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Abstract. The Met Office currently runs two operational
ocean forecasting configurations for the North West Eu-
ropean Shelf: an eddy-permitting model with a resolution
of 7 km (AMM7) and an eddy-resolving model at 1.5 km
(AMM15).

Whilst qualitative assessments have demonstrated the ben-
efits brought by the increased resolution of AMM15, par-
ticularly in the ability to resolve finer-scale features, it has
been difficult to show this quantitatively, especially in fore-
cast mode. Applications of typical assessment metrics such
as the root mean square error have been inconclusive, as the
high-resolution model tends to be penalised more severely,
referred to as the double-penalty effect. This effect occurs in
point-to-point comparisons whereby features correctly fore-
cast but misplaced with respect to the observations are pe-
nalised twice: once for not occurring at the observed location,
and secondly for occurring at the forecast location, where
they have not been observed.

An exploratory assessment of sea surface temperature
(SST) has been made at in situ observation locations using
a single-observation neighbourhood-forecast (SO-NF) spa-
tial verification method known as the High-Resolution As-
sessment (HiRA) framework. The primary focus of the as-
sessment was to capture important aspects of methodology
to consider when applying the HiRA framework. Forecast
grid points within neighbourhoods centred on the observing
location are considered as pseudo ensemble members, so that
typical ensemble and probabilistic forecast verification met-
rics such as the continuous ranked probability score (CRPS)
can be utilised. It is found that through the application of
HiRA it is possible to identify improvements in the higher-

resolution model which were not apparent using typical grid-
scale assessments.

This work suggests that future comparative assessments of
ocean models with different resolutions would benefit from
using HiRA as part of the evaluation process, as it gives a
more equitable and appropriate reflection of model perfor-
mance at higher resolutions.

1 Introduction

When developing and improving forecast models, an impor-
tant aspect is to assess whether model changes have truly im-
proved the forecast. Assessment can be a mixture of subjec-
tive approaches, such as visualising forecasts and assessing
whether the broad structure of a field is appropriate, or objec-
tive methods, comparing the difference between the forecast
and an observed or analysed value of “truth” for the model
domain.

Different types of intercomparison can be applied to iden-
tify the following different underlying behaviours:

– between different forecasting systems over an overlap-
ping region to check for model consistency between the
two;

– between two versions of the same model to test the value
of model upgrades prior to operational implementation;

– parent–son intercomparison, evaluating the impact of
downscaling or nesting of models;
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– a forecast comparison against reanalysis of the same
model, inferring the effect of resolution and forcing, es-
pecially in coastal areas.

There are a number of works which have used these types of
assessment to delve into the characteristics of forecast mod-
els (e.g. Aznar et al., 2016; Mason et al., 2019; Juza et al.,
2015) and produce coordinated validation approaches (Her-
nandez et al., 2015).

To aid the production of quality model assessment, ser-
vices exist which regularly produce multi-model assess-
ments to deliver to the ocean community (e.g. Lorente et al.,
2019b).

One of the issues faced when assessing high-resolution
models against lower-resolution models over the same do-
main is that often the coarser model appears to perform at
least equivalently or better when using typical verification
metrics such as root mean squared error (RMSE) or mean
error, which is a measure of the bias. Whereas a higher-
resolution model has the ability and requirement to forecast
greater variation, detail and extremes, a coarser model cannot
resolve the detail and will, by its nature, produce smoother
features with less variation resulting in smaller errors. This
can lead to the situation that despite the higher-resolution
model looking more realistic it may verify worse (e.g. Mass
et al., 2002; Tonani et al., 2019).

This is particularly the case when assessing forecast mod-
els categorically. If the location of a feature in the model
is incorrect, then two penalties will be accrued: one for not
forecasting the feature where it should have been and one
for forecasting the same feature where it did not occur (the
double-penalty effect, e.g. Rossa et al., 2008). This effect is
more prevalent in higher-resolution models due to their abil-
ity to, at least, partially resolve smaller-scale features of in-
terest. If the lower-resolution model could not resolve the
feature and therefore did not forecast it, that model would
only be penalised once. Therefore, despite giving poten-
tially better guidance, the higher-resolution model will verify
worse.

Yet, the underlying need to quantitatively show the value
of high-resolution led to the development of so-called “spa-
tial” verification methods which aimed to account for the fact
the forecast produced realistic features that were not neces-
sarily at the right place or at quite the right time (e.g. Ebert,
2008, or Gilleland, 2009). These methods have been in rou-
tine use within the atmospheric model community for a num-
ber of years with some long-term assessments and model
comparisons (e.g. Mittermaier et al., 2013, for precipitation).

Spatial methods allow forecast models to be assessed with
respect to several different types of focus. Initially, these
methods were classified into four groups. Some methods
look at the ability to forecast specific features (e.g. Davis et
al., 2006); some look at how well the model performs at dif-
ferent scales (scale separation, e.g. Casati et al., 2004). Oth-
ers look at field deformation (how much a field would have to

be transformed to match a “truth” field (e.g. Keil and Craig,
2007). Finally, there is neighbourhood verification, many of
which are equivalent to low-band-pass filters. In these meth-
ods, forecasts are assessed at multiple spatial or temporal
scales to see how model skill changes as the scale is varied.

Dorninger et al. (2018) provides an updated classifica-
tion of spatial methods, suggesting a fifth class of methods,
known as distance metrics, which sit between field deforma-
tion and feature-based methods. These methods evaluate the
distances between features, but instead of just calculating the
difference in object centroids (which is typical), the distances
between all grid point pairs are calculated, which makes dis-
tance metrics more similar to field deformation approaches.
Furthermore, there is no prior identification of features. This
makes distance metrics a distinct group that warrants being
treated as such in terms of classification. Not all methods
are easy to classify. An example of this is the integrated ice
edge error (IIEE) developed for assessing the sea ice extent
(Goessling et al., 2016).

