
Ocean Sci., 16, 355–371, 2020
https://doi.org/10.5194/os-16-355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ensemble hindcasting of wind and wave conditions with WRF and
WAVEWATCH III® driven by ERA5
Robert Daniel Osinski and Hagen Radtke
Leibniz Institute for Baltic Sea Research Warnemünde, Physical Oceanography and Instrumentation,
Seestrasse 15, 18119 Rostock, Germany

Correspondence: Robert Daniel Osinski (robert.osinski@io-warnemuende.de)

Received: 21 June 2019 – Discussion started: 26 July 2019
Revised: 16 January 2020 – Accepted: 9 February 2020 – Published: 17 March 2020

Abstract. When hindcasting wave fields of storm events
with state-of-the-art wave models, the quality of the results
strongly depends on the meteorological forcing dataset. The
wave model will inherit the uncertainty of the atmospheric
data, and additional discretization errors will be introduced
due to a limited spatial and temporal resolution of the forc-
ing data. In this study, we apply an atmospheric downscal-
ing to (i) add regional details to the wind field, (ii) in-
crease the temporal resolution of the wind fields, (iii) pro-
vide a more detailed representation of transient events such
as storms and (iv) generate ensembles with perturbed atmo-
spheric conditions, which allows for a flow-dependent and
spatio-temporally variable uncertainty estimation. We test
different strategies to generate an ensemble hindcast of a rel-
atively strong storm event in February 2002 in the Baltic
Sea. The Weather Research and Forecasting (WRF) model
used for this purpose is driven by the ECMWF ERA5 re-
analysis, and wind fields are passed to the third-generation
wave model WAVEWATCH III®. A combination of initial
conditions from the ERA5 ensemble of data assimilations
and stochastic perturbations during runtime is identified as
the most promising strategy. The final aim of the ensemble
approach is to quantify the hindcast error, but this approach
can also be used to generate alternative representations of
historical extreme events to sample the recent climate and
to increase the sample size for statistical studies, such as for
civil engineering applications for coastal protection studies.

1 Introduction

The Lorenz attractor (Lorenz, 1963) is often used as an ex-
ample to motivate ensemble forecasts. It explains a chaotic
system behaviour which is very sensitive to slight differ-
ences in the initial conditions and is described by a system
of differential equations. In operational weather prediction,
ensemble forecasts are a common tool to quantify the fore-
cast uncertainty by producing a set of alternative realizations.
Initial conditions are estimated by data assimilation, combin-
ing observations with a background field, which is normally
a previous model run. The sparse spatio-temporal observa-
tional coverage leads to uncertainties in the initial conditions,
which grow over the integration time. A second type of un-
certainty comes from the model parameterizations. These are
used to take processes that cannot be resolved by the dy-
namical core of the model into account, e.g. subgrid-scale
processes like turbulence or convection, or processes which
can be described physically but are computationally too ex-
pensive to explicitly take into account (e.g. utilization of a
1-moment instead of a 2-moment micro-physics scheme).

In principle, three methods exist to generate an ensem-
ble forecast, and two of them are tested in this communi-
cation to estimate the uncertainty of a hindcast. The first pos-
sibility is the combination of forecasts from different models
(e.g. Hagedorn et al., 2005) or using the same model with
different types of model physics (e.g. Ricchi et al., 2019).
This multi-model multi-physics approach has the disadvan-
tage that the ensemble size is limited to the number of avail-
able models or physics packages. Also, the forecast skill over
a specific region and a specific variable might differ between
the different models, which has to be taken into account in
the interpretation. A second approach is the combination of
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forecast runs from the same model for the same time in-
stance but started at different initialization times, which is
called a lagged-average forecast (LAF) ensemble (Hoffman
and Kalnay, 1983). A limitation here is also the number of
forecasts covering the same time instance and the fact that a
newer forecast can be expected to have on average a better
forecast skill than a forecast at long lead times. The third
method is the utilization of a single model and applying
perturbations to the initial conditions and/or to the model
physics.

Such an approach is used operationally at the European
Centre for Medium-Range Weather Forecasts (ECMWF)
since 1992. Initial conditions are perturbed by singular vec-
tors (Buizza, 1998), by a combination of ensemble data as-
similation (Buizza et al., 2008) with singular vectors or by
breeding vectors (Toth and Kalnay, 1997) like in the case of
the National Centers for Environmental Prediction (NCEP).
Stochastic perturbations like stochastically perturbed param-
eterization tendencies (SPPT) (Buizza et al., 1999), stochas-
tically perturbed parameterizations (SPP) (Ollinaho et al.,
2017) and stochastic kinetic energy backscatter (SKEB)
(Shutts, 2005) are used to perturb the model physics (Leut-
becher et al., 2016, 2017). SPPT perturbs the model param-
eterizations by applying a multiplicative noise, and SKEB
simulates the upscale transfer of kinetic energy from smaller
to larger scales. Besides the application of SPPT in the global
ECMWF medium-range ensemble system, stochastic pertur-
bations are also used in local area models (e.g. Bouttier et al.,
2012) and in ocean models like in NEMO (e.g. Brankart
et al., 2015).

In a well-constructed ensemble, the ensemble spread re-
flects the average forecast error. Stochastic perturbations
need some time until a reasonable spread develops. Ensem-
ble data assimilation (EDA) gives different estimations of the
initial state representing its uncertainty. A forecast started
from the different members develops the desired ensemble
spread faster.

ERA5 (Copernicus Climate Change Service, 2017) is the
newest global reanalysis from ECMWF. The resolution is rel-
atively high with about 31 km resolution for the atmospheric
variables, but, depending on the application, it can be still
too coarse. From ERA5, in contrast to previous reanalyses,
an uncertainty measure based on an ensemble of data assim-
ilation is available.

