing availability of BGC-Argo data now makes
it possible to validate and improve model performance be-
low the surface (Cossarini et al., 2019; Salon et al., 2019;
Terzić et al., 2019; Wang et al., 2020), but so far these ob-
servations have been too sparse for sequential assimilation
in three dimensions; hence, relevant applications are limited
to idealized twin experiments (Ford, 2021; Yu et al., 2018)
and a few specific regions with high float densities, e.g., the

Mediterranean Sea (Cossarini et al., 2019). In addition, since
a biogeochemical model is coupled to a physical model, as-
similating physical observations theoretically should confer
improvements on the biological model by correcting the cir-
culation (e.g., Fiechter et al., 2011; Raghukumar et al., 2015;
Song et al., 2016a, b) and potentially by providing additional
constraints via multivariate updates to biological variables
(e.g., Goodliff et al., 2019; Yu et al., 2018). This is particu-
larly important when the physical model is biased (Yu et al.,
2018).

Our study shows that assimilating satellite data (DAsat
run) can constrain the main circulation features in the Gulf of
Mexico, i.e., the Loop Current and its associated mesoscale
eddies. Temperature and salinity are also improved down to
a depth of ∼ 1000 m because of the correction of mesoscale
eddies. When calculating the reductions in RMSE for SSH
and each single profile of temperature and salinity, we find
that the improvement in SSH is highly correlated with those
in temperature (correlation coefficient 0.96) and salinity (cor-
relation coefficient 0.92, Fig. S3). Assimilating the satellite
data also improves subsurface nitrate because it is tightly cor-
related with the density structure expressed by SSH and tem-
perature profiles. However, improvements in temperature and
nitrate do not necessarily yield better simulations of chloro-
phyll or phytoplankton because they tend to be light-limited
below the surface. In our biogeochemical model, the light
intensity is attenuated by water and chlorophyll and is not
directly updated by the data assimilation scheme but only
adjusted indirectly through changes in chlorophyll during
forecast steps. This, in turn, impacts the synthesis of chloro-
phyll and growth of phytoplankton. However, in the origi-
nal parameterization, light attenuation is mainly controlled
by water depth and much less sensitive to chlorophyll con-
centrations than it appears to be in reality. By applying an al-
ternative light parameterization with more pronounced self-
shading by chlorophyll, the subsurface chlorophyll and phy-
toplankton distributions are further improved after assimi-
lating the satellite data. These results show that the biolog-
ical variables can be improved through model dynamical re-
sponse to data assimilation. However, the efficiency of this
mechanism depends on the accuracy of the biological model.
That is why data assimilation generally benefits from a well-
calibrated model. For example, the usage of suboptimal bio-
logical parameters can yield a substantial degradation of data
assimilation efficiency, especially with respect to unobserved
variables (Song et al., 2016a). Although BGC-Argo profiles
have so far been insufficient for sequential assimilation, they
can provide substantial benefits for biogeochemical predic-
tion by enabling a priori model tuning, e.g., of biological
parameter values (Wang et al., 2020) and the key parame-
terization schemes (Terzić et al., 2019).

In addition to the model’s dynamical response, the biolog-
ical fields can be directly updated by physical and biologi-
cal observations through multivariate covariances. To distin-
guish their influence, we show the increments obtained from
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Figure 10. Histogram of increments in nitrate (mmol N m−3), chlorophyll (mg m−3), and DCM depth (m) obtained by assimilating physical
and biological observations.

assimilating each observation type in the DAsat run (Fig. 10).
The increment of DCM depth is defined analogously to other
state variables as changes due to the update. As shown in
Fig. 10a and b, assimilating physical observations has a much
stronger impact than biological observations on nitrate, and
therefore we conclude that the improvement of nitrate in this
study is mainly obtained from assimilating physical observa-
tions. This is consistent with previous studies (e.g., Ciavatta
et al., 2018; Skákala et al., 2018; Teruzzi et al., 2018) wherein
assimilating surface chlorophyll had little impact on nitrate
and even degraded it in both variational and sequential data
assimilation. In variational data assimilation, it is hard to de-
fine the background errors accurately (Mattern et al., 2017;