This paper exploits the use of one such spatial technique
for the verification of sea surface temperature (SST) in or-
der to determine the levels of forecast accuracy and skill
across a range of model resolutions. The High-Resolution
Assessment framework (Mittermaier, 2014; Mittermaier and
Csima, 2017) is applied to the Met Office Atlantic Margin
Model running at 7 km (O’Dea et al., 2012, 2017; King et
al., 2018) (AMM7) and 1.5 km (Graham et al., 2018; Tonani
et al., 2019) (AMM15) resolutions for the North West Eu-
ropean Shelf (NWS). The aim is to deliver an improved un-
derstanding beyond the use of basic biases and RMSEs for
assessing higher-resolution ocean models, which would then
better inform users on the quality of regional forecast prod-
ucts. Atmospheric science has been using high-resolution
convective-scale models for over a decade and thus have ex-
perience in assessing forecast skill on these scales, so it is
appropriate to trial these methods on eddy-resolving ocean
model data. As part of the demonstration, the paper also
looks at how the method should be applied to different ocean
areas, where variation at different scales occurs due to under-
lying driving processes.

The paper was influenced by discussions on how to quan-
tify the added value from investments in higher-resolution
modelling given the issues around the double-penalty effect
discussed above, which is currently an active area of research
within the ocean community (Lorente et al., 2019a; Hernan-
dez et al., 2018; Mourre et al., 2018).

Section 2 describes the model and observations used in this
study along with the method applied. Section 3 presents the
results, and Sect. 4 discusses the lessons learnt while using
HiRA on ocean forecasts and sets the path for future work by
detailing the potential and limitations of the method.
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2 Data and methods

2.1 Forecasts

The forecast data used in this study are from the two products
available in the Copernicus Marine Environment Monitoring
Service (CMEMS; see, e.g. Le Traon et al., 2019, for a sum-
mary of the service) for the North West European Shelf area:

– NORTHWESTSHELF_ANALYSIS_FORECAST_
PHYS_004_001_b (AMM7) and

– NORTHWESTSHELF_ANALYSIS_FORECAST_
PHY_004_013 (AMM15).

The major difference between these two products is the
horizontal resolution: ∼ 7 km for AMM7 and 1.5 km for
AMM15. Both systems are based on a forecasting ocean
assimilation model with tides. The ocean model is NEMO
(Nucleus for European Modelling of the Ocean; Madec
and the NEMO team, 2016), using the 3D-Var NEMOVAR
system to assimilate observations (Mogensen et al., 2012).
These are surface temperature in situ and satellite mea-
surements, vertical profiles of temperature and salinity, and
along-track satellite sea level anomaly data. The mod-
els are forced by lateral boundary conditions from the
UK Met Office North Atlantic Ocean forecast model
and by the CMEMS Baltic forecast product (BALTIC-
SEA_ANALYSIS_FORECAST_PHY_003_006). The atmo-
spheric forcing is given by the operational European Centre
for Medium-Range Weather Forecasts (ECMWF) numerical
weather prediction model for AMM15 and by the operational
UK Met Office Global Atmospheric model for AMM7.

The AMM15 and AMM7 systems run once a day and pro-
vide forecasts for temperature, salinity, horizontal currents,
sea level, mixed layer depth and bottom temperature. Hourly
instantaneous values and daily 25 h de-tided averages are
provided for the full water column.

AMM7 has a regular latitude–longitude grid, whilst
AMM15 is computed on a rotated grid and regridded
to have both models delivered to the (CMEMS) data
catalogue (http://marine.copernicus.eu/services-portfolio/
access-to-products/, last access: October 2019) on a regular
grid. Table 1 provides a summary of the model configuration,
a fuller description can be found in Tonani et al. (2019).

For the purpose of this assessment, the 5 d daily mean po-
tential SST forecasts (with lead times of 12, 36, 60, 84 and
108 h) were utilised for the period from January to Septem-
ber 2019. Forecasts were compared for the co-located areas
of AMM7 and AMM15. Figure 1 shows the AMM7 and
AMM15 co-located domain along with the land–sea mask
for each of the models. AMM15 has a more detailed coast-
line and SST field than AMM7 due to its higher resolution.
When comparing two models with different resolutions, it is
important to know whether increased detail actually trans-
lates into better forecast skill. Additionally, the differences

in coastline representation can have an impact on any HiRA
results obtained, as will be discussed in a later section.

It should be noted that this study is an assessment of the
application of spatial methods to ocean forecast data and, as
such, is not meant as a full and formal assessment and eval-
uation of the forecast skill of the AMM7 and AMM15 ocean
configurations. To this end, a number of considerations have
had to be taken into account in order to reduce the com-
plexity of this initial study. Specifically, it was decided at
an early stage to use daily mean SST temperatures, as op-
posed to hourly instantaneous SST, as this avoided any influ-
ence of the diurnal cycle and tides on any conclusions made.
AMM15 and AMM7 daily means are calculated as means
over 25 h to remove both the diurnal cycle and the tides. The
tidal signal is removed because the period of the major tidal
constituent, the semidiurnal lunar component M2, is 12 h and
25 min (Howarth and Pugh, 1983). Daily means are also one
of the variables that are available from the majority of the
products within the CMEMS catalogue, including reanaly-
sis, so the application of the spatial methods could be rele-
vant in other use cases beyond those considered here. In ad-
dition, there are differences in both the source and frequency
of the air–sea interface forcing used in both the AMM7 and
AMM15 configurations which could influence the results.
Most notably, AMM7 uses hourly surface pressure and 10 m
winds from the Met Office Unified Model (UM), whereas
AMM15 uses 3-hourly data from ECMWF.