The Weather Research and Forecasting (WRF) (Ska-
marock et al., 2019) model is widely used in research as well
as in operational weather forecasting and includes implemen-
tations of the mentioned stochastic perturbation schemes.
The motivation of driving WRF with this new dataset is to
be able to produce hindcasts of atmospheric conditions in
different spatio-temporal resolutions including a measure of
uncertainty based on ensemble techniques. This allows us to
study, for example, the effect of the model resolution on ef-
fects like upwelling and downwelling in coastal regions.

Some regional reanalysis (ensemble) datasets are already
freely available. Such regional reanalyses are produced, for
example, in the framework of the project “Uncertainties in
Ensembles of Regional ReAnalysis” (UERRA).1 At the mo-
ment, the ensemble datasets in this project are limited in their
temporal coverage or spatial resolution. It can be advanta-
geous to be able to produce hindcasts of events whose spatio-
temporal resolution is adapted to the requirements defined by
a research objective. It has to be mentioned that the quality
of a freely running hindcast can be expected to be inferior to
such a (re)analysis product containing state-of-the art data as-
similation techniques. Another database from which ensem-
ble forecasts of local area models are available is from the
Tigge-LAM archive (Swinbank et al., 2016).2 The available
forecast models cover also only short periods and they are
operational, meaning that the datasets are not homogeneous,
because the model version can change during time.

The Baltic Sea, which is a marginal sea in the north-east
of Europe, is taken as an example for the application of
the demonstrated procedure to produce ensemble hindcasts
of wind and wave conditions by driving the WAVEWATCH
III® wave model with wind data produced with the WRF
ensemble model. Observed wave heights in this region do
not exceed 8.2 m (Björkqvist et al., 2017), and waves are
dominated by the wind sea (Broman et al., 2006; Soomere
et al., 2012). More detailed information about the Baltic Sea
wave climate for specific subregions is provided, for exam-
ple, by Björkqvist et al. (2017), Soomere (2005), Soomere
et al. (2008) and Tuomi et al. (2011, 2014). As ERA5 is a
global reanalysis, the demonstrated procedure is also appli-
cable in other regions.

The idea behind this study is to generate an ensemble hind-
cast on an event basis in a comparable way to operational
weather forecasts by driving WRF with ERA5 including the
initial conditions from the ERA5 EDA with stochastic pertur-
bations (SKEB and SPPT). Other ensemble generation tech-
niques are tested for comparison. The atmospheric data from
a hindcast or forecast are discrete in time and space. This
limits the accuracy and affects the outcome if driving another
model like an ocean or wave model. This uncertainty is in-
vestigated by driving the wave model with different spatio-
temporal resolutions.

1http://www.uerra.eu/ (last access: 10 March 2020)
2https://apps.ecmwf.int/datasets/history/tigge-lam-prod/ (last

access: 10 March 2020)
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2 Data and models

2.1 Data

2.1.1 ERA5

ERA5 (Copernicus Climate Change Service, 2017)3 is the
follow-up ECMWF reanalysis of ERA-Interim produced
with the Integrated Forecasting System (IFS) cycle 41R2,4

operationally at ECMWF in March 2016. It is provided un-
der the Copernicus licence,5 allowing also commercial ap-
plications. Hourly reanalysis in about 31 km (∼ 0.28◦)6 hor-
izontal resolution and 137 vertical model levels are avail-
able from 1979 (eventually 1950), and the dataset is getting
prolongated into the future with a delay of about 3 months.
A state-of-the-art data assimilation technique is used (4D-
Var). In addition to the reanalysis, on a three-hourly basis, 10
members of an ensemble of data assimilation (EDA) are pro-
vided as an uncertainty measure with half of the resolution
of the reanalysis. The reanalysis data of surface fields and
the 137 model levels that were extracted on an hourly basis
were interpolated onto a slightly higher 0.25◦ resolution grid
for the period 21 until 24 February 2002 as recommended by
ECMWF. ERA5 data from the ensemble of data assimilation
were also interpolated bilinearly onto the same 0.25◦ regular
longitude–latitude grid.

ERA5 also includes fields from the ECWAM wave model
(ECMWF, 2016) in 0.36 and 1◦ spatial resolutions from the
ensemble of data assimilation. ERA5 is used for the initial
and lateral boundary conditions for the atmospheric hind-
casts with the WRF model. Lateral boundary conditions for
the Baltic Sea WAVEWATCH III® setup originate from a
setup for the North Sea. This coarser model is driven by
ERA5 winds. ERA5 reanalysis and EDA wind and wave data
are used for comparison of the hindcasts produced with WRF
and WAVEWATCH III®.

2.1.2 UERRA/HARMONIE-v1

The UERRA/HARMONIE-v1 dataset (Ridal et al., 2017)
contains analyses at 00:00, 06:00, 12:00 and 18:00 UTC as
well as hourly forecasts for +1 h until +6 h and thereafter
three-hourly until 30 h. The HARMONIE model is used for
the production of this dataset in about 11 km horizontal reso-
lution, and the 3D-Var data assimilation is used with conven-

3https://confluence.ecmwf.int/display/CKB/ERA5:+data+
documentation (last access: 10 March 2020)

4https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model/
ifs-documentation (last access: 10 March 2020)

5http://apps.ecmwf.int/datasets/licences/copernicus/ (last ac-
cess: 10 March 2020)

6Grid cells in the Baltic Sea region have quite large aspect ratios;
the length of their sides in N–S direction can be roughly twice as
long as in the E–W directions.

tional observations (synoptic stations, ships, drifting buoys,
aircraft observations and radio soundings). Large scales from
ERA40 and ERA-Interim are introduced into the data assim-
ilation by large-scale mixing. The available period extends
back until 1961. To create an hourly dataset, the analysis
fields were combined with the forecast lead times+1 to+5 h
(retrieved from ECMWF).7 Wind data were interpolated bi-
linearly onto the regular wave model grid for the Baltic Sea
and described in the next section. This dataset was mainly
used to produce a restart file for the wave model runs and for
calibration and validation of the wave model.

