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Abstract. As part of the European Space Agency’s Climate
Change Initiative, new sets of satellite observation products
have been produced for essential climate variables includ-
ing ocean colour, sea surface temperature, sea level, and sea
ice. These new products have been assimilated into a global
physical–biogeochemical ocean model to create a set of 13-
year reanalyses at 1◦ resolution and 3-year reanalyses at 1/4◦

resolution. In a series of experiments, the variables were as-
similated individually and in combination in order to assess
their consistency from a data assimilation perspective. The
satellite products, and the reanalyses assimilating them, were
found to be consistent in their representation of spatial fea-
tures such as fronts, sea ice extent, and bloom activity. As-
similating multiple variables together often resulted in larger
mean increments for a variable than assimilating it individu-
ally, providing information about model biases and compen-
sating errors which could be addressed in the future devel-
opment of the model and assimilation scheme. Sea surface
fugacity of carbon dioxide had lower errors against indepen-
dent observations in the higher-resolution simulations and
was improved by assimilating ocean colour or sea ice con-
centration, but it was degraded by assimilating sea surface
temperature or sea level anomaly. Phytoplankton biomass
correlated more strongly with net air–sea heat fluxes in the
reanalyses than chlorophyll concentration did, and the corre-
lation was weakened by assimilating ocean colour data, sug-
gesting that studies of phytoplankton bloom initiation based
solely on chlorophyll data may not provide a full understand-
ing of the underlying processes.
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1 Introduction

In order to understand and monitor the Earth’s climate sys-
tem, it must be routinely and systematically observed. Satel-
lite remote sensing is particularly valuable in providing daily
global data, with satellite records for some variables dat-
ing back to the 1970s. To allow for the detection of climate
variability and change, long-term continuous time series of
such data need to be consistently processed, stable, and free
from artificial trends. Products which match these require-
ments can be referred to as climate data records (CDRs)
(NRC, 2004). To address this requirement for a set of essen-
tial climate variables (ECVs) (GCOS, 2011) that can be ob-
served from space, the European Space Agency (ESA) initi-
ated a programme called the Climate Change Initiative (CCI)
(Plummer et al., 2017). For ECVs including ocean colour, sea
surface temperature, sea level, and sea ice, sets of satellite
observation products have been developed and made avail-
able, with the aim that they can be used as CDRs. A further
aim is for the CCI products to be consistent between ECVs,
allowing for an integrated assessment of the climate system.

Such observation products are vital for understanding cli-
mate variability and change but are insufficient on their own.
Coverage is incomplete, not all variables of interest are rou-
tinely observed, and there is no predictive capability. Models
are required to address these aspects and in conjunction with
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observations can provide a much fuller understanding of the
Earth system. Recognising this need, the CCI programme in-
cludes a Climate Modelling User Group (CMUG) to assess
CCI data products from a modelling perspective.

A powerful way to combine these sources of information
is through data assimilation, which can be used to create re-
analyses (Storto et al., 2019). As with CDRs, reanalyses are
of most benefit to climate studies if they are stable and con-
sistent, both throughout time and between model variables.
In these cases, reanalyses can be used to provide valuable in-
sights into the Earth system, which may not be available from
observations or models alone (Jackson et al., 2016). How-
ever, models have limitations, and even with the aid of data
assimilation they cannot accurately simulate all aspects of
the climate system. Nevertheless, the process of creating and
assessing reanalyses itself can aid understanding, both of the
real world and of the underlying models. This can lead to im-
provements in these models, in turn leading to improvements
in the next generation of reanalyses and climate projections.

Physical ocean reanalyses are increasingly used for cli-
mate studies (Balmaseda et al., 2015; Storto et al., 2019),
and physical–biogeochemical reanalyses assimilating ocean
colour data on its own are starting to be developed (Ciavatta
et al., 2016; Ford and Barciela, 2017; Fennel et al., 2019).
It is not yet routine though for a single ocean reanalysis to
include the assimilation of both physical and biogeochemi-
cal data. A major reason for this is that, especially in global
models, assimilating physical observations has been widely
found to degrade biogeochemical fields (While et al., 2010;
Raghukumar et al., 2015; Park et al., 2018) through the cre-
ation of spurious vertical mixing. This is an outstanding issue
for the ocean data assimilation community and has not been
solved in this study. However, whilst this currently limits the
ability to produce stable long-term physical–biogeochemical
ocean reanalyses, consistency of variability and features can
still be explored, especially if the biogeochemistry is con-
strained by assimilation of ocean colour data.

This paper presents a set of physical–biogeochemical
ocean model runs, assimilating different combinations of
satellite data products, as well as in situ temperature and
salinity observations. These were performed as part of the
CCI CMUG. The aims of the study were the following:

– to assess whether the four marine ECVs developed as
part of phase one of CCI are mutually consistent from a
data assimilation perspective;

– to assess the consistency of physical–biogeochemical
relationships in reanalyses assimilating different com-
binations of these ECVs; and

– to assess the impact of assimilating the ECVs on the
marine carbon cycle.

To address these aims, the model runs have been assessed in
a variety of ways. Results are presented here evaluating the

assimilation increments, frontal features in the Agulhas Cur-
rent and Gulf Stream regions, sea ice extent and phytoplank-
ton blooms in the Arctic, validation against in situ carbon
observations, variability in the tropical Pacific, and the rela-
tionship between phytoplankton variability and air–sea heat
fluxes.

2 Model and assimilation

The model and assimilation setup used in this study, and the
couplings between different components, is shown schemat-
ically in Fig. 1. An overview of the components is given be-
low; for further details the reader is referred to the references
provided.

