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Abstract. This work examines the accuracy and validity
of two variants of Radon transform and two variants of
the two-dimensional fast Fourier transform (2-D FFT) that
have been previously used for estimating the propagation
speed of oceanic signals such as sea surface height anoma-
lies (SSHAs) derived from satellite-borne altimeters based
on time–longitude (Hovmöller) diagrams. The examination
employs numerically simulated signals made up of 20 or 50
modes where one, randomly selected, mode has a larger am-
plitude than the uniform amplitude of the other modes. Since
the dominant input mode is known ab initio, we can clearly
define “success” in detecting its phase/propagation speed.
We show that all previously employed variants fail to detect
the phase speed of the dominant input mode when its ampli-
tude is smaller than 5 times the amplitude of the other modes
and that they successfully detect the phase speed of the dom-
inant input mode only when its amplitude is at least 10 times
the amplitude of the other modes. This requirement is an un-
realistic limitation on oceanic observations such as SSHA.
In addition, three of the variant methods detect a dominant
mode even when all modes have the exact same amplitude.
The accuracy with which the four methods identify a domi-
nant input mode decreases with the increase in the number of
modes in the signal. Our findings are relevant to the reliabil-
ity of phase speed estimates of SSHA observations and the
reported “too fast” a phase speed of baroclinic Rossby waves
in the ocean.

1 Introduction

Time–longitude (Hovmöller) diagrams at a given latitude
of an oceanic variable, η(x, t), that represents, for exam-
ple, temperature, sea surface height, chlorophyll, obtained
for example by satellite observations are often used for es-
timating the propagation rate of the oceanic variable. The
rate at which η(x, t) propagates is determined by the inverse
slopes of same-amplitude contours. These slopes are calcu-
lated by applying various methods, employed in image pro-
cessing and detailed below in Sect. 2.2, to the raw data or
to processed data (e.g., Polito and Liu, 2003, who separated
the data into tiles of different periods). The methods exam-
ined here were used in many oceanic sub-areas such as the
propagation speed of Rossby waves using SSHA (e.g., Tul-
loch et al., 2009) or data other than SSHA (Belonenko et al.,
2018; Xie et al., 2016); nearshore wave dynamics (Almar et
al., 2014); eddy detection (Abernathey and Marshall, 2013;
Oliveira and Polito, 2018) and intraseasonal variability from
mooring (Hu et al., 2018) to name a few.

De-Leon and Paldor (2017a) examined the accuracy of
various methods in estimating the phase speed of waves
by applying these methods to an artificially generated sig-
nal made of three sine functions (modes) with known phase
speeds and amplitudes, compounded by large-amplitude ran-
dom white noise. All methods have successfully filtered out
the high-amplitude white noise from the three-harmonic sig-
nal and accurately detected the main mode (some of them
also detected the secondary modes). However, such a sig-
nal is too synthetic/ideal and cannot be compared to real
oceanic observations that include tens, if not hundreds, of
modes with different frequencies and propagation speeds and
not just three modes compounded by white noise.
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In this short study we simulate oceanic observations and
examine whether the methods detect a single dominant prop-
agation speed out of many (20 or 50) speeds. In Sect. 2 we
provide details on the generation of “observed” (i.e., simu-
lated) η signal, the methods for evaluating the propagation
speed of the signal and the tests we apply to the signals. The
results are shown in Sect. 3 and discussed in Sect. 4.

2 Data and methods

2.1 Generating the simulated observations

The η signals (where η is any oceanic variable) used here are
generated numerically by summing up N purely propagating
sine functions (modes, hereafter) of the form sin(kx−ωt),
where k is the zonal wavenumber, x is longitude, t is time
and ω = kC is the frequency (where C is the zonal propaga-
tion speed). The number of participating modes, N , is taken
to be either 20 or 50, andN−1 of these modes have an ampli-
tude of 1 while the amplitude of the additionalN th, randomly
chosen, mode is either larger than or equal to 1. The sum of
allN modes constitutes the η-signal which is analyzed by the
methods described in Sect. 2.2.