Teruzzi et al., 2018), and the biological model can fit itself
to observed chlorophyll through many different pathways,
e.g., direct changes in biomass or an indirect way through
nitrate. However, observations are often insufficient to pro-
vide this information (Mattern et al., 2017). In sequential
data assimilation, the multivariate covariance between sur-
face chlorophyll and subsurface nitrate can be considered,
but typically this covariance is not linear or constant. For
instance, Fontana et al. (2013) assimilated satellite surface
chlorophyll into a biological model in the North Atlantic and
found that subsurface nitrate was barely influenced because
it was weakly correlated with surface chlorophyll, leading
the authors to suggest that it is impossible to fully constrain
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Table 2. The root mean square error (RMSE), bias, and correlation coefficient (Corr) for surface chlorophyll in the open gulf, along with
vertical profiles of NO3, chlorophyll, phytoplankton, and POC, as well as the depth of the deep chlorophyll maximum with respect to
observations from BOEM floats. Percentages in the parentheses represent the relative reductions in RMSE values. Only a reduction in RMSE
larger than or equal to 10 % is considered a significant improvement. The NO3 is estimated based on its climatological relationship with
temperature. Since the estimated NO3 tends to be overestimated in warm regions, the unbiased RMSE of NO3 is reported and the bias is not
shown here.

SChl NO3 Chlorophyll Phytoplankton POC DCM depth
(mg m−3) (mmol N m−3) (mmol N m−3) (mmol N m−3) (mmol N m−3) (m)

RMSE

Free 0.13 3.71 0.18 0.11 18.62 25.48
DAsat 0.11 (19 %) 2.66 (28 %) 0.17 (6 %) 0.10 (9 %) 16.46 (12 %) 21.08 (18 %)
DAargo 0.12 (9 %) 2.58 (30 %) 0.17 (6 %) 0.10 (9 %) 16.77 (10 %) 22.39 (12 %)
Free_alt 0.17 3.71 0.18 0.11 17.55 24.35
DAsat_alt 0.13 (26 %) 2.63 (29 %) 0.17 (6 %) 0.10 (9 %) 15.53 (12 %) 20.42 (16 %)

Bias

Free -0.01 – −0.04 −0.02 −8.01 −0.98
DAsat 0.02 – −0.04 −0.01 −5.05 0.45
DAargo 0.03 – −0.02 −0.01 −3.84 2.59
Free_alt 0.00 – −0.04 −0.02 −6.57 −1.09
DAsat_alt 0.03 – −0.03 −0.00 −3.15 1.83

Corr

Free 0.52 0.94 0.73 0.72 0.63 0.25
DAsat 0.68 0.97 0.76 0.75 0.71 0.50
DAargo 0.65 0.97 0.74 0.75 0.70 0.45
Free_alt 0.58 0.94 0.73 0.72 0.64 0.43
DAsat_alt 0.70 0.97 0.76 0.75 0.72 0.58

a 3D biogeochemical model by only assimilating the sur-
face chlorophyll. This issue remains when assimilating the
surface chlorophyll to update other biological variables (Yu
et al., 2018), e.g., phytoplankton functional groups (Ciavatta
et al., 2018).

In contrast to nitrate, assimilating satellite data from phys-
ical and biological observations has a comparable influence
on subsurface chlorophyll (Fig. 10c–f). Specifically, they can
change subsurface chlorophyll concentrations even below a
depth of 100 m and vertical structures of chlorophyll by ad-
justing the DCM depth; e.g., there are 10 % and 5 % of pro-
files with changes in DCM depth exceeding ± 20 m due to
the update of physical and biological observations, respec-
tively. Because BGC-Argo profiles are currently sparse, i.e.,
only 14 profiles are available at all update steps, it is hard to
draw definitive conclusions about these impacts on chloro-
phyll and DCM depth.