The physical modelling system was a reanalysis version
of v13.1 of the global Forecasting Ocean and Assimila-
tion Model (FOAM), which is run operationally at the Met
Office (Blockley et al., 2014). FOAM v13.1 includes the
GO5.0 configuration (Megann et al., 2014) of v3.4 of the
Nucleus for European Modelling of the Ocean (NEMO)
(Madec, 2008) hydrodynamic model, the GSI6.0 configu-
ration (Rae et al., 2015) of the Los Alamos sea ice model
(CICE) (Hunke and Lipscomb, 2010), and a 3D-Var con-
figuration of the NEMOVAR v3 data assimilation scheme
(Waters et al., 2015). FOAM v13.1 is a development of the
FOAM v12.0 system described by Blockley et al. (2014), and
the differences between the two are detailed by Jackson et al.
(2016). It is the same configuration that was used to produce
the GloSea5 physical ocean reanalysis (MacLachlan et al.,
2015; Jackson et al., 2016), with atmospheric forcing pro-
vided by the ERA-Interim reanalysis (Dee et al., 2011).

The biogeochemical model used was the Hadley Cen-
tre Ocean Carbon Cycle model (HadOCC) (Palmer and
Totterdell, 2001). HadOCC is a relatively simple nutrient–
phytoplankton–zooplankton–detritus (NPZD) model, with
six state variables, a fully coupled carbon cycle, and a vari-
able carbon-to-chlorophyll ratio. FOAM-HadOCC has been
used for previous assimilation studies (Ford et al., 2012;
While et al., 2012; Ford and Barciela, 2017). The HadOCC
model settings used in this study were the same as used by
Ford and Barciela (2017), except that atmospheric CO2 con-
centrations were taken from the National Oceanic and At-
mospheric Administration Earth System Research Labora-
tory (NOAA/ESRL) global monthly mean observation prod-
uct (Dlugokencky and Tans, https://www.esrl.noaa.gov/gmd/
ccgg/trends, last access: 31 October 2014). The coupling be-
tween FOAM and HadOCC was one-way, with no feedback
from biogeochemistry to physics.

Assimilation of physics data used the first guess at appro-
priate time (FGAT) 3D-Var NEMOVAR implementation of
Waters et al. (2015), with the added option to use multiple
correlation length scales developed by Mirouze et al. (2016).
The assimilation of ocean colour data was the same as the
approach taken by Ford et al. (2012) and Ford and Barciela
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Figure 1. Model and assimilation setup used. Arrows denote the direction of coupling.

(2017), except that the analysis correction scheme of Martin
et al. (2007) was replaced by the 3D-Var NEMOVAR im-
plementation of Waters et al. (2015). NEMOVAR was used
to create an analysis of surface log10(chlorophyll), and the
nitrogen balancing scheme of Hemmings et al. (2008) was
used to create a set of 3D increments to all the biogeochem-
ical state variables, which were applied to the model. The
nitrogen balancing scheme is designed to conserve mass and
balances nitrogen between variables based on whether phy-
toplankton growth or loss errors dominate (Hemmings et al.,
2008). Specific details regarding the assimilation of each
ECV are given in the following sections.

3 Observations

This study used various sets of satellite and in situ observa-
tion products for both assimilation and validation, and these
are described in turn below. Product versions used were the
most recent official releases available at the time the study
began.

Satellite ocean colour (OC) data were taken from the
v2 CCI product (Sathyendranath et al., 2017). This study
used level three (L3) daily average chlorophyll data, merg-
ing information from the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) on board SeaStar, the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on board Aqua,
and the Medium Resolution Imaging Spectrometer (MERIS)
on board Envisat. During the product generation MERIS
and MODIS remote sensing reflectances were bias-corrected
against SeaWiFS in order to minimise inter-sensor differ-
ences. The product also includes per-pixel uncertainty esti-
mates, following the approach of Moore et al. (2009).

Satellite sea surface temperature (SST) data were taken
from the v1.1 CCI product (Merchant et al., 2014). This study
used level two pre-processed (L2P) SST data from the Ad-
vanced Very High Resolution Radiometer (AVHRR) series
of sensors and level three uncollated (L3U) SST data from

the Along-Track Scanning Radiometer (ATSR) series of sen-
sors. Individual sensors were processed and provided sepa-
rately, with AVHRR bias-corrected against ATSR. Per-pixel
uncertainty estimates are included, as described by Bulgin
et al. (2016a, b).

Satellite sea level anomaly (SLA) data were taken from
the v1.1 CCI product (Ablain et al., 2015; https://doi.org/10.
5270/esa-sea_level_cci-1993_2014-v_1.1-201512, last ac-
cess: 8 February 2016). This study used the Fundamental Cli-
mate Data Record (FCDR) product, which provides level 2
(L2) single-sensor along-track SLA data for all available sen-
sors. SLA was calculated using the DTU10 (Andersen and
Knudsen, 2009; Andersen, 2010) mean sea surface as a ref-
erence.

Satellite sea ice concentration (SIC) data were taken from
the v1.2 reprocessed global level four (L4) product (Tonboe
et al., 2016) of the EUMETSAT Ocean and Sea Ice Satellite
Application Facility (OSI SAF) based on the Special Sen-
sor Microwave Imager/Sounder (SSMIS), the Special Sensor
Microwave/Imager (SSM/I), and the Scanning Multichannel
Microwave Radiometer (SMMR). An OSI SAF product was
used rather than CCI because the CCI SIC project began later
than the other ECVs, and an appropriate CCI product for
these experiments was not yet available when the study be-
gan. However, the OSI SAF and CCI SIC projects are led by
the same group, with shared research and development ca-
pabilities. Furthermore, OSI SAF products provide a consis-
tent time series from 1979, whereas CCI products use sensors
which only provide a consistent time series from 2002, mean-
ing the OSI SAF products are more appropriate for many re-
analysis users.

In situ SST data were taken from v2.5 of the International
Comprehensive Ocean–Atmosphere Data Set (ICOADS)
(Woodruff et al., 2011) for the period 1998–2007 and from
the Global Telecommunications System (GTS) from 2008
onwards. They include measurements from moored buoys,
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drifting buoys, and ships (Blockley et al., 2014; Jackson
et al., 2016).

In situ temperature and salinity profile (T&S) data were
taken from the EN4.1.1 product (Good et al., 2013) with
Gouretski and Reseghetti (2010) corrections.