The spatial domain (x) is chosen between longitudes 70
and 130◦ on a Cartesian grid with a 1/4◦ resolution, and
the time (t) duration is 20 years (1044 weeks) with tem-
poral resolution of one datum per week, similar to publicly
distributed products by e.g., Aviso. The values of the prop-
agation speeds, C, are uniformly distributed in the −18 to
0 cm s−1 range (i.e., each of the 20 or 50 modes is assigned a
different propagation speed within that range), which is typi-
cal for baroclinic Rossby waves in the ocean (see e.g., Fig. 7
of Killworth et al., 1997; Barron et al., 2009). The values of
the frequencies, ω, are selected randomly so that the period,
2π/ω, falls in the range between 5 and 200 weeks while the
values of the zonal wavenumbers, k, equal ω/C. The result-
ing signal was low-pass filtered by applying a 5-week run-
ning average at each grid point to eliminate short-term varia-
tions.

The η signal made up of the filtered signal (i.e., the sum of
N pure sine waves) at a given latitude is plotted as a function
of longitude and time (Hovmöller diagram). When a single
dominant mode exists that has a certain propagation speed
the pattern on this diagram is a straight line whose slope
is the inverse of the dominant propagation speed (since the
abscissa is longitude and the ordinate is time). An example
of a time–longitude diagram of an artificial signal is shown
in Fig. 1a (for signal with dominant input mode’s amplitude
of 1.5) where the slope of the solid blue line corresponds
to the propagation speed of the dominant input mode. The
challenge is to estimate the dominant speeds using different
methods and examine their success in detecting the propaga-
tion speed of the known dominant input mode. The methods
examined here are detailed in the next subsection.

2.2 Methods for estimating the observed propagation
speed

Four variants of methods have been employed for identifying
the preferred direction of the same-amplitude contours on the
Hovmöller diagram; each variant relates a certain measure
of the power/intensity in a mode to its propagation speed.
The first method is the Radon transform, used by e.g., Chel-
ton and Schlax (1996), Chelton et al. (2003), and Tulloch et
al. (2009) for analysing satellite observations of the ocean. In
this method, one calculates the sum of the amplitudes along
lines inclined at an angle θ and displaced a distance s from
the origin. Then, the sum of squares of the values of these
sums along all lines having the same angle is calculated. The
angle at which this sum of squares is maximal is the best es-
timate for the orientation of the lines on the image. The dom-
inant propagation speed of the signal is then proportional to
the tangent of this angle of maximum sum of squares. In the
second method, which is a variant of the Radon transform,
the variance of the amplitudes is calculated along every an-
gle θ instead of the sum of amplitudes. This method was ap-
plied e.g., by Polito and Liu (2003, to local auto-correlation
of segments of Hovmöller diagram) and Barron et al. (2009).
Another, independent, method commonly used (e.g., Zang
and Wunsch, 1999; Osychny and Cornillon, 2004) is the 2-
D fast Fourier transform (2-D FFT). An example of a (ω,
k) diagram, obtained by applying 2-D FFT to the signal of
Fig. 1a is shown in Fig. 1b. Here we use two variants of the
2-D FFT method: in the first variant one sweeps over the 2-D
FFT spectra to find the direction in (ω, k) plane with max-
imum energy (this is the third method) while in the second
variant one finds the maximal amplitude of the 2-D FFT (i.e.,
one of the bright points in Fig. 1b) and calculates the ratio
ω/k, whereω and k are the frequency and zonal wavenumber
of the maximal amplitude (this is the fourth method). A de-
tailed description of these methods and the interpretation of
observed signals are found in De-Leon and Paldor (2017a).

Each of the four variants of the methods can yield an es-
timate of the dominant propagation speed of a signal, based
on the extremum of a graph that relates the calculated mea-
sure of a mode’s intensity to its propagation speed. An esti-
mation of the propagation speed based on a local extremum
of this graph is accepted when this extremum is narrow and
isolated compared to other local extrema. When the normal-
ized amplitude (the term normalized amplitudes is used for
the calculated amplitudes divided by the maximal amplitude
in the domain) of a distinct peak is 1 while the (normalized)
amplitudes of all other peaks are smaller than (an arbitrarily
determined value of) 0.8, this mode is considered the dom-
inant mode. In the variance method, where the extrema are
minima, the dominant mode is accepted when its normal-
ized amplitude is 0.0 while the normalized amplitudes of all
other minima are larger than 0.2. The results shown in Fig. 2
demonstrate that, in the particular signal of Fig. 1, in one
method (2-D FFT maxima) no dominant peak exists (Fig. 2d)
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Figure 1. (a) An example of an artificial observed signal. (b) The associated (ω, k) diagram obtained by applying 2-D FFT to the signal of
panel (a). The solid blue line in panel (a) corresponds to the randomly chosen dominant input mode’s propagation speed.