2.2 Models

2.2.1 Atmospheric Weather Research and Forecasting
model (WRF)

The Weather Research and Forecasting model, WRF v4.0.3,8

in the Advanced Research WRF (ARW) version (Skamarock
et al., 2019) is applied here. It is used in non-hydrostatic
mode in 0.126◦ horizontal resolution, and the model output
interval is 15 min. To investigate the dependence of the so-
lution of the wave model on the spatial and temporal reso-
lutions of the wind data, runs in 0.252 and 0.063◦ were pro-
duced as well as output at a temporal resolution of 5 min. In
this way, a factor of about 4.5 between the highest WRF res-
olution and the driving ERA5 fields is given, and the same
factor is between the ERA5 EDA fields and the WRF ensem-
ble runs. The domain is slightly larger than the Baltic Sea for
all runs. For the model configuration, the CONUS physics
suite (Wang et al., 2019) is used. This is a combination of
model physics adapted for the Continental United States of
America. As it is well tested, this physics setup is taken as it
is, and we assume that it should be reasonable for other re-
gions in the mid-latitudes. The 89 vertical eta layers used in
this WRF setup, a specific vertical coordinate system in at-
mospheric models, are adapted to be comparable to layer 2 to
90 of the IFS9 until 50 hPa. As initial conditions come from
a different and coarser model, it needs some time until fine
structures develop. Methods for spin-up reduction like digi-
tal filter initialization (Peckham et al., 2016) have not been
tested. Instead, the WRF output is only used 12 h after ini-
tialization to drive the wave model. Neither data assimilation
nor observation nudging is used. Hindcasts are produced in
this study in a comparable way to a forecast, which is only
downscaled from a global forecast model. For this reason,
the results of this study are valid for both hindcasts and such
forecasts. The WRF Preprocessing System (WPS) in version

7https://apps.ecmwf.int/datasets/data/uerra (last access:
10 March 2020)

8https://github.com/wrf-model/WRF/releases (last access:
10 March 2020)

9https://www.ecmwf.int/en/forecasts/
documentation-and-support/137-model-levels (last access:
10 March 2020)
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4.0.3 is used to prepare the input data for the model together
with the WPS V4 Geographical Static Data.10

2.2.2 Wave model WAVEWATCH III®

WAVEWATCH III® v6.07 (Tolman, 1991; The WAVE-
WATCH III® Development Group (WW3DG), 2019)11 is
used in this study for the Baltic Sea. It is a state-of-the art
third-generation wave model which is also used as an oper-
ational wave forecast model. A one-way nesting approach
is applied (see Fig. 1): a setup with 0.1◦ resolution cov-
ering the North Sea and a small part of the eastern At-
lantic Ocean is used to produce boundary conditions for the
Baltic Sea setup at the border with the North Sea. This is
not really necessary for the central and northern regions of
the Baltic Sea, as very little wave energy passes the Dan-
ish straits. To avoid showing unrealistic values in a part
of the domain, the nesting procedure was nevertheless ap-
plied. The GEBCO_2014 Grid in version 20150318 is used
as bathymetry.12 The Baltic Sea setup has a resolution of
1 nmi (nautical mile) with 149.282 sea grid points, and the
bathymetry is based on the work of Seifert et al. (2001).
UERRA/HARMONIE-v1 was used for calibration and vali-
dation of the setup against 1 month of data from buoys avail-
able from the Copernicus Marine Environment Monitoring
Service (CMEMS)13 with the previous WAVEWATCH III®

v5.16 version. A calibration and validation with the WRF
forcing was not possible because of the short period that
has been hindcasted until now. Nevertheless, the wave model
shows a satisfactory performance with the WRF forcing. De-
tailed information about the calibration and validation pro-
cedure of the wave model can be found in the Supplement.
Twenty-four directions starting at 7.5◦ with a 15◦ direction
increment and 30 frequencies starting at 0.03453 Hz geomet-
rically distributed with a step of 1.1 are used for the dis-
cretization of the energy spectrum. This is comparable to the
settings for the wave model in ERA5. Soomere (2005) pro-
poses a finer resolution of the energy spectrum. This finer
resolution was tested and the result is demonstrated in the
Supplement. A clear impact on the extreme wave heights is
visible, but it prolongs significantly the computing time. For
our specific application, the ERA5 discretization is a good
compromise between computational effort and model perfor-
mance. The physics packages are defined before compiling
the model by a so-called switch file. The switch file Ifre-
mer1, provided with the model code, is applied in this study.

10http://www2.mmm.ucar.edu/wrf/src/wps_files/geog_high_
res_mandatory.tar.gz (last access: 10 March 2020)

11https://github.com/NOAA-EMC/WW3 (last access:
10 March 2020)

12http://www.gebco.net (last access: 10 March 2020)
13http://marine.copernicus.eu/services-portfolio/

access-to-products/?option=com_csw&view=details&product_
id=INSITU_BAL_NRT_OBSERVATIONS_013_032 (last access:
10 March 2020)

This includes wind input and dissipation after Ardhuin et al.
(2010) and the SHOWEX bottom friction scheme (Ardhuin
et al., 2003). A sediment map based on the European Ma-
rine Observation and Data Network (EMODnet)14 data was
used for applying non-homogeneous bottom friction. The
model runs were produced between 22 February 00:00 UTC
and 24 February 2002 00:00 UTC. WAVEWATCH III® was
started from initial conditions from a previous run conducted
for 21 d and driven with UERRA/HARMONIE-v1. The sea
ice area fraction is taken from ERA5. In the atmospheric
model, the stochastic perturbations of the model physics con-
tribute significantly to the ensemble spread. Wave models
include different source terms (e.g. wave generation, dissi-
pation, bottom-friction and so on), which are partly simpli-
fied to make the model computationally more efficient or
are described empirically (Farina, 2002; Yildirim and Kar-
niadakis, 2015). Nevertheless, the wave model ensemble ap-
proach here is based solely on the ensemble of the atmo-
spheric forcing data and includes no perturbations of the
source terms.