In situ surface fugacity of carbon dioxide (f CO2) data
were taken from the v2 Surface Ocean CO2 Atlas (SOCAT)
product (Bakker et al., 2014). The capability to assimilate
these data exists (While et al., 2012), but in this study f CO2
observations were only used for validation.

4 Experiments

The aims of this study included assessing both spatial fea-
tures and interannual variability. The former requires a high
enough model resolution to represent such features, and
the latter requires multi-year model runs. Due to the com-
putational expense of the assimilative coupled physical–
biogeochemical model, multiple long runs were unable to
be performed at eddy-permitting resolution. Therefore, two
sets of model runs were performed at different resolutions.
To assess interannual variability, a set of 13-year runs was
performed at 1◦ horizontal resolution, covering the period
1 January 1998 to 31 December 2010, which are the full
years for which there are data from all four satellite ECV
products used in this study. To assess spatial features, a set
of 3-year runs was performed at 1/4◦ horizontal resolution,
covering the period 1 January 2008 to 31 December 2010.
The same vertical resolution was used in both cases, with
75 levels and a 1 m surface layer.

The same CICE and HadOCC settings were used for both
resolutions, but some NEMO settings needed to be changed
for running at 1◦ resolution compared with the 1/4◦ con-
figuration described by Megann et al. (2014). For the 1◦

runs, the eddy-induced velocity parameterisation of Gent and
McWilliams (1990) was turned on, and Laplacian rather than
bi-Laplacian lateral iso-level diffusion was used on momen-
tum, with associated mixing coefficients varying in 3D rather
than 2D. Furthermore, the special treatment of tidal mixing in
the Indonesian throughflow, as developed by Koch-Larrouy
et al. (2008), was only used at 1/4◦ resolution.

Prior to assimilation, observations of physical variables
were quality-controlled in the same manner as for the op-
erational FOAM system and GloSea5 reanalysis (Blockley
et al., 2014; Storkey et al., 2010). OC observations were
quality-controlled as described for CCI products by Ford and
Barciela (2017). All assimilated observations were median-
averaged to a resolution of 13 km for the 1/4◦ runs and
100 km for the 1◦ runs. For physics observations, the er-
ror variances used by NEMOVAR were those described by
Blockley et al. (2014) for the 1/4◦ runs, interpolated to 1◦

for the 1◦ runs. For OC observations, the error variances
were those described for CCI products by Ford and Barciela
(2017) for the 1◦ runs, interpolated to 1/4◦ for the 1/4◦ runs.

Table 1. Summary of model runs performed. SST refers to satellite
data only; in situ SST and profile data are included with T&S. HIGH
and LOW are intended as relative terms.

Run identifiers Assimilating

(HIGH= 1/4◦, LOW= 1◦) OC SST SIC SLA T&S

HIGH_FREE
LOW_FREE

HIGH_OC
X

LOW_OC

HIGH_SST
X

LOW_SST

HIGH_SIC
X

LOW_SIC

HIGH_SLA
X

LOW_SLA

HIGH_OC_SST_SIC
X X X

LOW_OC_SST_SIC

HIGH_OC_SST_SIC_SLA
X X X X

LOW_OC_SST_SIC_SLA

HIGH_OC_SST_SIC_SLA_T&S
X X X X X

LOW_OC_SST_SIC_SLA_T&S

For the 1/4◦ runs, two correlation length scales were used
by NEMOVAR for physical ocean variables, as described by
Mirouze et al. (2016). For OC and SIC at 1/4◦ resolution,
and all variables at 1◦ resolution, a single correlation length
scale was used based on the first baroclinic Rossby radius,
as described by Waters et al. (2015). Unlike the operational
FOAM system and GloSea5 reanalysis, no bias correction of
SST observations was performed in order to assess whether
the bias correction and processing performed during the cre-
ation of the SST CDR were sufficient to allow for a stable
reanalysis. However, SLA bias correction (Lea et al., 2008;
Blockley et al., 2014) was still performed using the DTU10
(Andersen and Knudsen, 2009; Andersen, 2010) mean dy-
namic topography (MDT), as this corrects for errors in the
MDT.

For the 1/4◦ runs, spun-up physical and biogeochemical
model fields were taken from a previous project, and used as
initial conditions with no further spin-up. For the 1◦ runs, a
dedicated spin-up was performed without data assimilation,
covering the period 1 January 1980 to 31 December 1997.
The initial conditions were the same as for the spin-up of
Ford and Barciela (2017), except for temperature and salin-
ity, which in this study were taken from the EN4.1.1 objec-
tive analysis for January 1980 (Good et al., 2013; Gouretski
and Reseghetti, 2010), and dissolved inorganic carbon (DIC)
and alkalinity, which were taken from the Global Data Anal-
ysis Project (GLODAP) climatology (Key et al., 2004) and
converted from per unit mass to per unit volume to match the
units used by HadOCC. At the end of the spin-up, a uniform
constant was added to the NEMO sea surface height (SSH)
fields to give a global mean SSH of zero, as the global mean
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SSH had drifted and would have caused a large initialisation
shock when SLA assimilation began. This procedure main-
tained all SSH gradients and features and had no impact on
model dynamics. These fields were then used as initial con-
ditions for the main 1◦ runs.

The model runs performed are summarised in Table 1. At
each resolution there were eight runs: a free run with no data
assimilation, four runs assimilating each satellite ECV indi-
vidually, a run assimilating all four satellite ECVs together,
a run assimilating all four satellite ECVs plus in situ SST
and temperature and salinity profiles (T&S), and a run as-
similating satellite SST, OC, and SIC. Unique identifiers for
each run are detailed in Table 1, prefixed with HIGH for
1/4◦ and LOW for 1◦, which are simply intended as relative
terms. The identifiers include the variables assimilated (e.g.
HIGH_OC_SST_SIC_SLA_T&S for the 1/4◦ run assimilat-
ing all data), with in situ SST and profile data included with
T&S.

In most cases, assimilation increments were applied at all
model grid points. However, for model stability the following
exceptions were required.

– No increments were applied in the Baltic Sea in the 1◦

runs, as it is treated as an enclosed sea at this resolution.