Figure 2. An application of the four methods to the artificially generated signal shown in Fig. 1a (panel a: Radon transform, panel b: variance,
panel c: 2-D FFT sweeping, panel d: 2-D FFT maximal amplitude). Blue lines correspond to the dominant input mode propagation speed
and dashed black lines correspond to the input modes’ propagation speeds.

while in the other three methods dominant peaks exist, either
a clear maximum (Fig. 2a, 2c) or a clear minimum (Fig. 2b),
but they do not coincide with the dominant input mode (the
blue line).

2.3 Examining the accuracy of dominant mode
detection

Two types of tests are applied to these observations to ex-
amine the accuracy of the various methods in assessing the
existence of a dominant propagation speed (i.e., mode) in the
signal.

www.ocean-sci.net/15/1593/2019/ Ocean Sci., 15, 1593–1599, 2019
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Figure 3. The percentage of success of each variant of the methods
for dominant input mode’s amplitude of 2.5 (a), 5 (b) and 10 (c) for
both N = 20 and N = 50.

The first test is a true-positive/false-negative test in which
there is a dominant mode in the observed signal, and a given
method indicates whether this dominant mode exists (true-
positive; TP) or not (false-negative; FN). In our case, one of
the sine functions (this is the dominant input mode) is cho-
sen randomly and its amplitude is set to be larger than 1. We
check for each method if (at all) it identifies a dominant mode
and if so, if it matches the propagation speed of this (larger
amplitude) input mode. We divide the interval of propagation
speeds intoN (= 20 or 50) bins of equidistant values, and the
determination of the success of the methods in identifying a
dominant mode is as follows: if the dominant mode found by
the method falls in the expected bin of the dominant input
mode, we assign a score of 1 (“TP”). If it is found in one of
its next neighbours, it is assigned a score of 1/2. A score of

Figure 4. The percentage of erroneous detection of each variant of
the methods when there is no dominant input amplitude.

0 (“FN”) is assigned when the method cannot find any dom-
inant mode and when it detects a dominant mode more than
one bin away from the correct bin. For each of five values
of dominant mode’s amplitudes: 1.5, 2, 2.5, 5 and 10 and for
two values of N (20 or 50) we repeat this procedure 50 times
(i.e., for 50 different signals), sum up the scores and calculate
the percentage of success in identifying the dominant input
mode in the signals by TP/(TP+FN)×100. Since this choice
of scoring (1, 1/2, 0) is arbitrary, we also considered an al-
ternative arbitrary choice for scoring: 1 if the dominant mode
falls in the expected bin of the dominant input mode, 2/3 in
one of its nearest neighbours, 1/3 in one of its next to nearest
neighbours and 0 otherwise.

The second test is a false-positive/true-negative test in
which no dominant mode exists in the observed signal and
a given method indicates that there exists a dominant mode
(false-positive; FP) or not (true-negative; TN). In our case,
this is done by generating a signal in which all modes have
identical amplitudes (= 1) and checking whether a method
erroneously detects a certain propagation speed as dominant.
If a dominant mode is detected, we assign it a score of 1
(“FP”), if a peak is detected but is too wide we assign it
a score of 1/2, and if there is no dominant mode (i.e., no
distinct peak or more than one peak) we assign it a score
of 0 (“TN”). We repeat this procedure 50 times for each of
N = 20 or N = 50, sum up the scores and calculate the per-
centage of erroneous detection of a dominant mode in the
signals by FP/(FP+TN)×100.