3 Ensemble hindcasts

3.1 Wind fields

Six different approaches to generate an ensemble hindcast
are presented in this section (see Table 1). The first approach
is to generate an LAF ensemble. This is done by initializing
the WRF model at different times on 21 February 2002 at
every hour between 08:00 and 16:00 UTC, which results in
nine runs covering the period from 22 to 24 February 2002.
The second approach is based on the domain shifting pre-
sented by Pardowitz et al. (2016). The ERA5 reanalysis is for
this purpose shifted by one grid cell (0.25◦) in each direction
horizontally producing eight perturbed ensemble members.
For the third approach, WRF is initialized from the ERA5
fields from the ensemble of data assimilation. These fields
have a coarser resolution, but they are used in this study as
the ERA5 reanalysis in 0.25◦. This has the disadvantage that
finer scales are not represented, but this is comparable to a
downscaling from a global ensemble model, except that the
reanalysis is used here as lateral boundary condition (LBC).
As an alternative to keep the finer scales, it was tested to
add perturbations to the initial fields, calculated by the differ-
ence between the ERA5 EDA members and the EDA ensem-
ble mean, once with positive and negative sign to the ERA5
HRES (high resolution) reanalysis. We did not find an im-
provement against the direct application of the ERA5 EDA
fields. SKEB and SPPT are used for the fourth approach and
the fifth approach combines approaches three and four. For
approach six, the same setup is used as in approach five, but,
as the ERA5 EDA fields are available every 3 h, runs 3 h ear-

14http://www.emodnet-geology.eu/ (last access: 10 March 2020)
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Figure 1. Bathymetries (m) and domains of (a) 0.1◦ and (b) 1 nmi (nautical mile) WAVEWATCH III® setups; in black in the left panel,
(a) grid cells for the nesting of the Baltic Sea model are shown. The black point “Pt” in the right panel (b) shows the location of the time
series in Fig. 2, and the black point “Northern Baltic” is the location of the time series in Fig. 6.

lier and later are additionally used as in an LAF approach.
This leads to a 30-member ensemble.

In an ensemble system, it is important that the ensemble
spread reflects the uncertainty. If the spread is too narrow,
the system is “underdispersive”, meaning that the forecast is
overconfident and vice versa for an “overdispersive” or “un-
derconfident” forecast. One tool for quantifying the quality
of the ensemble spread is, for example, the Talagrand (rank)
diagram (Hamill, 2001), and there are other quality measures
like, for example, reliability, resolution, accuracy or sharp-
ness, which are important for a good ensemble system (Mur-
phy and Winkler, 1992). To be able to use the traditional en-
semble verification methods (Jolliffe and Stephenson, 2003),
long time series are needed, which could not be produced in
this study. For this reason, an absolute statement on which of
the tested approaches performs best cannot be given based on
only one single hindcasted event. The different approaches
are compared against the ERA5 reanalysis and the ERA5
members from the ensemble of data assimilation. As a larger
variability can be expected in the higher-resolution model, it
can be assumed that it increases also the uncertainty, which
should be reflected by a larger spread than found in the much
coarser data from the ERA5 ensemble of data assimilation.

A good agreement at a specific location between the
ERA5 reanalysis and the WRF runs is visible during the
first 20 h in Fig. 2. The wind speed maximum is higher
than in ERA5. For comparison, the closest grid cell of the
UERRA/HARMONIE-v1 data is plotted and also shows
higher values than ERA5. From ERA5, also the wind speed
from the closest grid cell of the 0.25◦ grid is plotted. The
initial conditions were prepared with the WRF preprocess-
ing system and can have slightly different values from taking
simply the closest grid cell. The resolution of the WRF runs
is closer to the one from UERRA/HARMONIE-v1, and a
stronger variability and also higher extremes can be expected
due to the difference in the ERA5 resolution. WRF adds ad-

ditional information from the finer scales and resolves the
orography, coastlines and islands better.

All ensemble techniques lead to deviations from the unper-
turbed run. The LAF ensemble shows a very small spread.
In fact, this is good, because it means that irrespective of
the starting time of the WRF model being shifted by a few
hours the outcome is comparable. The first three approaches
show a lower ensemble spread than the ensembles which in-
clude stochastic perturbations. Compared to the ERA5 EDA
members, it demonstrates that these ensembles are underdis-
persive. The uncertainty is underestimated by applying these
approaches. During the first hours of the ensemble with only
stochastic perturbations (ensemble approach four), all mem-
bers are identical, as it needs some time until the perturba-
tions introduce spread. Starting from the ERA5 ensemble of
data assimilation (ensemble approaches 3, 5 and 6), spread
is visible from initialization on. Even with the coarser res-
olution of these fields, its application seems to be working,
but additionally stochastic perturbations are necessary to pro-
duce a larger spread. The WRF ensemble started from ERA5
EDA fields at 09:00, 12:00 and 15:00 UTC and also rep-
resents the uncertainty at 21 February 2002 at 21:00 UTC,
where the lowest values in the ERA5 EDA members (Fig. 2)
in the shown period can be found. With only stochastic per-
turbations, such low values are also visible, but a few hours
too early. For the last simulation day, the spread of the com-
bined ERA5 EDA and stochastic perturbations approach is
very large, but it could not be tested if it is overdispersive.

Spatially (Fig. 3), the spread in the WRF ensemble started
from ERA5 EDA is very small. A much larger spatial vari-
ability appears by applying stochastic perturbations. Espe-
cially strong wind is present in some members over the north-
ern part of the Baltic Sea. The LAF approach also shows very
little spread spatially over the entire domain. Domain shift-
ing also did not produce as strong a variability as applying
stochastic perturbations (Fig. 3). The combination of ERA5
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360 R. D. Osinski and H. Radtke: Ensemble hindcasting of wind and wave conditions

Table 1. Methods tested for the generation of an ensemble hindcast with WRF.