2.2 Observations

SST observations used in the verification were downloaded
from the CMEMS catalogue from the product

– INSITU_NWS_NRT_OBSERVATIONS_013_036.

This dataset consists of in situ observations only, includ-
ing daily drifters, mooring, ferry-box and conductivity–
temperature–depth (CTD) observations. This results in a
varying number of observations being available throughout
the verification period, with uneven spatial coverage over the
verification domain. Figure 2 shows a snapshot of the typ-
ical observational coverage, in this case for 12:00 UTC on
6 June 2019. This coverage is important when assessing the
results, notably when thinking about the size and type of area
over which an observation is meant to be representative of,
and how close to the coastline each observation is.

This study was set up to detect issues that should be con-
sidered by users when applying HiRA within a routine ocean
verification setup, using a broad assessment containing as
much data as were available in order to understand the im-
pact of using HiRA for ocean forecasts. Several assumptions
were made in this study.

For example, there is a temporal mismatch between the
forecasts and observations used. The forecasts (which were
available at the time of this study) are daily means of the
SSTs from 00:00 to 00:00 UTC, whilst the observations are
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Figure 1. AMM7 and AMM15 co-located areas. Note the difference in the land–sea boundaries due to the different resolutions, notably
around the Scandinavian coast. Contours show the model bathymetry at 200, 2000 and 4000 m.

Figure 2. Observation locations within the domain for 12:00 UTC
on 6 June 2019.

instantaneous and usually available hourly. For the purposes
of this assessment, we have focused on SSTs closest to the
midpoint of the forecast period for each day (nominally
12:00 UTC). Observation times had to be within 90 min of
this time, with any other times from the same observation
site being rejected. A particular reason for picking a single
observation time rather than daily averages was so that mov-
ing observations, such as drifting buoys, could be incorpo-
rated into the assessment. Creating daily mean observations
from moving observations would involve averaging reports
from different forecast grid boxes and hence contaminate the
signal that HiRA is trying to evaluate.

Future applications would probably contain a stricter
setup, e.g. only using fixed daily mean observations, or veri-
fying instantaneous (hourly) forecasts so as to provide a sub-
daily assessment of the variable in question.

3 HiRA

The HiRA framework (Mittermaier, 2014) was designed to
overcome the difficulties encountered in assessing the skill
of high-resolution models when evaluating against point ob-
servations. Traditional verification metrics such as RMSE
and mean error rely on precise matching in space and
time, by (typically) extracting the nearest model grid point
to an observing location. The method is an example of
a single-observation neighbourhood-forecast (SO-NF) ap-
proach, with no smoothing. All the forecast grid points
within a neighbourhood centred on an observing location are
treated as a pseudo ensemble, which is evaluated using well-
known ensemble and probabilistic forecast metrics. Scores
are computed for a range of (increasing) neighbourhood sizes
to understand the scale–error relationship. This approach as-
sumes that the observation is not only representative of its
precise location but also has characteristics of the surround-
ing area. WMO manual No. 8 (World Meteorological Organ-
isation, 2017) suggests that, in the atmosphere, observations
can be considered representative of an area within a 100 km
radius of a land station, but this is often very optimistic. The
manual states further: “For small-scale or local applications
the considered area may have dimensions of 10 km or less.”
A similar principle applies to the ocean; i.e. observations can
represent an area around the nominal observation location,
though the representative scales are likely to be very differ-
ent from in the atmosphere. The representative scale for an
observation will also depend on local characteristics of the
area, for example, whether the observation is on the shelf or
in the open ocean or likely to be impacted by river discharge.

There will be a limit to the useful forecast neighbourhood
size which can be used when comparing to a point observa-
tion. This maximum neighbourhood size will depend on the
representative scale of the variable under consideration. Put
differently, once the neighbourhoods become too big, there
will be forecast values in the pseudo ensemble which will
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Figure 3. Example of forecast grid point selections for different
HiRA neighbourhoods for a single observation point. A 3× 3 do-
main returns nine points that represent the nearest forecast grid
points in a square around the observation. A 5× 5 domain encom-
passes more points.

not be representative of the observation (and the local clima-
tology) and any skill calculated will be essentially random.
Combining results for multiple observations with very dif-
ferent representative scales (for example, a mixture of deep
ocean and coastal observations) could contaminate results
due to the forecast neighbourhood only being representative
of a subset of the observations. The effect of this is explored
later in this paper.

HiRA can be based on a range of statistics, data thresholds
and neighbourhood sizes in order to assess a forecast model.
When comparing deterministic models of different resolu-
tions, the approach is to equalise on the physical area of the
neighbourhoods (i.e. having the same “footprint”). By choos-
ing sequences of neighbourhoods that provide (at least) ap-
proximate equivalent neighbourhoods (in terms of area), two
or more models can be fairly compared.

HiRA works as follows. For each observation, several
neighbourhood sizes are constructed, representing the length
in forecast grid points of a square domain around the obser-
vation points, centred on the grid point closest to the observa-
tion (Fig. 3). There is no interpolation applied to the forecast
data to bring them to the observation point; all the data values
are used unaltered.

Once neighbourhoods have been constructed, the data can
be assessed using a range of well-known ensemble or proba-
bilistic scores. The choice of statistic usually depends on the
characteristics of the parameter being assessed. Parameters
with significant thresholds can be assessed using the Brier
score (Brier, 1950) or the ranked probability score (RPS)
(Epstein, 1969), i.e. assessing the ability of the forecast to
correctly locate a forecast in the correct threshold band. For
continuous variables such as SST, the data have been as-
sessed using the continuous ranked probability score (CRPS)
(Brown, 1974; Hersbach, 2000).