3 Results

An example of false determination of the dominant mode is
shown in Fig. 2 for the signal shown in Fig. 1a. Figure 2a
shows the distribution of the sum of squares of the Radon
transform versusC (black markers), normalized such that the
maximum value equals 1. Also plotted are the dashed black
vertical lines located at the N values of the uniformly dis-
tributed propagation speeds, C, where the solid blue line is
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Figure 5. The distribution of the sum of squares of the Radon transform (black dots) versus the Radon angle θ . Clearly, the distribution of the
corresponding input propagation speeds (vertical dashed black lines) as a function of θ is not uniform due to the nonlinear relation between
C and θ .

located at the C value of the dominant input mode’s prop-
agation speed. These dashed black and solid blue vertical
lines are also shown Fig. 2b–d. Clearly, the dominant prop-
agation speed calculated by the Radon transform (where the
black curve attains its maximum) does not match the prop-
agation speed of the dominant input mode. Figure 2b shows
the (normalized) mean of variances as a function of C (black
markers), and here, too, the calculated propagation speed (the
curve’s minimum point) does not agree with the dominant
input mode’s speed. Figure 2c shows the (normalized) distri-
bution of the sum of squares of the spectral coefficients (2-D
FFT-amplitudes) along different ω/k lines (sweeping) as a
function of C (black markers) where a distinct peak exists
but it is located far from the dominant input mode’s propaga-
tion speed. Figure 2d shows the 20 highest (normalized) 2-D
FFT amplitudes of the (ω, k) diagram of Fig. 1b. There are
many peaks with no clear single maximum, and the dominant
input mode has one of the lowest amplitudes. For this signal,
none of the methods correctly identified the dominant input
mode.

The statistics of success of each method in detecting the
dominant input mode for the TP/FN test is shown in Fig. 3
for dominant input mode’s amplitude of 2.5, 5 and 10. The
results for amplitudes of 1.5 and 2 are not shown as the suc-
cess rate of all methods at these amplitudes is only between
10 % and 30 %. In each case we repeated the procedure 50
times (i.e., for 50 signals; note that there is no significant
difference in the results if the number of repeats is changed
to 25 or 100) for N = 20 and then for N = 50, summed the
scores (1, 1/2 or 0) and calculated the percentage of success
by TP/(TP+FN)×100. The second scoring of 1, 2/3, 1/3,
0 yielded very similar numbers (up to 3 %) so they are not

presented here. The conclusions from these results are as fol-
lows:

– in order to identify the dominant input mode with more
than 70 % certainty, its amplitude should be larger than
5;

– no method has a clear advantage over the other methods;

– clearly, as N increases the dominant mode’s amplitude
has to increase, too, for a successful identification (so
as to ensure that the ratio between the dominant mode’s
amplitude and the sum of all amplitudes is similar for
different values of N since, e.g., 2.5/20 > 2.5/50); and

– the minimal amplitude at which successful detection oc-
curs, decreases with the decrease in the ranges of propa-
gation speeds and periods. Thus, for propagation speeds
in the range of −10 to −2 cm s−1 and periods between
15 and 100 weeks, an amplitude of 5 is successfully de-
tected in over 90 % of the cases, while an amplitude of
2 yields poor results (results not shown).

The statistics of erroneous detection of a dominant mode (the
FP/TN test where the amplitudes of all input modes equal 1
i.e., there is no dominant input mode) is shown in Fig. 4 for
each of the methods (here, again, we have generated 50 sig-
nals for N = 20 and for N = 50 and calculated the percent-
age of erroneous detection by FP/(FP+TN)×100). The 2-D
FFT maxima method is the only method for which the per-
centage of error is smaller than 20 % while the other three
methods err in at least 50 % of the cases (i.e., they identify
a single clear peak in one of the propagation speeds). As
N increases this erroneous detection percentage decreases
slightly in the two Radon variants but increases slightly in
the 2-D FFT sweeping method.

www.ocean-sci.net/15/1593/2019/ Ocean Sci., 15, 1593–1599, 2019
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4 Discussion

None of the methods can identify a dominant input mode un-
less its amplitude is significantly larger than the others (by a
factor larger than five in the present study’s ranges of prop-
agation speeds and periods) and most of them (except the 2-
D FFT maxima) erroneously detect a dominant mode when
there is no such input mode. Though the 2-D FFT maxima
method does not falsely detect dominant mode when it does
not exist, its performance in detecting a dominant input mode
when it exists is not satisfactory. For realistic signals in the
ocean we do not know that there is a dominant mode with
sufficiently large amplitude so none of the methods is reliable
for estimating the propagation speed of e.g., Rossby waves.