– No biogeochemical increments were applied in grid
boxes with SIC greater than 0.01, in a relaxation of the
conditions imposed by Ford et al. (2012) and Ford and
Barciela (2017).

– Phytoplankton nitrogen increments were limited in
magnitude to 1.0 mmol m−3 in a region surrounding
the Amazon River outflow, prior to running the Hem-
mings et al. (2008) nitrogen balancing scheme. This was
to avoid spuriously large DIC increments at very low
chlorophyll concentrations in the region of freshwater
influence.

– No assimilation was performed on 18 January 2000 in
1◦ runs including SLA assimilation, as a few anoma-
lously large SLA observations resulted in unrealistic in-
crements.

– Near the Antarctic coast during February and March,
sparse SLA and T&S observations located in melt
ponds occasionally led to unrealistically large
increments being generated in LOW_SLA and
LOW_OC_SST_SIC_SLA_T&S. In these cases, no
increments were applied for a short period in the
surrounding region until the ice had melted further.

– SLA assimilation is designed to be performed in com-
bination with T&S assimilation (Lea et al., 2014), and
assimilating SLA data on their own can sometimes re-
sult in adverse changes to subsurface density structure
in energetic regions. This occasionally led to a model in-
stability in the Malvinas Current region in HIGH_SLA,

and so to prevent this no increments were applied in this
region on 12 dates during the run. This was also required
on one date during HIGH_OC_SST_SIC_SLA_T&S.

5 Results

The model runs have been assessed through a series of case
studies, presented in turn below. These are intended to ex-
plore physical–biogeochemical relationships in the model
and observations, and the impact of data assimilation on
these, rather than simply validating the accuracy of the re-
analyses. For validation of the underlying system, the reader
is referred to Blockley et al. (2014) for the physical model
and assimilation, Ford and Barciela (2017) for the biogeo-
chemical model and assimilation, and Lea et al. (2014) and
King et al. (2020) for data withholding experiments per-
formed with the physics-only system.

5.1 Assimilation increments

A measure of how hard the data assimilation is working is
the long-term mean and standard deviation of the assimila-
tion increments. This can also provide important information
about model biases. The larger the increments, the larger the
corrections being applied to the model to try to keep it close
to the observations. In theory, if the observation products are
providing consistent information and the model and assimi-
lation scheme are performing as intended, then assimilating
multiple ECVs should result in smaller mean increments for
a given ECV compared with assimilating that ECV alone.
To test that theory, maps of the mean increments for 1998–
2010 are plotted for OC (Fig. 2) and SST (Fig. 3) from each
of the 1◦ runs assimilating those ECVs. For runs assimilat-
ing multiple ECVs, the difference in the absolute mean in-
crements from the run assimilating the single ECV is also
plotted. Note that there is no feedback from the biogeochem-
istry to the physics, so assimilating OC has no impact on the
physics variables. Mean increments from the 1/4◦ runs (not
shown) showed generally consistent patterns with those from
the 1◦ runs, apart from when assimilating SLA, as discussed
below.

When OC was assimilated individually, the mean surface
log10(chlorophyll) increments were negative across most of
the ocean (Fig. 2a), indicating a persistent model bias which
the assimilation was continually trying to correct. This is
consistent with the validation presented in Ford and Bar-
ciela (2017). When SST was also assimilated (Fig. 2b, c), the
magnitude of the mean increments was slightly increased,
particularly around the edges of the subtropical gyres. In
LOW_FREE the global mean SSH drifted over time due to
a freshwater imbalance in the model (Blockley et al., 2014).
Assimilating SST without also assimilating T&S is known to
generate spurious heat beneath the mixed layer, which served
to reduce the drift in SSH, but by introducing a compensating
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Figure 2. Mean surface log10(chlorophyll) assimilation increments for 1998–2010.

error. This resulted in the spatial extent of the oligotrophic
gyres spuriously shrinking, leading to excess primary pro-
duction which the OC assimilation was continually trying to
reduce. Globally, the magnitude of the log10(chlorophyll) in-
crements was then increased considerably when SLA was
also assimilated (Fig. 2d, e) and remained increased when
T&S was assimilated (Fig. 2f, g). The reason for this is the
issue mentioned in the Introduction, and explored by While
et al. (2010) and Park et al. (2018), that assimilating SLA and
T&S results in spurious vertical mixing, especially in equa-
torial regions, bringing excess nutrients to the surface and

fuelling primary production. Counterintuitively, despite the
biggest impact on mixing being at the Equator, the biggest
impact on the log10(chlorophyll) increments was away from
the Equator. This is because phytoplankton growth in these
runs was not generally nutrient-limited around the Equator,
so an increased nutrient supply had little impact on chloro-
phyll concentration. However, over the 13 years of the runs
these nutrients were advected away from the Equator into
surrounding nutrient-limited regions, resulting in excessive
primary production and an increase in the mean increments
as the assimilation tried to correct this.
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Figure 3. Mean SST assimilation increments for 1998–2010.

When SST was assimilated individually, the mean SST in-
crements were also generally negative (Fig. 3a), indicating a
persistent warm bias in the model, consistent with the find-
ings of Blockley et al. (2014). When SLA assimilation was
also introduced (Fig. 3b, c), the mean increments increased in
magnitude, apparently due to the subsurface density correc-
tions applied by the SLA assimilation not being entirely con-
sistent with the SST, meaning larger SST increments were
required to correct the bias. It has previously been shown
by Lea et al. (2014) that SLA assimilation is best performed
in combination with T&S assimilation, as this allows sub-
surface density errors in the model to be corrected. Adding
T&S assimilation (Fig. 3d, e) reduced the mean increments,
but they remained larger than when assimilating SST alone.

When SLA was assimilated individually (not shown), the
SLA increments were largest in energetic regions such as
around the Equator and western boundary currents, as well
as the Southern Ocean. There was no clear global bias due
to the SLA bias correction scheme (Lea et al., 2008). In
the 1◦ model, adding SST assimilation had little impact

on the increments, whilst adding T&S assimilation resulted
in patchy increases in mean SLA increments. In the 1/4◦

model, adding SST assimilation served to reduce the mean
SLA increments, and adding T&S assimilation greatly re-
duced them further. This latter result is consistent with Lea
et al. (2014) and highlights the complementarity of SLA and
T&S data. The contrasting findings in the 1◦ model are likely
due to the coarse resolution, which is unable to resolve ed-
dies, and the fact that the error covariances were not tuned
for the lower resolution.