Figure 4. Example of how different forecast neighbourhood sizes
would contribute to the generation of a probability density function
around an observation (denoted by x). The larger the neighbour-
hood, the better described the pdf, though potentially at the expense
of larger spread. If a forecast point is invalid within the forecast
neighbourhood, that site is rejected from the calculations for that
neighbourhood size.

The CRPS is a continuous extension of the RPS. Whereas
the RPS is effectively an average of a user-defined set of
Brier scores over a finite number of thresholds, the CRPS ex-
tends this by considering an integral over all possible thresh-
olds. It lends itself well to ensemble forecasts of continu-
ous variables such as temperature and has the useful prop-
erty that the score reduces to the mean absolute error (MAE)
for a single-grid-point deterministic model comparison. This
means that, if required, both deterministic and probabilistic
forecasts can be compared using the same score.

CRPS=

∞∫
−∞

[Pfcst (x)−Pobs (x)]2dx (1)

Equation (1) defines the CRPS, where for a parameter x,
Pfcst(x) is the cumulative distribution of the neighbourhood
forecast and Pobs(x) is the cumulative distribution of the ob-
served value, represented by a Heaviside function (see Hers-
bach, 2000). The CRPS is an error-based score where a per-
fect forecast has a value of zero. It measures the difference
between two cumulative distributions: a forecast distribution
formed by ranking the (in this case, quasi)-ensemble mem-
bers represented by the forecast values in the neighbour-
hood and a step function describing the observed state. To
use an ensemble, HiRA makes the assumption that all grid
points within a neighbourhood are equi-probable outcomes
at the observing location. Therefore, aside from the observa-
tion representativeness limit, as the neighbourhood sizes in-
crease, this assumption of equi-probability will break down
as well, and scores become random. Care must therefore be
taken to decide whether a particular neighbourhood size is
appropriately representative. This decision will be based on
the length scales appropriate for a variable as well as the res-
olution of the forecast model being assessed. Figure 4 shows
a schematic of how different neighbourhood sizes contribute
towards constructing forecast probability density functions
around a single observation.
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AMM7 and AMM15 resolve different length scales of mo-
tion due to their horizontal resolution. This should be taken
into account when assessing the results of different neigh-
bourhood sizes. Both models can resolve the large barotropic
scale (∼ 200 km) and the shorter baroclinic scale off the shelf
in deep water. On the continental shelf, only the resolu-
tion of ∼ 1.5 km of AMM15 permits motions at the small-
est baroclinic scale since the first baroclinic Rossby radius
is on the order of 4 km (O’Dea et al., 2012). AMM15 repre-
sents a step change in representing the eddy dynamics vari-
ability on the continental shelf. This difference has an im-
pact also on the data assimilation scheme, where two hor-
izontal correlation length scales (Mirouze et al., 2016) are
used to represent large and small scales of ocean variabil-
ity. The long length scale is 100 km, while the short correla-
tion length scale aims to account for internal ocean processes
variability, characterised by the Rossby radius of deforma-
tion. Computational requirements restrict the short length
scale to be at least three model grid points, 4.5 and 21 km,
respectively, for AMM15 and AMM7 (Tonani et al., 2019).
Although AMM15 resolves smaller-scale processes, compar-
ing AMM7 and AMM15 in neighbourhood sizes between the
AMM7 resolution and multiples of this resolution will ad-
dress processes that should be accounted for in both models.

As the methodology is based on ensemble and probabilis-
tic metrics, it is naturally extensible to ensemble forecasts
(see Mittermaier and Csima, 2017), which are currently be-
ing developed in research mode by the ocean community, al-
lowing for intercomparison between deterministic and prob-
abilistic forecast models in an equitable and consistent way.

4 Model Evaluation Tools (MET)

Verification was performed using the Point-Stat tool, which
is part of the Model Evaluation Tools (MET) verification
package that was developed by the National Center for At-
mospheric Research (NCAR) and which can be configured to
generate CRPS results using the HiRA framework. MET is
free to download from GitHub at https://github.com/NCAR/
MET (last access: May 2019).

5 Equivalent neighbourhoods and equalisation

When comparing neighbourhoods between models, the pref-
erence is to look for similar-sized areas around an obser-
vation and then transform this to the closest odd-numbered
square neighbourhood, which will be called the “equivalent
neighbourhood”. In the case of the two models used, the most
appropriate neighbourhood size can change depending on the
structure of the grid, so the user needs to take into consider-
ation what is an accurate match between the models being
compared.

The two model configurations used in this assessment
are provided on standard latitude–longitude grids via the

Figure 5. Similar neighbourhood sizes for a 49 km neighbourhood
using the approximate resolutions (7 and 1.5 km) with (a) AMM7
with a 7× 7 neighbourhood and (b) AMM15 with a 33× 33 neigh-
bourhood. Whilst the neighbourhoods are similar sizes in the lati-
tudinal direction, the AMM15 neighbourhood is sampling a much
larger area due to different scales in the longitudinal direction. This
means that a comparison with a 25×25 AMM15 neighbourhood is
more appropriate.

CMEMS catalogue. The AMM7 and AMM15 configurations
are stated to have resolutions approximating 7 and 1.5 km,
respectively. Thus, equivalent neighbourhoods should sim-
ply be a case of matching neighbourhoods with similar spa-
tial distances. In fact, AMM15 is originally run on a ro-
tated latitude–longitude grid where the resolution is closely
approximated by 1.5 km and subsequently provided to the
CMEMS catalogue on the standard latitude–longitude grid.
Once the grid has been transformed to a regular latitude–
longitude grid, the 1.5 km nominal spatial resolution is not as
accurate. This is particularly important when neighbourhood
sizes become larger, since any error in the approximation of
the resolution will become multiplied as the number of points
being used increases.