Approach Procedure No. of members

1 LAF approach, WRF initialized at different times (21 February 2002 between 08:00 and 16:00 UTC) 9
2 Domain-shifting approach, ERA5 shifted horizontally by one grid cell 8
3 ERA5 EDA fields used for initial conditions 10
4 Stochastic perturbations (SKEB and SPPT) together with random perturbations of LBCs 10
5 As approach four but initialized from ERA5 EDA as in approach 3 10
6 As approach five but additional runs started at 3 h earlier and later 30

Figure 2. Time series demonstrating the simulation results of the different ensemble generation strategies at one specific location: (a) lagged-
average forecast (LAF) ensemble (Hoffman and Kalnay, 1983), (b) domain shifting (Pardowitz et al., 2016), (c) WRF runs started from 10
ERA5 4D-EnVAR members with HRES LBCs, (d) stochastic perturbations (SPPT and SKEB) (Buizza et al., 1999; Shutts, 2005), (e) ERA5
4D-EnVAR as starting conditions plus stochastic perturbations, and (d) LAF started from ERA5 4D-EnVAR at 09:00, 12:00 and 15:00 UTC
plus stochastic perturbations; results shown for 56.17◦ N, 19.39◦ E.

EDA and stochastic perturbations produces members which
show a strong variability in the central Baltic Sea (Fig. 4).

A strong variability in the northern Baltic Sea as well as in
the central Baltic Sea is present by initializing WRF at 09:00,
12:00 and 15:00 UTC from ERA5 EDA fields with stochastic
perturbations. Ten members are a small number to sample the
uncertainty.

Comparing a 10- with a 30-member ensemble is not re-
ally a fair comparison, as a too small ensemble size leads to
an undersampling of the uncertainty. Ensemble approach six
shows in the ensemble maximum high values in the central as
well as in the northern part of the Baltic Sea. Figure 2 shows
also the WRF ensemble with only stochastic perturbations

and 30 members. The spread is in this case larger but still
inferior to the 30-member approach number six with ERA5
EDA as initial conditions and stochastic perturbations. Also
the region in the central Baltic Sea gains spread by adding
additional members, but it contains a lower spread than in ap-
proach six shown in Fig. 5. This demonstrates that 10 mem-
bers might be still insufficient to sample the entire range of
uncertainty and that the combined application of model and
initial perturbations is beneficial to create a larger spread.

Ocean Sci., 16, 355–371, 2020 www.ocean-sci.net/16/355/2020/
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Figure 3. Ensemble mean (a, d, g, j), minimum (b, e, h, k) and maximum (c, f, i, l) wind speed (m s−1) of WRF ensemble based on LAF
approach (a–c), domain shifting (d–f), initial conditions from the ERA5 EDA (g–i) and on stochastic perturbations (j–l). All initialized at
21 February 2002 12:00 UTC. Shown are results for 23 February 2002 09:00 UTC.

3.2 Wave fields

The LAF and domain-shifting approaches were not used to
drive the wave model, because they show a relatively small
spread. Figure 6 shows a time series at a location in the cen-
tral Baltic Sea (see Fig. 1). The comparison with the closest
grid cell from ERA5 shows a good agreement in the temporal
evolution of growth and a comparable trend in the decay of
the significant wave height, but the maximum peak is about
1 m lower in ERA5. ERA5 also shows the second peak only
very weakly and some hours later during the middle of the
second simulation day. WAVEWATCH III® in this study has

a much higher resolution with 1 nmi compared to the 0.36◦

ECWAM model of the ERA5 reanalysis, and the WRF wind
forcing is spatially (0.126◦ vs. 0.28◦) and temporally (15′

vs. 60′) of higher resolution. This can explain locally much
higher values and a stronger variability. Especially the max-
imum of the (wind speed and the) significant wave height
varies strongly between the different ensemble realizations.
Differences in the wave fields of the ensemble members can
be due to a different dynamical evolution of the storm or due
to different tracks in the atmospheric model members (com-
pare Osinski et al., 2016). Already a slight change in the track
of the storm can provoke large differences in the maximum if
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Figure 4. WRF ensemble approach number five generated by starting the 10 members from 10 ERA5 EDA members at 21 February 2002
12:00 UTC plus stochastic perturbations SPPT and SKEB. Shown are results for 23 February 2002 09:00 UTC. (a) The ERA5 reanalysis;
(d) ERA5 EDA ensemble mean, (e) minimum, and (f) maximum; (c) WRF unperturbed; (g) WRF ensemble mean, (h) minimum, and
(i) maximum; (b) UERRA/HARMONIE-v1; and (j–r) nine perturbed WRF members are shown. Wind speed (m s−1) and direction are
shown as arrows.
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Figure 5. Ensemble mean (a), minimum (b) and maximum (c) wind speed (m s−1) from WRF ensemble approach number six generated by
starting three times 10 members from ERA5 EDA members at 21 February 2002 09:00, 12:00 and 15:00 UTC plus stochastic perturbations
SPPT and SKEB. Shown are results for the 23 February 2002 09:00 UTC.

looking at a specific location in such a high resolution. With
0.36◦ resolution in ERA5, a slight change in the track can be
assumed to not lead to such strong differences.