Assimilating SIC and SST in combination reduced both
the mean SIC and SST increments applied in the Antarctic,
compared with assimilating SIC and SST individually, but
not in the Arctic, where the impact was minimal (not shown).

The finding that assimilating multiple ECVs often results
in larger mean increments for a given ECV compared with
assimilating that ECV alone implies that either the observa-
tion products are providing inconsistent information or that
the model and assimilation are not performing entirely as in-
tended. Analysis suggests the latter to be the case, meaning
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that looking at mean increments does not provide evidence
either way about whether the CCI products are mutually con-
sistent. It does, though, highlight issues with the multivariate
assimilation which can be addressed during future develop-
ment work. It should also be noted that the physics data as-
similation is designed to work best when all data types are
available, as these provide complementary information (Lea
et al., 2014).

5.2 Fronts and eddies

An important way in which CDRs and reanalyses should be
consistent is in the representation of spatial features, such
as the positioning of fronts and eddies and details of ma-
jor currents such as the Agulhas and Gulf Stream. This can
be assessed by analysing the horizontal gradients of differ-
ent fields. Following the method of Martin (2016), horizon-
tal gradients of SST, SLA, and surface log10(chlorophyll)
were calculated by bilinearly interpolating model fields to
observation locations, binning the resulting model and ob-
servation values onto a regular grid over a month, and cal-
culating their spatial derivative. Gradients have been plotted
for the final month, December 2010, in the Agulhas Cur-
rent (Fig. 4) and Gulf Stream (Fig. 5) regions for the CCI
products and the 1/4◦ free run and runs assimilating SST,
SLA, and OC individually and in combination. SST and sur-
face log10(chlorophyll) were binned onto a 1/4◦ grid, as this
gave the clearest resolution of features for these variables,
whilst SLA was binned onto a 1/2◦ grid due to the lower
observational coverage. These regions were chosen due to
their complex variability and physical–biogeochemical inter-
actions. Similar conclusions have been found from looking at
other regions (not shown).

In the Agulhas Current region, a good correspondence can
be seen between features in each variable in the observa-
tion fields (Fig. 4a–c). While the position of gradients is not
expected to be identical in all fields, SST fronts can gener-
ally be found around the eddies identified in the SLA fields,
with the log10(chlorophyll) gradients showing bloom activ-
ity along these fronts, relating to the advection of nutrients
(Machu et al., 2005). This suggests that the CCI products
are giving a suitably complementary view of such features.
In HIGH_FREE (Fig. 4d–f), SST and SLA gradients are
found in similar locations to the observations, but not quite
as sharp, and the ocean is less energetic, as expected from an
eddy-permitting-resolution model. High primary production
associated with the Agulhas retroflection is captured well,
but otherwise the log10(chlorophyll) gradients are a poor
match for the observed fields. Gradients associated with SST
fronts are too weak, and Southern Ocean primary produc-
tion is too high and overly homogeneous, leading to a spuri-
ously strong gradient at the boundary of the Indian Ocean
and Southern Ocean. In HIGH_SST (Fig. 4g–i) improve-
ments are seen in the positions of both SST and SLA gra-
dients. Some small strengthening of log10(chlorophyll) gra-

dients is seen. In HIGH_SLA (Fig. 4j–l) the ocean becomes
more energetic and the match with observed SLA gradients
is improved, but the impact on SST and log10(chlorophyll)
gradients is mixed. In HIGH_OC (Fig. 4m–o) there is no
impact on physical fields due to the one-way coupling in
the model, but log10(chlorophyll) gradients are greatly im-
proved although still weaker than in the observations. In
HIGH_OC_SST_SIC_SLA (Fig. 4p–r), the best match for
observed gradients of both SST and SLA can be seen. The
log10(chlorophyll) gradients are similar in magnitude but
overly noisy compared with HIGH_OC, likely due to exces-
sive vertical mixing resulting from the assimilation of SLA
data, but the spurious gradient in production between the
Southern Ocean and Indian Ocean is finally removed.

In the Gulf Stream region (Fig. 5), similar results were
found. In the observation fields SST and log10(chlorophyll)
fronts are largely collocated and situated around eddies iden-
tified in the SLA products. In HIGH_FREE the SST gradi-
ents are broadly similar to the observed fields, but some spe-
cific features are lacking. SLA and log10(chlorophyll) gradi-
ents are found in corresponding locations but are too weak
in magnitude compared to the observations. In HIGH_SST
the position and magnitude of gradients are improved in all
three fields. In HIGH_SLA the SLA gradients are improved,
with some improvement to SST and log10(chlorophyll) gra-
dients, but there is also increased noise. In HIGH_OC the
locations of log10(chlorophyll) gradients match those in the
observed fields, but the magnitude remains too weak. In
HIGH_OC_SST_SLA the best combined representation of
gradients in the three fields is seen.

5.3 Sea ice extent

Consistency is expected between SST and SIC in satellite
products and analyses derived from them (Roberts-Jones
et al., 2012). Consistency should also be expected between
OC and SIC products. Simply in terms of observational cov-
erage, OC cannot be observed under ice cover, and nearby
ice may affect satellite retrievals (Bélanger et al., 2007),
so OC data should not be expected at locations where the
OC retrieval would be contaminated by sea ice (Wang and
Shi, 2009). Furthermore, phytoplankton blooms often oc-
cur around the ice edge, where freshly melted ice reveals
nutrient-rich stratified waters (Perrette et al., 2011). These
would be expected to be identified in observed and mod-
elled chlorophyll fields in locations commensurate with the
ice edge in SIC products.