Additionally, the two model configurations do not have the
same aspect ratio of grid points. AMM7 has a longitudinal
resolution of∼ 0.11◦ and a latitudinal resolution of∼ 0.066◦

(a ratio of 3 : 5), whilst the AMM15 grid has a resolution of
∼ 0.03 and ∼ 0.0135◦, respectively (a ratio of 5 : 11). HiRA
neighbourhoods typically contain the same number of grid
points in the zonal and meridional directions which will lead
to discrepancies in the area selected when comparing models
with different grid aspect ratios, depending on whether the
comparison is based on neighbourhoods with a similar lon-
gitudinal or similar latitudinal size. This difference will scale
as the neighbourhood size increases, as shown in Fig. 4 and
Table 2. The onus is therefore on the user to understand any
difference in grid structure, and therefore within the HiRA
neighbourhoods, between models being compared and to al-
low for this when comparing equivalent neighbourhoods.

For this study, we have matched neighbourhoods between
model configurations based on their longitudinal size. The
equivalent neighbourhoods used to show similar areas within
the two configurations are indicated in Table 2 along with the
bar style and naming convention used throughout.

For ocean applications, there are other aspects of the pro-
cessing to be aware of when using neighbourhood meth-
ods. This is mainly related to the presence of coastlines and
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Table 1. Summary of the main differences between NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_001_b (AMM7) and
NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_013 (AMM15).

Resolution Atmospheric forcing Geographical model domain

AMM7 ∼ 7 km MetUM 10 km 40–65◦ N, 20◦W–13◦ E
AMM15 ∼ 1.5 km ECMWF IFS ∼ 14 km ∼ 45–63◦ N, ∼ 20◦W–13◦ E

Table 2. Details of equivalent neighbourhoods used when comparing AMM7 and AMM15.

AMM7 AMM15

Name Total points Shape Size (E–W) Total points Shape Size (E–W)

Actual (◦) Nominal (km) Actual (◦) Nominal (km)

NB1 1 1× 1 0.11 7 25 5× 5 0.15 7.5
NB2 9 3× 3 0.33 21 121 11× 11 0.33 16.5
NB3 25 5× 5 0.55 35 361 19× 19 0.57 28.5
NB4 49 7× 7 0.77 49 625 25× 25 0.76 37.5
NB5 81 9× 9 0.99 63 1089 33× 33 0.99 49.5

how their representation changes resolution (as defined by
the land–sea mask) and the treatment of observations within
HiRA neighbourhoods. Figure 5 illustrates the contrasting
land–sea boundaries due to the different resolutions of the
two configurations. When calculating HiRA neighbourhood
values, all forecast values in the specific neighbourhood
around an observation must be present for a score to be cal-
culated. If any forecast points within a neighbourhood con-
tain missing data, then that observation at that neighbour-
hood size is rejected. This is to ensure that the resolution of
the “ensemble”, which is defined or determined by the num-
ber of members, remains the same. For typical atmospheric
fields such as screen temperature, this is not an issue, but
with parameters that have physical boundaries (coastlines),
such as SST, there will be discontinuities in the forecast field
that depend on the location of the land–sea boundary. For
coastal observations, this means that as the neighbourhood
size increases, it is more likely that an observation will be re-
jected from the comparison due to missing data. Even at the
grid scale, the nearest model grid point to an observation may
not be a sea point. In addition, different land–sea borders be-
tween models mean that potentially some observations will
be rejected from one model comparison but will be retained
in the other because of missing forecast points within their
respective neighbourhoods. Care should be taken when im-
plementing HiRA to check the observations available to each
model configuration when assessing the results and make a
judgement as to whether the differences are important.

There are potential ways to ensure equalisation, for exam-
ple, only using observations that are available in both con-
figurations for a location and neighbourhoods, or only obser-
vations away from the coast. For the purposes of this study,
which aims to show the utility of the method, it was judged
important to use as many observations as possible, so as to

capture any potential pitfalls in the application of the frame-
work, which would be relevant to any future application of
it.

Figure 6 shows the number of observations available to
each neighbourhood for each day during September 2019.
For each model configuration, it shows how these observa-
tions vary within the HiRA framework. There are several rea-
sons for the differences shown in the plot. There is the differ-
ence mentioned previously whereby a model neighbourhood
includes a land point and therefore is rejected from the cal-
culations because the number of quasi-ensemble members is
no longer the same. This is more likely for coastal observa-
tions and depends on the particularities of the model land–
sea mask near each observation. This rejection is more likely
for the high-resolution AMM15 when looking at equivalent
areas, in part due to the larger number of grid boxes being
used; however, there are also instances of observations be-
ing rejected from the coarser-resolution AMM7 and not the
higher-resolution AMM15 due to nuances of the land–sea
mask.

It is apparent that for equivalent neighbourhoods there are
typically more observations available for the coarser model
configuration and that this difference is largest for the small-
est equivalent neighbourhood size but becoming less obvi-
ous at larger neighbourhoods. It could therefore be worth
considering that the large benefit in AMM15 when look-
ing at the first equivalent neighbourhood is potentially in-
fluenced by the difference in observations. As the neighbour-
hood sizes increase, the number of observations reduces due
to the higher likelihood of a land point being part of a larger
neighbourhood. It is also noted that there is a general daily
variability in the number of observations present, based on
differences in the observations reporting on any particular
day within the co-located domain.
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Figure 6. Number of observation sites within NB1, NB3 and NB5 for AMM15 and AMM7. Numbers are those used during September 2019
but represent typical total observations during a month. Matching line styles represent equivalent neighbourhoods.