Figure 7 shows the different wave model members driven
by WRF with ERA5 EDA initial conditions and stochastic
perturbations. All members show high values in the cen-
tral Baltic Sea. The time series shown in Fig. 6 represents
the highest significant wave height on 22 February 2002 at
09:00 UTC. There is also a strong variability between the
different ensemble members in this region. Wave heights in
member 08 are especially higher than in the other members
in the Gulf of Bothnia, but this member shows also much
higher wave heights than the other members in the central
Baltic Sea. In the western Baltic Sea the differences between
the members are not that strong. The overall spatial pattern of
the significant wave height looks similar between ERA5 and
WRF ensemble members. The wave models (Fig. 6) driven
by the WRF ensemble hindcast started from the ERA5 EDA
initial conditions show a very small spread. A difference can
be especially seen at the second peak. Much stronger differ-
ences are provoked by the WRF ensemble based on stochas-
tic perturbations. Combining both ERA5 EDA fields as initial
conditions and stochastic perturbations produces a spread of
a similar size. The simulated significant wave heights of the
most extreme members with about 11.2 m are clearly above
the highest observations with about 8.2 m (Björkqvist et al.,
2017). One reason could be an overdispersion of the wind
fields of the WRF ensemble. The stochastic perturbations
were not calibrated, as a larger number of hindcasted events
are necessary to be able to optimize the perturbations. An-
other issue is the roughness length of the sea surface, which
is defined as a constant value in the applied WRF setup. Un-
der severe storm conditions, the roughness of the sea surface
should increase, resulting in a reduction of atmospheric ki-
netic energy and a corresponding limitation of wave growth.
An investigation of the impact of the constant roughness of
the sea surface on the wave height was out of the scope of
this study. This effect could lead to a systematic overestima-
tion of the wave heights in some storms. The storm events,

Toini and Rafael, with the highest observed significant wave
heights discussed by Björkqvist et al. (2017) were addition-
ally hindcasted and are presented in the Supplement. They
seem to be less sensitive on the perturbations. Based on the
short time series of observations, it is difficult to judge which
significant wave height is still realistic.

A shortcoming of the presented procedure can be that the
wave model runs were all started from the same initial state.
This means that a certain time is needed until the different
members diverge, especially as the total wave height is a
combination of wind sea and swell. The latter needs some
time to travel, so regions which are predominated by swell
can be assumed to need a longer period to produce a reason-
able spread with this setting. For the Baltic Sea, events with
a strong influence of swell are infrequent (e.g. Broman et al.,
2006; Soomere et al., 2012). French Guiana, for example, is
one region which is swell dominated. Osinski et al. (2018)
estimated the 100-year return level of the significant wave
height of northerly swell events at the French Guiana coast.
Such events are generated in the North Atlantic and travel
until the north-eastern coast of South America. For hindcast-
ing such events with the demonstrated procedure, a large do-
main would be necessary and long lasting forecast horizons,
so that the waves are already perturbed where generated and
over their lifetime as well. This can lead to stronger devia-
tions from the real past state.

3.3 Robustness of the ensemble spread depending on
the ensemble size

Each ensemble member is a random draw of the probability
density function (PDF) of the forecast/hindcast uncertainty.
In the extreme case of having only two members, it is very
unlikely that the most extreme cases are represented. By in-
creasing the ensemble size, the probability is getting higher
that the full range of uncertainty is sampled. For local area
models, operational weather forecast centres produce ensem-
bles with around 10 to 20 members. At first sight, this num-
ber seems to be comparable to the presented study. If driv-
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Figure 6. Significant wave height (m) at station Northern Baltic (59.25◦ N, 21.00◦ E; see Fig. 1), driven by the WRF ensemble based on
(a) initializations at 21 February 2002 12:00 UTC from ERA5 EDA, (b) ERA5 reanalysis and stochastic perturbations, (c) ERA5 EDA with
SKEB and SPPT, and (d) ERA5 EDA with SKEB and SPPT initialized additionally on same day at 09:00 and 15:00 UTC; ERA5 significant
wave heights from the ECWAM model in 0.36◦ resolution; Shown are results for 22 February 2002 21:00 UTC.

ing the regional model from a global ensemble with about
30 to 50 ensemble members, one can use a clustering tech-
nique to identify the most representative members instead of
randomly selecting a small subsample, which improves the
ensemble performance (e.g. Nuissier et al., 2012). If the en-
semble is initialized several times per day, the different runs
can be combined using the LAF approach (e.g. Raynaud and
Bouttier, 2017). To predict the probability of the exceedance
of a certain threshold, one can apply also neighbourhood
techniques (e.g. Theis et al., 2005) or post-processing tech-
niques like Bayesian Model Averaging (Raftery et al., 2005).
Neither the initial and lateral boundary conditions that come
from a large ensemble in this study nor the application of
neighbourhood or other post-processing techniques helps,
because the ensemble members are used to drive a wave

model. To get an idea of how many ensemble members are
reasonable in this case, 500 members have been generated
with stochastic perturbations. From these 500 members, an
ensemble with N members is generated, with N starting at
10 and increasing until 300. Ten million samples of each en-
semble of size N are selected by randomly choosing N out
of the 500 members. The standard deviation is used as a mea-
sure for the ensemble spread and is calculated for each of the
10 million samples of the ensemble of size N . The number
of possible combinations of selecting N out of 500 members
can be determined by using the binomial coefficient (500

N ).
This number exceeds 10 million for all tested ensemble sizes
between 10 and 300. If the ensemble size is reasonable to
get a robust estimate of the uncertainty, the spread should be
relatively similar between each of the samples.
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Figure 7. (a) ERA5 sea ice area fraction (0–1); (b) ERA5 ECWAM significant wave height (m) with direction in meteorological conven-
tion and (c–l) 10 WAVEWATCH III® members driven by WRF ensemble initialized from 10 ERA5 EDA members at 21 February 2002
12:00 UTC with SPPT and SKEB. Shown are results for 22 February 2002 21:00 UTC.