Assimilating Argo T –S profiles in the DAargo run yields
slight further improvements with respect to independent pro-
files of temperature and salinity, similar to the twin experi-
ments in Yu et al. (2019). To diagnose it, we calculate the root
mean square difference (RMSD) of temperature between
two data-assimilative runs with respect to each profile from
the BOEM floats. In general, the RMSD between the two

data-assimilative runs decreases with distance to the nearest
Argo profiles that have been assimilated recently but shows
no significant decreasing trends with the days after update
(Fig. S4). This means that the differences induced by assimi-
lating Argo profiles are sustained locally by model dynamical
adjustments. The overall similarities between the two data-
assimilative runs (i.e., DAsat and DAargo runs) in Fig. 4 can
be explained to some extent by the large distances between
BOEM and Argo profiles. However, it does not mean that in-
creasing the localization radius can necessarily improve the
data assimilation performance. We note that the current local-
ization radius was determined in Yu et al. (2019). The addi-
tional benefits for physical properties obtained by assimilat-
ing Argo T –S profiles are also translated into the simulation
of subsurface nitrate but not into other biological fields, i.e.,
chlorophyll, phytoplankton, and POC. Moreover, assimilat-
ing the Argo T –S profiles can even degrade surface chloro-
phyll because of spurious correlations. This issue has also
been reported in a recent study (Goodliff et al., 2019) that as-
similated sea surface temperature to update both physical and
biological variables, and this issue was alleviated by muting
the multivariate update of phytoplankton, zooplankton, and
detritus.
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In general, coupled data assimilation of both physical and
biological satellite observations can improve subsurface bi-
ological properties because it benefits from the high corre-
lations of some biological distributions, especially nutrients,
with the vertical density structure and because of the dynam-
ical responses to improvements in circulation in the forecast
step. However, this is preconditioned on the coupled model
being well calibrated a priori. Therefore, this study provides
an intermediate step toward 3D updates of biological prop-
erties before the BGC-Argo profiles ultimately become more
abundant.

5 Conclusions

In this study, a coupled data assimilation scheme for both
physical and biological satellite observations was imple-
mented to investigate whether these observations can inform
subsurface distributions. In addition, Argo T –S profiles were
assimilated to assess their impact beyond satellite observa-
tions. The multivariate update was applied by using the co-
variance structure between physical and biological variables.
The Gulf of Mexico was selected as the study region because
the dominant physical features, the Loop Current and its as-
sociated mesoscale eddies, are stochastic and can substan-
tially influence the biological properties in three dimensions.
Our results show that assimilating satellite data leads to sig-
nificant improvements in the simulation of SSH and SST and
also projects these improvements from the surface to a depth
of about 1000 m for temperature and salinity, as shown by an
assessment of the independent BGC-Argo profiles. With re-
spect to biological fields, the subsurface nitrate distribution
benefits greatly from the tight correlation with density and
the improved fidelity of mesoscale features. However, ini-
tially there were only slight improvements in other biological
variables below the surface, i.e., chlorophyll, phytoplankton,
and POC, because a suboptimal light parameterization did
not react to the changed chlorophyll concentrations appropri-
ately and failed to provide accurate feedbacks on the synthe-
sis of chlorophyll and growth of phytoplankton. We tested an
alternative light parameterization with a larger relative con-
tribution from chlorophyll to light attenuation. As a result,
the subsurface chlorophyll and phytoplankton were further
improved. This highlights the importance of a priori tuning
to achieve better assimilation performance. Finally, assimi-
lating the Argo T –S profiles on top of satellite observations
yields slight further improvements with respect to indepen-
dent vertical profiles of temperature and salinity, which also
translated into improvements in subsurface nitrate.
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