Figure 7. Verification results using a typical statistics approach for
January–September 2019. Mean error (a), root mean square er-
ror (b) and mean absolute error (c) results are shown for the two
model configurations. Two methods of matching forecast to obser-
vations points have been used: a nearest-neighbour approach (solid)
representing the single-grid-point results from HiRA and a bilinear
interpolation approach (dashed) more typically used in operational
ocean verification.

6 Results

Figure 7 shows the aggregated results from the study period
defined in Sect. 2 by applying typical verification statistics.
Results have been averaged across the entire period from Jan-
uary to September and output relative to the forecast validity
time. Two methods of matching forecast grid points to obser-

vation locations have been used. Bilinear interpolation is typ-
ically the approach used in traditional verification of SST, as
it is a smoothly varying field. A nearest-neighbour approach
has also been shown, as this is the method that would be used
for HiRA when applying it at the grid scale.

It is noted that the two methods of matching forecasts
to observation locations give quite different results. For the
mean error, the impact of moving from a single-grid-point
approach to a bilinear interpolation method appears to be mi-
nor for the AMM7 model but is more severe for AMM15, re-
sulting in a larger error across all lead times. For the RMSE,
the picture is more mixed, generally suggesting that the
AMM7 forecasts are better when using a bilinear interpola-
tion method but giving no clear overall steer when the nearest
grid point is used. However, the impact of taking a bilinear
approach results in much higher gross errors across all lead
times when compared to the nearest grid point approach.

The MAE has been suggested as a more appropriate met-
ric than the RMSE for ocean fields using (as is the case
here) near-real-time observation data (Brassington, 2017). In
Fig. 6, it can be seen that the nearest grid point approach for
both AMM7 and AMM15 gives almost exactly the same re-
sults, except for the shortest of lead times. For the bilinear in-
terpolation method, AMM15 has a smaller error than AMM7
as lead time increases, behaviour which is not apparent when
RMSE is applied.

Based on the interpolated RMSE results in Fig. 6, it would
be hard to conclude that there was a significant benefit to us-
ing high-resolution ocean models for forecasting SSTs. This
is where the HiRA framework can be applied. It can be used
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to provide more information, which can better inform any
conclusions on model error.

Figure 8 shows the results for AMM7 and AMM15 for the
January–September 2019 period using the HiRA framework
with the CRPS. The lines on the plot show the CRPS for the
two model configurations for different neighbourhood sizes,
each plotted against lead time. Similar line styles are used
to represent equivalent neighbourhood sizes. Confidence in-
tervals have been generated by applying a bootstrap with
replacement method, using 10 000 samples, to the domain-
averaged CRPS (e.g. Efron and Tibshirani, 1986). The error
bars represent the 95 % confidence level. The results for the
single grid point show the MAE and are the same as would
be obtained using a traditional (precise) matching. In the case
of CRPS, where a lower score is better, we see that AMM15
is better than AMM7, though not significantly so, except at
shorter lead times where there is little difference.

The differences at equivalent neighbourhood sizes are dis-
played as a bar plot on the same figure, with scores refer-
enced with respect to the right-hand axis. Line markers and
error bars have been offset to aid visualisation, such that
results for equivalent neighbourhoods are displayed in the
same vertical column as the difference indicated by the bar
plot. The details of the equivalent neighbourhood sizes are
presented in Table 2. Since a lower CRPS score is better, a
positively orientated (upwards) bar implies AMM7 is bet-
ter, whilst a negatively orientated (downwards) bar means
AMM15 is better.

As indicated in Table 2, NB1 compares the single-grid-
point results of AMM7 with a 25-member pseudo-ensemble
constructed from a 5×5 AMM15 neighbourhood. Given the
different resolutions of the two configurations, these two
neighbourhoods represent similar physical areas from each
model domain, with AMM7 only represented by a single
forecast value for each observation but AMM15 represented
by 25 values covering the same area, and as such poten-
tially better able to represent small-scale variability within
that area.

At this equivalent scale, the AMM15 results are markedly
better than AMM7, with lower errors, suggesting that over-
all the AMM15 neighbourhood better represents the varia-
tion around the observation than the coarser single grid point
of AMM7. In the next set of equivalent neighbourhoods
(NB2), the gap between the two configurations has closed,
but AMM15 is still consistently better than AMM7 as lead
time increases. Above this scale, the neighbourhood values
tend towards similarity and then start to diverge again sug-
gesting that the representative scale of the neighbourhoods
has been reached and that errors are essentially random.

Whilst the overall HiRA neighbourhood results for the co-
located domains appear to show a benefit to using a higher-
resolution model forecast, it could be that these results are
influenced by the spatial distribution of observations within
the domain and the characteristics of the forecasts at those
locations. In order to investigate whether this was impor-

tant behaviour, the results were separated into two domains:
one representing the continental shelf part of the domain
(where the bathymetry < 200 m) and the other representing
the deeper, off-shelf, ocean component (Fig. 9). HiRA results
were compared for observations only within each masked do-
main.

On-shelf results (Fig. 10) show that at the grid scale the
results for both AMM7 and AMM15 are worse for this sub-
domain. This could be explained by both the complexity of
processes (tides, friction, river mixing, topographical effects,
etc.) and the small dynamical scales associated with shallow
waters on the shelf (Holt et al., 2017).