Figure 8 shows box-and-whisker plots for the 10 million
samples for ensemble sizes between 10 and 300 members.
The variation of the spread in the 10 million samples 12 h
after initialization is demonstrated in the left panel (Fig. 8a).
As it needs some time so that the stochastic perturbations
provoke spread between the ensemble members, there is a
lead time dependence in the spread. The right panel (Fig. 8b)
presents a situation 25 h after initialization. At this time,
the wind speed is very high (see Fig. 2). In extreme situ-
ations, in which we are especially interested, we expect a
higher uncertainty. This higher uncertainty is represented by
a larger spread. All the ensembles with sizes between 15
and 100 members show a median of the spread around one
at 22 February 2019 13:00 UTC. The 10-member ensemble
has a slightly lower median. With a higher uncertainty, a

larger number of ensemble members is necessary to sam-
ple the entire uncertainty range. With increasing ensemble
size, it is getting more probable that the entire uncertainty
range is sampled. This is why the range of the box-and-
whisker plots is decreasing with increasing ensemble size. At
22 February 2019 00:00 UTC, the uncertainty is lower and/or
the spread as a measure of uncertainty is not yet fully devel-
oped after 12 h. As the robustness of the ensemble spread
seems to be dependent on the uncertainty, the range of the
box-and-whisker plots is much inferior at 22 February 2019
00:00 UTC than 13 h later. To achieve a general statement
about the ensemble size–spread relation, a much larger sam-
ple over a longer period must be investigated, but it can al-
ready be concluded that an ensemble size of only 10 ran-
domly generated members, as demonstrated in this applica-
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Figure 8. Box-and-whisker plots of the standard deviation of the 10 m wind speed at 19.39◦ E, 56.17◦ N of 10 million samples of ensembles
of size 10 to 300 randomly sampled from an ensemble with 500 members generated with WRF by applying SKEB and SPPT; shown are
results for (a) 22 February 2002 00:00 and (b) 13:00 UTC (compare with Fig. 2).

tion, can lead to a significant overestimation or underesti-
mation of the uncertainty. Depending on the application, the
ensemble size needs to be selected as a compromise between
the robustness of the uncertainty estimate and the computa-
tional cost.

3.4 Impact of the spatio-temporal resolution of the
atmospheric forcing on the significant wave height

The numerical time step of a wave model is less than a minute
(typical for explicit numerical schemes) or few minutes (typ-
ical for implicit numerical schemes). The wave model there-
fore needs updated wind information, e.g. every 30 s. This
is done by interpolation from the wind forcing that is pro-
vided, e.g. every hour or every third hour. A higher temporal
resolution of atmospheric forcing data than 1 h is normally
not available. If a variable in the ocean or wave model to be
driven has a short response time (e.g. surface current gen-
erated by wind compared to sea surface temperature (SST)
whose response is slower), and the variability of the atmo-
spheric forcing in between the temporal resolution of the
forcing fields is high, the result can be an underestimation or
overestimation and an erroneous time evolution. One imag-
inable solution is to use maximum values during the output
time interval of the atmospheric model, but this can lead to
spatially inconsistent fields, especially if the time interval is
very long. To test the impact of different temporal resolutions
on the significant wave height, wind fields in 5 min resolu-
tion were produced with the 0.063◦ setup. Figure 9 shows
the wind field in 5, 15, 30 and 60 min resolutions at one spe-
cific grid cell and the resulting significant wave height at the
same location and time.

It can be seen that the wind speed maximum in the 60 min
resolution is about 0.25 m s−1 below the maxima of the
higher temporal resolutions. Between the higher temporal
resolutions of the wind data, the wind speed maxima are

very close. The effect between the 60 min temporal resolu-
tion and a forcing in higher temporal resolution on the signif-
icant wave height is relatively low with about 2 cm. System-
atic differences cannot be found based on the small sample,
but this sensitivity test indicates that the choice of the 15 min
resolution is a reasonable compromise between a good rep-
resentation of the extreme values and file size.

A stronger impact can be expected from the spatial resolu-
tion of the driving wind fields, because a coarser resolution
of the atmospheric model can be assumed to produce lower
extreme wind speeds as a grid cell represents the average
value over the area it covers. By adapting, for example, the
parameter BETAMAX, which describes the maximum value
of wind–wave coupling, this difference can be compensated
for. A better representation of the complex coastline of the
Baltic Sea as well as of the various islands is given by the
higher resolved WRF model. For this reason, a difference
in the spatial pattern of the significant wave height can be
expected. A test with the coarsest (0.252◦) and the highest
resolutions (0.063◦) produced in this study has been con-
ducted. The same parameter sets were used, as a calibration is
not possible based on the short-period hindcasted with WRF.
Figure 10 shows the difference between these two forcings
on one time step in the significant wave height.

One grid cell of the coarser WRF setup contains 16 grid
cells of the high-resolution setup. Wave height maxima as
well as minima were found to be more extreme in the higher
resolution with a higher spatial variability. It would be in-
teresting to determine the remaining difference in the wave
parameters provoked by the atmospheric forcings with dif-
ferent resolutions after a calibration of the wave model, done
by applying an automatic and objective calibration procedure
like, for example, the one proposed by Gorman and Oliver
(2018). Tuomi et al. (2014) studied the effect of different
spatio-temporal resolutions of the wind forcing on a wave
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Figure 9. (a) Wind speed (m s−1) in 0.063◦ setup and (b) significant wave height (m) at 61.8◦ N, 20.23◦ E; test case without sea ice.

Figure 10. Difference in the significant wave height (m) in WAVEWATCH III® between simulation driven by WRF with 0.252◦ and by
0.063◦ in 15 min temporal resolution at 22 February 2002 21:00 UTC. The northern part of the Gulf of Bothnia is covered by sea ice.

model with a higher spatial resolution than applied here. A
wave model with a higher resolution might benefit more from
a higher resolution of the wind forcing.

