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Abstract. We re-visit Ekman’s (1905) classic problem of
wind-stress-induced ocean currents to help interpret ob-
served deviations from Ekman’s theory, in particular from
the predicted surface current deflection of 45◦. While previ-
ous studies have shown that such deviations can be explained
by a vertical eddy viscosity varying with depth, as opposed to
the constant profile taken by Ekman, analytical progress has
been impeded by the difficulty in solving Ekman’s equation.
Herein, we present a solution for piecewise-constant eddy
viscosity which enables a comprehensive understanding of
how the surface deflection angle depends on the vertical pro-
file of eddy viscosity. For two layers, the dimensionless prob-
lem depends only on the depth of the upper layer and the ratio
of layer viscosities. A single diagram then allows one to un-
derstand the dependence of the deflection angle on these two
parameters.

1 Introduction

The motion of the near-surface ocean layer is a superposition
of waves, wind-driven currents and geostrophic flows. The
basic theory of wind-driven surface currents in the ocean,
away from the Equator, is due to Ekman (1905) and consti-
tutes a cornerstone of oceanography (see Vallis, 2017). Ek-
man dynamics is due to the balance between Coriolis and
the frictional forces generated by the wind stress. Its main
features, consistent with observations of steady wind-driven
ocean currents, are the following:

i. The surface current is deflected to the right and left
of the prevailing wind direction in the Northern Hemi-
sphere and Southern Hemisphere, respectively.

ii. With increasing depth in the boundary layer, the current
speed is reduced, and the direction rotates farther away
from the wind direction following a spiral.

iii. The net transport is at right angles to the wind direction,
to the right and left of the wind direction in the Northern
Hemisphere and Southern Hemisphere, respectively.

While near the Equator wind-drift currents move in the same
direction as the wind (see the discussion in Boyd, 2018),
away from the Equator a deflection of steady wind-driven
currents with respect to the prevailing wind direction oc-
curs in a surface boundary layer, whose typical depth is
tens of metres. Ekman’s pioneering solution (see Ekman,
1905), derived for a constant vertical eddy viscosity, cap-
tures the general qualitative behaviour, but differences of de-
tail between observations and Ekman theory were recorded
in the last decades. While the characteristics (ii)–(iii) hold
for any depth-dependent vertical eddy viscosity (see Con-
stantin, 2020), there is a need to explain the occurrence of
surface currents at an angle in the range 10–75◦ to the wind
(rather than the 45◦ predicted by Ekman), with large varia-
tions depending on the regional and seasonal climate (see the
data in Röhrs and Christensen, 2015; Yoshikawa and Ma-
suda, 2009).

This discrepancy is typically ascribed to the effect of a ver-
tical eddy viscosity that varies with depth. The explicit solu-
tion found by Madsen (1977), for a vertical eddy viscosity
that varies linearly with depth, leads to a plausible, although
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somewhat low, surface current deflection angle of about 10◦.
The avenue of seeking explicit solutions is not very promis-
ing, since only a few are available and the intricacy of the de-
tails makes it difficult to extract broad conclusions (we refer
to Constantin and Johnson, 2019; Grisogno, 1995, for a sur-
vey of known Ekman-type solutions). The challenging nature
of the task is highlighted by the recent analysis pursued in
Bressan and Constantin (2019) and Constantin (2020) where
asymptotic approaches, applicable for eddy viscosities that
are small perturbations of a constant, revealed the convoluted
way in which the eddy viscosity influences the deflection an-
gle: while a slow and gradual variation of the eddy viscos-
ity with depth results in a deflection angle larger than 45◦,
the typical outcome of an eddy viscosity concentrated in the
middle of the boundary layer is a deflection angle below 45◦.
A better understanding of the deflection angle is important
theoretically but also for operational oceanography, e.g. in
the context of search-and-rescue operations or in remedial
action for oil spills.

The important issue of a quantitative relation between the
vertical eddy viscosity and the magnitude of the deflection
angle remains open. The aim of this paper is to discuss this
issue in cases when the eddy viscosity is piecewise uniform.
The in-depth analysis that can be pursued in this relatively
simple setting permits us to gain insight into the way the tur-
bulent parametrization (e.g. of general circulation models)
controls the deflection angle. This paper is organized as fol-
lows: in Sect. 2 we present the Ekman equations for wind-
driven oceans having depth-dependent eddy viscosities, and
we perform a suitable scaling that reduces the number of pa-
rameters. In Sect. 3, an explicit solution is constructed and
illustrated for an infinitely deep ocean with two constant val-
ues of eddy viscosity. This solution covers the full range of
possibilities and exhibits deflection angles covering the full
range between 0 and 90◦. Various special or limiting cases
are highlighted. Finally, Sect. 4 offers our conclusions.