The on-shelf spatial variability in SST across a neighbour-
hood is likely to be higher than for an equivalent deep ocean
neighbourhood due to small-scale changes in bathymetry
and, for some observations, the impact of coastal effects.
Both AMM7 and AMM15 show improvement in CRPS with
increased neighbourhood size until the CRPS plateaus in
the range 0.225 to 0.25, with AMM15 generally better than
AMM7 for equivalent neighbourhood sizes. Scores get worse
(errors increase) for both model configurations as the forecast
lead time increases.

For off-shelf results (Fig. 11), CRPS is much better
(smaller error) at both the grid scale and for HiRA neigh-
bourhoods, suggesting that both configurations are better at
forecasting these deep ocean SSTs (or that it is easier to
do so). There is still an improvement in CRPS when going
from the grid scale (single grid box) to neighbourhoods, but
the value of that change is much smaller than that for the
on-shelf subdomain. When comparing equivalent neighbour-
hoods, AMM15 still gives consistently better results (smaller
errors) and appears to improve over AMM7 as lead time in-
creases in contrast to the on-shelf results.

It is likely that the neighbourhood at which we lose repre-
sentativity will be larger for the deeper ocean than the shelf
area because of the larger scale of dynamical processes in
deep water. When choosing an optimum neighbourhood to
use for assessment, care should be taken to check whether
there are different representativity levels in the data (such as
here for on-shelf and off-shelf) and pragmatically choose the
smaller of those equivalent neighbourhoods when looking at
data combining the different representativity levels.

Overall, for the January–September 2019 period, AMM15
demonstrates a lower (better) CRPS than AMM7 when look-
ing at the HiRA neighbourhoods. However, this also appears
to be true at the grid scale over the assessment period. One of
the aspects that HiRA is trying to provide additional informa-
tion about is whether higher-resolution models can demon-
strate improvement over coarser models against a percep-
tion that the coarser models score better in standard verifi-
cation forecast assessments. Assessed over the whole period,
this initial premise does not appear to hold true; therefore,
a deeper look at the data is required to assess whether this
signal is consistent within shorter time periods or if there are

https://doi.org/10.5194/os-16-831-2020 Ocean Sci., 16, 831–845, 2020



840 R. Crocker et al.: Verification of high-resolution ocean models using spatial methods

Figure 8. Summary of CRPS (left axis, lines) and CRPS difference (right axis, bars) for the January 2019 to September 2019 period for
AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence intervals generated using a bootstrap
with replacement method for 10 000 samples. An “S” above the bar denotes that 95 % error bars for the two models do not overlap.

Figure 9. On-shelf and off-shelf masking regions within the co-
located AMM7 and AMM15 domain (data within the grey areas are
masked).

underlying periods contributing significant and contrasting
results to the whole-period aggregate.

Figure 12 shows a monthly breakdown of the grid scale
and the NB2 HiRA neighbourhood scores at T + 60. This
shows the underlying monthly variability not immediately
apparent in the whole-period plots. Notably for the Jan-
uary to March period, AMM7 outperforms AMM15 at the
grid scale. With the introduction of HiRA neighbourhoods,
AMM7 still performs better for February and March but the
difference between the models is significantly reduced. For
these monthly time series, the error bars increase in size rel-
ative to the summary plots (e.g. Fig. 8) due to the reduction
in data available. The sample size will have an impact on the
error bars as the smaller the sample, the less representative of
the true population the data are likely to be. April in partic-
ular contained several days of missing forecast data, leading
to a reduction in sample size and corresponding increase in
error bar size, whilst during May there was a period with re-
duced numbers of observations.

The same pattern is present for the on-shelf subdomain
(Fig. 13), where what appears to be a significant benefit for
AMM7 during February and March is less clear-cut at the

NB2 neighbourhood. For the off-shelf subdomain (Fig. 14),
differences between the two configurations at the grid scale
are mainly apparent during the summer months. At the NB2
scale, AMM15 potentially demonstrates more benefit than
AMM7 except for April and May, where the two show sim-
ilar results. There is a balance to be struck in this conclu-
sion as the differences between the two models are rarely
greater than the 95 % error bars. This in itself does not mean
that the results are not significant. However, care should be
taken when interpreting such a result as a statistical conclu-
sion rather than broad guidance as to model performance.
Attempts to reduce the error bar size, such as increasing the
number of observations or number of times within the period,
would aid this interpretation.

One noticeable aspect of the time series plots is that the
whole-domain plot is heavily influenced by the on-shelf re-
sults. This is due to the difference in observation numbers
as shown in Fig. 15, with the on-shelf domain having more
observations overall, sometimes significantly more, for ex-
ample, during January or mid-to-late August. For the overall
domain, the on-shelf observations will contribute more to the
overall score, and hence the underlying off-shelf signal will
tend to be masked. This is an indication of why verification
is more useful when done over smaller, more homogeneous
subregions, rather than verifying everything together, with
the caveat that sample sizes are large enough, since under-
lying signals can be swamped by dominant error types.

7 Discussion and conclusions

In this study, the HiRA framework has been applied to SST
forecasts from two ocean models with different resolutions.
This enables a different view of the forecast errors than ob-
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Figure 10. Summary of on-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the January 2019 to September 2019
period for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence values obtained from 10 000
samples using bootstrap with replacement. An “S” above the bar denotes that 95 % error bars for the two models do not overlap.

Figure 11. Summary of off-shelf CRPS (left axis, lines) and CRPS difference (right axis, bars) for the January 2019 to September 2019
period for AMM7 and AMM15 models at different neighbourhood sizes. Error bars represent 95 % confidence values obtained from 10 000
samples using bootstrap with replacement. An “S” above the bar denotes that 95 % error bars for the two models do not overlap.

tained using traditional (precise) grid-scale matching against
ocean observations. Particularly, it enables us to demonstrate
the additional value of high-resolution model. When con-
sidered more appropriately, high-resolution models (with the
ability to forecast small-scale detail) have lower errors when
compared to the smoother forecasts provided by a coarser-
resolution model.