4 Conclusions

Different approaches for hindcasting a single relatively
strong storm event in the Baltic Sea were tested in this
study to create an ensemble hindcast of atmospheric (wind)
and wave conditions based on a state-of-the-art atmospheric
mesoscale model and a third-generation wave model. The
objective of the ensemble approach is a quantification of
the uncertainty of the hindcast. The wave model was cali-
brated based on a publicly available regional reanalysis, and

then it was validated with this dataset and also with forc-
ing data produced with the atmospheric setup used in this
study, as demonstrated in the Supplement. A lagged-average
WRF forecast ensemble showed only little spread with initial
and lateral boundary conditions based entirely on the high-
resolution ERA5 reanalysis fields. The spread of the LAF
ensemble cannot be easily adapted.15

15A weighting of the different realizations (in this case of the
wave model) by giving the runs more weight, which is expected to
have a lower error, is possible. In this case more weight to the runs
which have smaller errors in the verification of a large sample of
hindcasts should be given (e.g. more weight to runs with lower lead
time to the desired event), but this can be expected to not strongly
enlarge the ensemble spread.
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A domain-shifting approach with ERA5, in which the in-
put fields are shifted into all directions by one grid cell,
shows a more or less similar spread to the LAF ensemble,
with the same advantage of using the high-resolution reanal-
ysis data only. The number of ensemble members and the
spread of the ensemble is limited to the number of reason-
able shifts. Too large shifts can be expected to degrade the
hindcast.16

Starting WRF from the ERA5 EDA members shows also
a spread of similar size as with the two other approaches.
The disadvantage is the coarser resolution of the initial fields.
Fine-scale structures are not present in these fields so that the
ensemble spread is limited. Stochastic perturbations produce
a much larger spread but need some time to develop. The first
12 h is not used in this study, because that period is assumed
to be affected by a model spin-up. This is not a shortcoming
for a hindcast procedure.

A combination of stochastic perturbations and an initial-
ization from the ERA5 EDA fields produces also deviations
from the unperturbed runs which are not present by only us-
ing the stochastic perturbations. This approach is especially
interesting and is close to what is used in meteorological
weather forecast centres for the operational forecasts. The
wind fields from this ensemble hindcast produce also a large
spread in the wave model. A visual comparison with the
ERA5 wave model ensemble of data assimilations indicates
that this spread is more reasonable than the one obtained us-
ing the first three discussed ensemble generation approaches.
The peak of the significant wave height in the Baltic Proper
of the most extreme members is, however, with about 11 m
strongly exceeding existing observations in this region. One
possible reason could be an overdispersion of the ensemble
system. Another important factor is the roughness of the sea
surface and its impact on the dynamics of the storm. In the
presented setup, the roughness length of the sea surface is
defined as a constant value. The constant sea surface rough-
ness could lead to systematic overestimations of the wind
speed resulting in too high wave heights. A coupling of the
atmospheric model with the wave model would allow us to
adapt the roughness length depending on the sea surface con-
ditions, and it can lead to a limitation of the wave growth.

16As the WRF model has a finer resolution, shifts different than
multiples of one grid cell by adding or subtracting an offset onto the
coordinates of the ERA5 grid would change the interpolation for the
WRF initial and lateral boundary conditions. This was not tested,
and it was also not investigated systematically if members gener-
ated from smaller shifts are closer to the unperturbed run or if shifts
into a certain direction (e.g. into flow direction or perpendicular to
it) lead to different spreads than shifts into other directions, which
would mean that there are systematic differences between the mem-
bers to be taken into account by the interpretation of the ensemble
data. A test with shifts of two and three grid cells into north, west,
south and east directions was performed, and it indicates that there
are systematic differences.

The robustness of the spread depending on the ensemble
size was tested by randomly generating ensembles with dif-
ferent sizes (10 to 300 members) from an ensemble hind-
cast with 500 members. For small ensembles, the range of
the ensemble spread can differ largely, depending on which
members were randomly selected. In operational services,
this problem is tackled by selecting, for example, already
representative members from a larger global ensemble. To
achieve a comparable robust estimate of the uncertainty, the
ensemble size for the here-presented approach without pres-
election of ensemble members must be larger than the one of
operational local area model ensembles.

Another source of uncertainty arises from the spatio-
temporal discretization of the atmospheric model and the re-
sulting forcing fields for the wave model. Errors introduced
by a coarse temporal resolution of the driving wind fields in
the significant wave height are relatively small in this event
test case. For a strong event with a significant wave height
of about 6.3 m, the difference in wave heights between simu-
lations using 5 and 60 min temporally resolved wind forcing
is only of the order of 2 cm. Between 15 and 5 min tempo-
ral resolution, the impact on the wave height is negligible for
the demonstrated case. The horizontal resolution has a much
stronger impact. This can potentially be corrected by cali-
brating the model to the different wind forcings. It would be
interesting to estimate the remaining difference, but this was
not possible in the framework of this study as a calibration
of the models is not feasible based on a hindcast of only a
single event.

A combination of ERA5 EDA fields as initial conditions
and the stochastic perturbations showed the ability to pro-
duce a larger spread than with the other demonstrated ap-
proaches. Stochastic perturbations have not been tuned in this
study. Producing longer time series, for tuning and validating
the model, could lead to a reasonable measure of the hindcast
uncertainty on the regional scale.

Operational atmospheric and wave products exist with
a comparable or even higher resolution than applied here,
whose quality is superior to what can be reached with the
demonstrated procedure, as they include state-of-the-art data
assimilation techniques. The application of such operational
products is, however, limited by the available periods and
also by the inhomogeneity of the datasets. The demonstrated
approach allows us to adapt the spatio-temporal resolution
and the ensemble size to specific research questions for
event-based hindcasts in a homogeneous manner over the en-
tire available ERA5 period.

Code availability. The WRF source code is available from https://
github.com/wrf-model/WRF/releases (last access: 10 March 2020),
and the WAVEWATCH III® source code is available from https:
//github.com/NOAA-EMC/WW3 (last access: 10 March 2020).
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Data availability. ERA5 and the UERRA/HARMONIE-
v1 reanalysis can be retrieved from the Climate Data
Store at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview (Copernicus Climate
Change Service, 2017) and https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-uerra-europe-complete?tab=overview
(Copernicus Climate Data Store, 2019).

Sample availability. Ensemble hindcasts of wind and wave fields
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