2 Equations of motion and scaling

For a deep, vertically homogeneous ocean, of infinite lateral
extent, the horizontal momentum equation for steady flow
takes the following (complex) form under the f -plane ap-
proximation:

i fU =
1
ρ

∂τ

∂Z
−

1
ρ
∇P + higher-order terms , (1)

where U(Z)= U + iV is the complex horizontal velocity
in the (X,Y ) plane, Z is the depth below the mean surface
Z = 0, f is the Coriolis parameter, ρ is the (constant) den-
sity, ∇P = ∂P/∂X+ i∂P/∂Y is the horizontal pressure gra-
dient, τ (Z)= τx + iτy is the shear stress due to molecular
and turbulent processes, and the higher-order terms, repre-
senting interactions between the variables, are presumed to
be small. Decomposing the horizontal velocity into pressure-

driven (geostrophic) and wind-driven (Ekman) components
U = Ug+U e, we see from Eq. (1) that the leading-order
geostrophic and wind-driven flows separate, with the linear
equation

i fU e =
1
ρ

∂τ

∂Z
(2)

governing the dynamics of the wind-driven flow. By relat-
ing the stress vector within the fluid, τ , to the shear profile
through a turbulent eddy viscosity coefficient ν(Z),

τ = ρν
∂U e

∂Z
, (3)

from Eq. (2) we obtain Ekman’s equations for wind-driven
ocean currents

i fU e =
∂

∂Z

(
ν
∂U e

∂Z

)
. (4)

Let us now discuss the appropriate boundary conditions.
At the surface, the shear stress balances the wind stress, τ 0:

τ 0 = ρν
∂U e

∂Z
on Z = 0 . (5)

The “bottom” boundary condition expresses the vanishing
of the wind-driven current with depth (necessary to keep
the total kinetic energy finite), where the flow is essentially
geostrophic:

U e→ 0 as Z→−∞ . (6)

Letting τ0 denote the magnitude of the surface wind
stress, we non-dimensionalize the problem by scaling U e by
√

2τ0/ρ andZ by
√

2τ0/ρ/f , since τ0/ρ has units ofL2/T 2.
The factor of 2 is introduced for convenience below. Upon
defining a dimensionless eddy viscosity K = fρν/τ0, veloc-
ity u= U e/

√
2τ0/ρ and depth z= Zf/

√
2τ0/ρ, the equa-

tions transform to

(Kψ ′)′− 2iψ = 0 for z < 0 , (7)
ψ ′(0)= 1 on z= 0 , (8)
ψ→ 0 as z→−∞ , (9)

where ψ = uK(0) and a prime means a derivative with re-
spect to z (cf. Eqs. 14–16 in Gill, 1982). The scaling per-
formed does not change the surface deflection angle θ0, equal
to the argument of the complex vector ψ(0), even if the scal-
ing results in an orientation of the horizontal axes such that
the surface wind stress points in the positive x direction.
Finally, we note that this formulation is appropriate for the
Northern Hemisphere where f > 0. The formulation for the
Southern Hemisphere is obtained by taking the complex con-
jugate in Eq. (7), noticing that K is real-valued.
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3 Exact solution for piecewise-constant eddy viscosity

For piecewise-constant K , without loss of generality we can
further scale z so that K = 1 in z ∈ [−h,0] while K = `2 in
z ∈ (−∞,−h), where h is the dimensionless depth of the up-
per layer. Note that ` is the ratio of the lower-layer to upper-
layer viscous lengths. The analysis below can be readily ex-
tended to any number of regions of constant K , but the sim-
plest to understand is two regions, since then the solution
depends on only two dimensionless parameters, ` and h.

3.1 Constructing the solution

In each region, the complex velocity ψ satisfies a simple
constant-coefficient equation:

ψ ′′− 2iψ = 0 for −h < z < 0 , (10)

`2ψ ′′− 2iψ = 0 for −∞< z <−h, (11)

having exponential solutions

ψ(z)= Ae(1+i)z
+B e−(1+i)z for −h < z < 0 , (12)

ψ(z)= C e(1+i)z/` for −∞< z <−h, (13)

where A, B and C are (generally complex) constants. The
boundary condition ψ→ 0 as z→−∞ has been used to
eliminate the growing solution in Eq. (13).