The HiRA framework was intended to address the ques-
tion of whether moving to higher resolution adds value. This
study has identified and highlighted aspects that need to be
considered when setting up such an assessment. Prior to
this study, routine verification statistics typically showed that
coarser-resolution models had equivalent skill to or more
skill than higher-resolution models (e.g. Mass et al., 2002;

Tonani et al., 2019). During the January to September 2019
period, grid-scale verification within this assessment showed
that the coarser-resolution AMM7 often demonstrated lower
errors than AMM15.

HiRA neighbourhoods were applied and the data then
assessed using the CRPS, showing a large reduction (im-
provement) in errors for AMM15 when going from a grid-
scale, point-based verification assessment to a neighbour-
hood, ensemble approach. When applying an equivalent-
sized neighbourhood to both configurations, AMM15 typi-
cally demonstrated lower (better) scores. These scores were
in turn broken down into off-shelf and on-shelf subdomains
and showed that the different physical processes in these ar-
eas affected the results. Forecast verification studies tailored
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Figure 12. Monthly time series of whole-domain CRPS scores for
the grid scale (solid line) and NB2 neighbourhood (dashes) for T +

60 forecasts. Error bars represent 95 % confidence values obtained
from 10 000 samples using bootstrap with replacement. Error bars
have been staggered in the x direction to aid clarity.

Figure 13. On-shelf monthly time series of CRPS. Error bars rep-
resent 95 % confidence values obtained from 10 000 samples using
bootstrap with replacement.

for the coastal/shelf areas are needed to properly understand
the forecast skills in areas with high complexity and fast-
evolving dynamics.

When constructing HiRA neighbourhoods, the spatial
scales that are appropriate for the parameter must be con-
sidered carefully. This often means running at several neigh-
bourhood sizes and determining where the scores no longer
seem physically representative. When comparing models,
care should be taken to construct neighbourhood sizes that
are similarly sized spatially; the details of the neighbourhood
sizes will depend on the structure and resolution of the model
grid.

Treatment of observations is also important in any veri-
fication setup. For this study, the fact that there are differ-

Figure 14. Off-shelf monthly time series of CRPS. Error bars rep-
resent 95 % confidence values obtained from 10 000 samples using
bootstrap with replacement.

Figure 15. Number of grid-scale observations for the on- and off-
shelf domains.

ent numbers of observations present at each neighbourhood
scale (as observations are rejected due to land contamina-
tion) means that there is never an optimally equalised dataset
(i.e. the same observations for all models and for all neigh-
bourhood sizes). It also means that comparison of the differ-
ent neighbourhood results from a single model is ill advised,
in this case, as the observations numbers can be very differ-
ent, and therefore the model forecast is being sampled at dif-
ferent locations. Despite this, observation numbers should be
similar when looking at matched spatially sized neighbour-
hoods from different models if results are to be compared.
One of the main constraints identified through this work is
both the sparsity and geographical distribution of observa-
tions throughout the NWS domain, with several viable loca-
tions rejected during the HiRA processing due to their prox-
imity to coastlines.

The purest assessment, in terms of observations, would in-
volve a fixed set of observations, equalised across both model
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configurations and all neighbourhoods at every time. This
would remove the variation in observation numbers seen as
neighbourhood sizes increase as well as those seen between
the two models and give a clean comparison between two
models.

Care should be taken when applying strict equalisation
rules, as this could result in only a small number of obser-
vations being used. The total number of observations used
should be large enough to ensure that the sample is large
enough to produce robust results and satisfy rules for statisti-
cal significance. Equalisation rules could also unfairly affect
the spatial sampling of the verification domain. For example,
in this study, coastal observations would be affected more
than deep ocean observations if neighbourhood equalisation
were applied, due to the proximity of the coast.

To a lesser extent, the variation in observation numbers on
a day-to-day timescale also has an impact on any results and
could mean that incorrect importance is attributed to certain
results, which are simply due to fluctuations in observation
numbers.

The fact that the errors can be reduced through the use
of neighbourhoods shows that the ocean and the atmosphere
have similarities in the way the forecasts behave as a func-
tion of resolution. This study did not consider the concept of
skill, which incorporates the performance of the forecast rel-
ative to a pre-defined benchmark. For the ocean, the choice
of reference needs to be considered. This could be the subject
of further work.

To our knowledge, this work is the first attempt to use
neighbourhood techniques to assess ocean models. The
promising results showing reductions in errors of the finer-
resolution configuration warrant further work. We see a num-
ber of directions the current study could be extended.

The study was conducted on daily output which should be
appropriate to address eddy mesoscale variability, but obser-
vations are distributed at hourly resolution, and so the next
logical step would be to assess the hourly forecasts against
the hourly observation and see how this impacted the results.
This will increase the sample size, if all hourly observations
were considered together. However, it is impossible to spec-
ulate on whether considering hourly forecasts would lead to
more noisy statistics, counteracting the larger sample size.

This assessment only looked at SST for this initial exam-
ination. Consideration of other ocean variables would also
be of interest, including looking at derived diagnostics such
as mixed layer depth, but the sparsity of observations avail-
able for some variables may limit the case studies avail-
able. HiRA as a framework is not remaining static. Enhance-
ments to introduce non-regular flow-dependent neighbour-
hoods are planned and may be of benefit to ocean applica-
tions in the future. Finally, an advantage of using the HiRA
framework is that results obtained from deterministic ocean
models could also be compared against results from ensem-
ble models when these become available for ocean applica-
tions.
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