Maps of SIC and surface chlorophyll in the Arctic are plot-
ted from the observation products and a selection of 1/4◦

model runs for the 8 d period of 17–24 May 2010 (Fig. 6).
This period was chosen as it is during the spring bloom and
ice melt in the Arctic, has good observational coverage, and
contains interesting and representative features. Daily ocean
colour products have insufficient spatial coverage, but the 8 d
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Figure 4. Observed and modelled gradients in the Agulhas Current region for December 2010.

composite product for this period has near-complete cover-
age while still representing a snapshot of conditions.

In the observation products (Fig. 6a, b), the limit of OC
coverage mostly matches the ice edge, as defined by the 0.15
contour (Parkinson and Cavalieri, 2008) and overlaid in red
on the plots. In a few locations there are OC observations col-
located with sea ice, but only where the SIC is low. Further-
more, the 8 d OC product is a composite, while the mean of
the L4 SIC products over the period has been plotted, so this
may be due to variability in SIC over the 8 d. Overall, OC
coverage can be considered consistent with the SIC fields.
Chlorophyll blooms can also be seen near to the ice edge in
the Barents Sea and Bering Sea.

In HIGH_FREE (Fig. 6c, d), SIC is a reasonable quali-
tative match for the observations, but the concentrations are
generally too low, and the ice edge is too far south. There is
a chlorophyll bloom in the Barents Sea, near the ice edge in
the model, but not in the Bering Sea. Within the ice-covered
region, high chlorophyll concentrations are found in areas
with moderate SIC. Observational studies have confirmed the
presence of chlorophyll blooms under sea ice (Arrigo et al.,
2012), but no observations are available for model validation.

In HIGH_SST, the position of the ice edge is a much better
match for the observations than in HIGH_FREE. This sug-
gests that the CCI SST products are consistent with the SIC
products and that assimilating SST therefore improves SIC.
Chlorophyll fields remain similar, except that the bloom in
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Figure 5. Observed and modelled gradients in the Gulf Stream region for December 2010.

the Barents Sea extends further north up to the altered ice
edge.

HIGH_SIC has a further improved ice edge position and
higher SIC within the ice region, better matching the ob-
servations. This increase in SIC has the effect of reducing
the chlorophyll concentration in these areas. The lack of in
situ observations means this change cannot be validated, but
lower chlorophyll associated with greater ice cover is a con-
sistent response due to the decrease in light availability.

HIGH_OC improves chlorophyll near and away from the
ice edge, including introducing bloom activity in the Bering
Sea. Since SIC is unconstrained, though, the assimilative
model cannot capture exact details around the ice edge. Nor

is any change seen within the ice region, where there are no
OC observations.

In HIGH_OC_SST_SIC, the best match for the SIC and
OC observations is seen, as is reduced bloom activity in the
ice region.

5.4 Carbon cycle validation

A key aim of global marine biogeochemical reanalysis is to
study the carbon cycle and provide the best possible esti-
mates of surface f CO2 and air–sea CO2 flux. This can in-
form the study of the global carbon budget (e.g. Le Quéré
et al., 2018).
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Figure 6. SIC (left column) and surface chlorophyll (right column)
for 17–24 May 2010 from observed (a, b) and modelled (c–l) fields.
In (b) chlorophyll blooms in the Bering Sea and Barents Sea are
marked with Be and Ba, respectively.

To assess the impact of assimilating different CCI products
on the model’s ability to reproduce surface f CO2, each run
has been validated against observations from the SOCAT v2
database (Bakker et al., 2014). The observations were passed

to the model while it was running, and an observation opera-
tor was used which bilinearly interpolated the model fields to
the observation locations at the nearest model time step to the
observation time. From these match-ups, validation statistics
have been calculated and displayed as a Taylor plot (Taylor,
2001) in Fig. 7. As in Ford and Barciela (2017), observations
in shelf seas, defined as waters where the bottom depth is
< 200 m (Simpson and Sharples, 2012), have been excluded
from the validation. This is because a relatively coarse global
model without tides is unable to represent complex shelf sea
processes. In Fig. 7 a point is plotted for each model run in
Table 1, comparing to all off-shelf f CO2 observations during
the length of that run (1998–2010 for the 1◦ runs, 2008–2010
for the 1/4◦ runs). Furthermore, a point has been plotted for
each of the 1◦ runs just assessing the years 2008–2010, al-
lowing for a direct comparison between the 1◦ and 1/4◦ runs.

At each resolution, assimilating OC or SIC products re-
sulted in a small improvement in f CO2 statistics, while as-
similating SST resulted in a small degradation. Assimilating
all three together improved the normalised standard deviation
while lowering the correlation. Assimilating SLA products,
either individually or in combination with other variables, re-
sulted in a large degradation in f CO2 statistics. This is due
to the impact on vertical mixing processes mentioned in the
Introduction.

Comparing the 1◦ and 1/4◦ runs for 2008–2010, for all
combinations of assimilation the 1/4◦ runs show a small
but marked improvement in f CO2 statistics. Given that the
double-penalty effect (Gilleland et al., 2009) often masks im-
provements due to model resolution, this is a clear suggestion
that the higher-resolution model is better able to accurately
represent f CO2.

5.5 Temporal variability

A major driver of climate variability is the El Niño–Southern
Oscillation (ENSO). One measure of ENSO variability is the
Niño 3.4 index (Fig. 8a), calculated as the 5-month running
mean of SST anomalies in the Niño 3.4 region (5◦ N–5◦ S,
170–120◦W) of the tropical Pacific (Trenberth, 1997). To
explore the representation of ENSO variability in SST, ver-
tically integrated primary production (PP) and air–sea CO2
flux, and the impact of SST and OC assimilation and model
resolution, 5-month running means of these variables av-
eraged over the Niño 3.4 region are plotted in Fig. 8. For
LOW_FREE and HIGH_FREE the absolute values are plot-
ted, and for LOW_SST, HIGH_SST, LOW_OC, HIGH_OC,
LOW_OC_SST_SIC, and HIGH_OC_SST_SIC, anomalies
from LOW_FREE and HIGH_FREE are plotted.