At the discontinuity inK , at z=−h, we require continuity
of ψ , i.e. ψ(−h+)= ψ(−h−). Moreover, by integrating the
equation above across an infinitesimal region centred on z=
−h, we obtain

ψ ′(−h+)= `2ψ ′(−h−) . (14)

The upper surface boundary condition ψ ′(0)= 1 implies

(1+ i)(A−B)= 1 (15)

while continuity of ψ at z=−h implies

Ae−(1+i)h+B e(1+i)h = C e−(1+i)h/` (16)

and finally the jump condition (Eq. 14) on ψ ′ at z=−h im-
plies

Ae−(1+i)h−B e(1+i)h = C`e−(1+i)h/` . (17)

It follows that

A=
1
2
C e−(1+i)h/`(1+ `)e(1+i)h and

B =
1
2
C e−(1+i)h/`(1− `)e−(1+i)h . (18)

Applying the surface boundary condition (Eq. 15) determines
C as

C =
(1− i) e(1+i)h/`

(1+ `)e(1+i)h− (1− `)e−(1+i)h
. (19)

The surface current deflection angle, θ0, measured clock-
wise, is determined from

tanθ0 =−
I(ψ(0))
R(ψ(0))

=−
I(A+B)

R(A+B)
. (20)

But given C above in Eq. (19), we have

A+B =
1
2
(1− i)

(1+ `)e(1+i)h+ (1− `)e−(1+i)h

(1+ `)e(1+i)h− (1− `)e−(1+i)h
.

Introducing the real values α = (1+`)eh and β = (1−`)e−h

enables us to write

A+B =
1
2
(1− i)

α eih+β e−ih

α eih−β e−ih
,

which, after multiplying top and bottom by the complex con-
jugate of the denominator, simplifies to

A+B =
1
2
(1− i)

α2
−β2
− 2iαβ sin(2h)

α2+β2− 2αβ cos(2h)
.

Hence, taking the (negative of the) ratio of the imaginary to
real parts of this, we obtain

tanθ0 =
α2
−β2
+ 2αβ sin(2h)

α2−β2− 2αβ sin(2h)
. (21)

3.2 Results

First, we examine certain special cases.
When `= 1, there is no discontinuity in eddy viscosity.

Since in this case β = 0, we have tanθ0 = 1, i.e. θ0 = 45◦ in
agreement with the classical Ekman spiral solution.

As `→ 0, the eddy viscosity vanishes in the lower layer,
and the flow field ψ must also vanish. In this case, tanθ0
reduces to

tanθ0 =
sinh(2h)+ sin(2h)
sinh(2h)− sin(2h)

, (22)

which has a non-trivial dependence on h. The maximum
value is attained as h→ 0; then tanθ0→∞ or θ0→ 90◦.

As `→∞, corresponding to an extremely viscous lower
layer, tanθ0 reduces to the inverse of the previous expression,
i.e.

tanθ0 =
sinh(2h)− sin(2h)
sinh(2h)+ sin(2h)

. (23)

The minimum occurs for h→ 0 and there tanθ0→ 0 or
θ0→ 0.

For general `, there are also values of h for which tanθ0 =

1. These occur when the numerator and the denominator of
the general expression above for tanθ0 are equal. But this
means αβ sin(2h)= 0 or (1− `2)sin(2h)= 0. One solution
is the classical Ekman spiral with `= 1 noted above. But we
also have h= nπ/2 for non-negative integers n. When n= 0,
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Figure 1. Surface deflection angle θ0 (in degrees) as a function
of the lower-layer non-dimensional viscous length ` and the non-
dimensional depth of the upper layer h.

the upper layer vanishes and the eddy viscosity is uniform
throughout the entire depth. The classical Ekman spiral is
expected in this case. The other special depths imply θ0 ex-
hibits a non-monotonic dependence on h for fixed `. In fact,
tanθ0 exhibits a decaying oscillation about a value of unity.

A summary of the results in the `–h plane is provided
in Fig. 1. Along any line `= constant (excluding `= 1), θ0
reaches a minimum or maximum in h when the following
relation holds:

1− `
1+ `

=±e2h

√
cos(2h)− sin(2h)
cos(2h)+ sin(2h)

(24)

obtained by setting the partial derivative of tanθ0 with re-
spect to h equal to zero. The first extremum with increas-
ing h occurs for h < π/8 (when h= π/8 the above equation
yields `= 1). Note that as h→ 0, (1−`)/(1+`)→±1, im-
plying either `→ 0 or `→∞ as noted previously. Extrema
also occur for larger h since the function in the square root
above is periodic, but these involve much weaker variations
in θ0 about 45◦, diminishing like e−nπ for positive integers
n. When n= 1, the maximum excursion in tanθ0 is approxi-
mately 0.05735.