ENSO variability in SST is well reproduced in
LOW_FREE (Fig. 8b), aligning with ENSO events seen in
the observed Niño 3.4 SST index (Fig. 8a) as calculated from
HadISST1 data (Rayner et al., 2003) and downloaded from
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.
long.anom.data (last access: 28 May 2020). HIGH_FREE
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Figure 7. Taylor plot showing global f CO2 statistics against SOCAT v2 for each run.

shows very similar variability, but with slightly higher SST
than LOW_FREE. In the first few years of LOW_SST, the
assimilation acted to reduce SST compared to LOW_FREE
(Fig. 8c), enhancing the prolonged La Niña (negative Niño
3.4 SST index) conditions of the period. The assimilation
also served to enhance the El Niño (positive Niño 3.4 SST
index) of 2009/10 but otherwise largely just modulated sea-
sonal variability of SST rather than interannual variability. In
HIGH_SST there was a similar impact on variability, but the
anomaly from HIGH_FREE is offset in magnitude from that
between LOW_SST and LOW_FREE, with the assimilation
consistently cooling the model.

Very low PP is seen in LOW_FREE (Fig. 8d) at the be-
ginning of the time series, related to the major El Niño
event of 1997/98. Much more limited interannual vari-
ability is seen through the rest of the period, but with
slightly reduced PP during the 2002/03 and 2009/10 El
Niño events. Variability in HIGH_FREE is very similar to
that in LOW_FREE but slightly offset in magnitude, as
with SST. Assimilating SST individually had a limited im-
pact on PP (Fig. 8e), while assimilating OC individually
served to substantially reduce PP and impact seasonal vari-
ability. In LOW_OC_SST_SIC the SST assimilation made
more difference than in LOW_SST, including changing in-

terannual variability during the 1998–2001 La Niña con-
ditions. The difference between LOW_OC_SST_SIC and
HIGH_OC_SST_SIC is frequently greater than the com-
bined difference between LOW_SST and HIGH_SST and
between LOW_OC and HIGH_OC.

In air–sea CO2 flux a clear ENSO signal is seen in
LOW_FREE (Fig. 8f), similar to that in SST. HIGH_FREE
displays the same variability but with a clear offset. The
smaller offsets in SST and PP may contribute to this, but
it is most likely caused by differences in the initialisation
of DIC and alkalinity (Lebehot et al., 2019). Assimilation
of OC data had little impact (Fig. 8g), while assimilation of
SST had an impact on the seasonal cycle and slightly reduced
air–sea CO2 flux anomalies during La Niña conditions. SST
assimilation also served to increase the differences between
LOW_FREE and HIGH_FREE.

5.6 Phytoplankton and air–sea heat flux

One of the most dramatic and important features of the ma-
rine ecosystem is the spring bloom, and interannual variabil-
ity in this can have wide-ranging impacts from carbon stor-
age to fish stocks. Debate continues as to the exact mecha-
nism which causes the bloom to occur (Behrenfeld and Boss,
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Figure 8. The 5-month running mean time series of variables averaged over the Niño 3.4 region (5◦ N–5◦ S, 170–120◦W). (a) Observed
Niño 3.4 SST index (Trenberth, 1997) as calculated from HadISST1 data (Rayner et al., 2003) and downloaded from https://psl.noaa.gov/
gcos_wgsp/Timeseries/Data/nino34.long.anom.data (last access: 28 May 2020). (b) SST in free runs, (c) anomaly of SST from free runs,
(d) vertically integrated primary production in free runs, (e) anomaly of vertically integrated primary production from free runs, (f) air–sea
CO2 flux in free runs, (g) anomaly of air–sea CO2 flux from free runs.

2014, 2018), but some studies have suggested a direct link
between the timing of the annual increase in phytoplankton
and the timing of the net air–sea heat fluxes switching from
negative to positive (Taylor and Ferrari, 2011; Smyth et al.,
2014). Other studies have reached contrasting (Mahadevan

et al., 2012) or mixed (Brody et al., 2013) conclusions. This
may in part be due to some studies looking at chlorophyll
concentration and others at phytoplankton biomass (West-
berry et al., 2016; Behrenfeld and Boss, 2018). The relation-
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ship between phytoplankton and net air–sea heat flux at other
stages of the seasonal cycle also remains an open question.

To explore this relationship over a long model time series
and throughout the seasonal cycle, as well as the impact on
this of assimilating SST and OC data, maps of the correla-
tion between surface chlorophyll concentration and net air–
sea heat flux and between surface phytoplankton biomass and
net air–sea heat flux are plotted in Fig. 9 for LOW_FREE,
LOW_OC, LOW_SST, and LOW_OC_SST_SIC calculated
from the daily model outputs for 1998–2010.

In LOW_FREE (Fig. 9a, b), there is a moderate positive
correlation between chlorophyll and net air–sea heat flux in
the subpolar North Atlantic and North Pacific, the Southern
Ocean, and patches in the tropics. Elsewhere, there is gener-
ally a small to moderate negative correlation. Between phy-
toplankton biomass and net air–sea heat flux, there is a mod-
erate to strong positive correlation almost everywhere, except
for low correlation in the subtropical gyres and Indian Ocean.

In LOW_OC (Fig. 9c, d), the patterns of correlation be-
tween chlorophyll and net air–sea heat flux become more co-
herent at low latitudes, with positive correlation in the eastern
tropical Pacific and central Atlantic and negative correlation
in the subtropical gyres, western tropical Pacific, and Indian
Ocean. These patterns resemble patterns of mean chlorophyll
concentration (not shown). The correlation between phyto-
plankton biomass and net air–sea heat flux is weakened glob-
ally, with negative correlations in the subtropical gyres, be-
coming more like the correlation between chlorophyll and
net air–sea heat flux.

In LOW_SST (Fig. 9e, f), both the chlorophyll and phy-
toplankton biomass correlations with net air–sea heat flux
remain largely unaltered from LOW_FREE, though they
are slightly elevated in equatorial regions. Correlations in
LOW_OC_SST_SIC (Fig. 9g, h) largely resemble those in
LOW_OC, with some small regional differences.