4 Conclusions

We have re-visited the famous problem originally posed by
Nansen (see the discussion in Huntford, 2002) and solved
by Ekman (1905) to understand wind-driven currents in the
ocean. By balancing viscous and Coriolis forces, and assum-
ing a constant vertical eddy viscosity, Ekman (1905) pre-
dicted that the surface current is deflected by 45◦ to the
right and left of the prevailing wind direction in the Northern
Hemisphere and Southern Hemisphere, respectively. More-

over, Ekman (1905) found that the net fluid transport is 90◦

to the right and left of the wind direction.
Since then, a number of studies have sought to explain ob-

served discrepancies with Ekman’s theory (Röhrs and Chris-
tensen, 2015; Yoshikawa and Masuda, 2009), in particular
deflection angles significantly different from the 45◦ pre-
diction (Madsen, 1977; Grisogno, 1995; Bressan and Con-
stantin, 2019; Constantin and Johnson, 2019; Constantin,
2020). The main conclusion is that these discrepancies can
be explained by vertically varying eddy viscosities. However,
due to the mathematical difficulty in constructing exact or
asymptotic solutions, no general scenario has yet emerged
relating the deflection angle to the profile of eddy viscosity.

This study makes a first step in this direction by consider-
ing the case of piecewise-constant eddy viscosities for which
analytical solutions may be readily constructed and analysed.
We have presented results for the simplest situation of two
regions having different uniform viscosities in an infinitely
deep ocean. (In fact the results also apply when the two re-
gions have different densities, such as a mixed layer of den-
sity ρ1 overlying a denser deep layer of density ρ2. In that
case the lower-layer dimensionless viscosity `2 includes the
density ratio ρ1/ρ2.) By an appropriate scaling of the gov-
erning equations, the solutions can be shown to depend on
only two parameters: the ratio of the lower-to-upper viscous
lengths ` and the dimensionless depth of the upper layer h.
This permits one to see at a glance how both ` and h deter-
mine the surface deflection angle θ0.

In appropriate limits, we recover Ekman’s classical solu-
tion, but additionally the 45◦ deflection angle may also occur
for arbitrary `, when h assumes special values. In general, for
h sufficiently small and ` < 1 (a less viscous lower layer),
the deflection angle exceeds 45◦ (and can reach nearly 90◦

for `� 1). When ` > 1 (a more viscous lower layer), the de-
flection angle is less than 45◦ and tends to zero as `→∞ for
h� 1. For `∼ 1 our conclusions are in agreement with the
results obtained recently in Bressan and Constantin (2019)
and Constantin (2020). Indeed, writing K(z)= `2

+ εK1(z)

for z ≤ 0, with ε = |1− `2
| and

K1(z)=

{
(1− `2)/ε , z ∈ [−h,0] ,

0 , z <−h,

the perturbative approach developed in Bressan and Con-
stantin (2019) and Constantin (2020) shows that a positive
and negative value of the integral

1− `2

ε

0∫
−h

e2s sin
(

2s+
π

4

)
ds ,

corresponds to a deflection angle larger and smaller than 45◦.
respectively. The relation

0∫
−h

e2s sin
(

2s+
π

4

)
ds =

1

2
√

2
e−2h sin(2h)
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shows that this is consistent with our conclusions.
The results obtained may help better formulate appropri-

ate parameterizations of eddy viscosities in global circula-
tion models of the ocean. For example, it is typical for the
upper 100 m of the ocean that solar heating quenches turbu-
lence during the day (see the discussion in Woods, 2002).
Our model captures these changes: during the day we set
` > 1, with ` < 1 during the night, thus explaining the ob-
servation that often the deflection angle exceeds 45◦ during
the day, and is below 45◦ during the night (see Krauss, 1993).
The same reasoning applies to the large seasonal variations
of the deflection angle observed at some locations (see the
data in Yoshikawa and Masuda, 2009) and explains why one
observes angles below 45◦ in arctic regions, where the ice
cover quells the turbulence near the ocean surface. On the
other hand, the regularity of strong winds in the Drake Pas-
sage makes the assumption of a uniform eddy viscosity rea-
sonable (i.e. `= 1) so that in this region the deflection angle
is typically close to 45◦ (see the data in Polton et al., 2013;
Roach et al., 2015). We are not aware of detailed observa-
tional studies relating the deflection angle to the vertical pro-
file of eddy viscosity, but we hope that our work will serve
as a guide.

Data availability. The results (in Fig. 1) are easily generated from
the simple equation derived, Eq. (21).
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