The different patterns seen in LOW_FREE for chlorophyll
and phytoplankton biomass suggest that seasonal variations
in the carbon-to-chlorophyll ratio play an important role and
that studies based solely on chlorophyll data may not pro-
vide a full understanding of the underlying processes. This
would imply that models, which unlike observations can pro-
vide a year-round gap-free representation of relevant vari-
ables, should be able to provide a valuable contribution to
such studies, with data assimilation able to constrain them to
match available observations. However, assimilating OC data
weakened the correlation between phytoplankton biomass
and net air–sea heat flux in the model such that it became
more like the correlation between chlorophyll and net air–sea
heat flux. This may have been a realistic response, or it may
have been an artefact of the data assimilation method. In the
scheme used, when chlorophyll derived from OC is assimi-
lated, the phytoplankton biomass is updated so as to main-
tain the existing carbon-to-chlorophyll ratio in the model. In
essence, the assimilation assumes the carbon-to-chlorophyll
ratio to be correct and the phytoplankton biomass to be in er-

ror. However, it could be the carbon-to-chlorophyll ratio that
is in error or likely a mixture of both. Without widespread
observations of phytoplankton biomass, this is difficult to as-
sess and therefore to know how to interpret the results. But
if, for instance, a clear relationship could be determined be-
tween phytoplankton biomass and net air–sea heat flux or an-
other property, then the assimilation could be programmed
to update the carbon-to-chlorophyll ratio so as to maintain or
enhance this relationship in the model.

6 Summary

A series of experiments was performed to assess the mul-
tivariate consistency, from a data assimilation perspective,
of ESA CCI satellite observation products for ocean colour
(OC), sea surface temperature (SST), sea level anomaly
(SLA), and sea ice concentration (SIC). The products were
assimilated, individually and in combination, into a global
physical–biogeochemical ocean model to create a set of 13-
year reanalyses at 1◦ resolution and 3-year reanalyses at 1/4◦

resolution. These have been assessed through a series of case
studies examining the assimilation increments, frontal fea-
tures, sea ice extent and phytoplankton blooms, carbon cycle
validation, and the relationship between phytoplankton vari-
ability and air–sea heat fluxes.

In the assessment performed, the observation products
were found to be consistent in terms of their representation
of spatial features, such as fronts and eddies in the Agul-
has Current and Gulf Stream regions, and SST, OC, and SIC
around the retreating ice edge in the Arctic. This gives con-
fidence that the ESA CCI products can be used in synergy to
gain insights into the Earth system. In these cases, this con-
sistency transferred through the data assimilation, resulting
in an improved reanalysis when the satellite products were
assimilated in combination rather than just individually.

In other cases, assimilating particular variables served to
degrade rather than improve, the representation of other non-
assimilated variables in the reanalysis. This was found to
be due to issues with the model and data assimilation sys-
tem, rather than any lack of consistency between the obser-
vations being assimilated. Much of this was down to known
issues with physical data assimilation causing spurious verti-
cal mixing, which is not unique to the system used in this
study (While et al., 2010; Raghukumar et al., 2015; Park
et al., 2018). But it also revealed complex interactions be-
tween the model and assimilation, with the assimilation of in-
dividual variables improving some non-assimilated variables
while degrading others and correcting some compensating
errors while introducing others. The experiments performed
in this study highlight ways in which the model and assimila-
tion could each be developed accordingly, but there does not
appear to be any one simple fix. Addressing known model bi-
ases in variables such as SST and chlorophyll should reduce
such issues. Impacts on non-assimilated variables could also
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Figure 9. Maps of correlation between surface chlorophyll and net air–sea heat flux (left column) and between surface phytoplankton biomass
and net air–sea heat flux (right column), covering 1998–2010 for a selection of runs.

be counteracted by assimilating additional observations such
as nutrients (Yu et al., 2018), but these cannot be observed
from space and so observational coverage remains insuffi-
cient. The biogeochemical model could potentially benefit
from spatially varying parameterisations, with parameter val-
ues updated in a combined state–parameter estimation (e.g.
Simon et al., 2015).

Conclusions about model and assimilation performance,
as well as consistency and variability, apply similarly to both
the 1◦ and 1/4◦ configurations of the model. The higher-
resolution model was better able to simulate surface f CO2
with and without data assimilation. This may be due to im-
proved representation of processes in the 1/4◦ configuration
or may reflect differences in the initialisation of DIC and
alkalinity fields, which model f CO2 has been shown to be

sensitive to (Lebehot et al., 2019). The two resolutions show
comparable temporal variability, with data assimilation hav-
ing a similar impact. It is likely that conclusions about mul-
tivariate consistency are broadly generalisable to other reso-
lutions and potentially regional models, though as all models
and configurations have their own particular properties and
biases, exact results may vary.

Previous studies have suggested a direct correlation be-
tween the timing of the initiation of the spring bloom and that
of the annual switch from negative to positive air–sea heat
fluxes (Taylor and Ferrari, 2011; Smyth et al., 2014). Other
studies have reached contrasting (Mahadevan et al., 2012)
or mixed (Brody et al., 2013) conclusions. This may in part
be due to some studies looking at chlorophyll concentration
and others at phytoplankton biomass (Westberry et al., 2016;
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Behrenfeld and Boss, 2018). The reanalyses produced in this
study provided an opportunity to look at this relationship in
a long model time series and the impact of data assimila-
tion. In the free-running model, there was a strong positive
correlation between phytoplankton biomass and net air–sea
heat flux across much of the ocean, whereas for chlorophyll
concentration the correlation with net air–sea heat flux was
weaker and often negative at low latitudes. This suggests that
seasonal variations in the carbon-to-chlorophyll ratio play an
important role and that studies of phytoplankton bloom ini-
tiation based solely on chlorophyll data may not provide a
full understanding of the underlying processes. However, the
assimilation of OC data weakened the correlation between
phytoplankton biomass and net air–sea heat flux. In the ab-
sence of widespread in situ observations of phytoplankton
biomass, it is difficult to assess if this response was realistic
or due to a deficiency in the assimilation methodology. This
serves to emphasise the importance of studying multivariate
relationships and considering both observational and model
data.
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