When the values of ω and k are chosen in a range corre-
sponding to the resolution limit and the Nyquist frequency,
the success of 2-D FFT in identifying the dominant input
mode’s propagation speed increases significantly, compared
to the case where the values of C are determined in advance,
ω is chosen randomly in a particular range and k is set to
ω/C so aliasing can occur. For that reason, even if the sig-
nal includes only one mode (i.e., one C), and both ω and k
are chosen in the latter manner, there can be a wrong identi-
fication by the 2-D FFT (but the Radon transform identifies
it correctly). In the ocean we do not know ab initio which
wavenumbers and frequencies exist so we cannot filter them
out of the signal; hence aliasing can occur, and the percentage
of success in detecting the real dominant mode is expected to
decrease further.

The erroneous identification of the Radon and variance
methods can be partially attributed to the non-linear relation
between the angle θ and the propagation speed, C, which is
proportional to tan(θ), so the equidistant values of C are con-
verted to θ values that are very close to one another. Figure 5
shows the distribution of the sum of squares of the Radon
transform versus θ for the signal shown in Fig. 1a (while the
distribution of the sum of squares of the Radon transform
versus C for that signal is shown in Fig. 2a). It is clear from
this figure that the peak is located in the vicinity of θ values
corresponding to many C values. However, the performance
of the Radon variants improves with the increase of the dom-
inant input mode’s amplitude, so the non-linear relation be-
tween the angle and propagation speed is not the only reason
for the mismatch.

As N (the number of modes) increases, the dominant in-
put mode’s amplitude should be larger in order to be sepa-
rately identified from modes with similar characteristics. Of
course, in the real ocean it is impossible to establish a priori
a bound on the number of modes, on the width of the bins
(which becomes narrower as N increases), and on the ex-
pected maximal amplitude, so fewer results can be evaluated
as success. Also, in narrower ranges of propagation speeds
and periods and for the same number of bins, all methods
correctly detect the dominant input mode at lower-threshold
amplitudes (results not shown). An implication of this find-

ing for the detection of the dominant mode in the ocean is
that a reliable estimate of the phase speed cannot be based
on a single method (see also De-Leon and Paldor, 2017a).

In addition to the amplitude of the dominant input mode
and its width, a parameter that might affect the success of de-
tection of the dominant mode is the existence of a cluster of
dominant input modes with similar phase speeds. This was
ignored in the results presented above where in all repeats
there was a single dominant input mode. To examine this as-
pect, we generated a signal made of 20 modes, out of which a
triplet of adjacent, randomly selected, modes had amplitudes
of (2, 4, 2) instead of a single mode with an amplitude of
5. The statistics of repeats showed that all methods have de-
tected the dominant mode with slightly elevated confidence
(less than 10 % higher) in the former cluster of modes, com-
pared to the latter single mode (results not shown). Though
the sum of the squares of the amplitudes of the cluster is
smaller than the squared amplitude of the single mode (i.e.,
22
+ 42
+ 22
= 24< 25= 52), the linear sum of the ampli-

tudes of the cluster is larger than that of the single mode (i.e.,
2+ 4+ 2= 8> 5), so the elevated amplitude rather than the
square of the amplitude might explain the improved detec-
tion of the cluster. An examination of this “clustering” effect
in a signal made up of a continuous unbounded spectrum of
phase speeds (i.e., N→∞), which better models the real
ocean, is left for future work.

The weakness of the methods in identifying the dominant
mode points to the difficulty in comparison between theories
and observations of baroclinic Rossby waves in the ocean,
and this difficulty might explain the lack of continuity of
propagation speed estimates between adjacent latitudes in
one or more methods. It can also explain why a validation
of the higher-order trapped wave theory (where the β term
is treated consistently) has been confirmed by observations
only in the Indian Ocean south of Australia (De-Leon and
Paldor, 2017b) and not in other parts of the world ocean.
In contrast to the harmonic theory whose propagation speed
estimates are always slower than the observed speeds, the
trapped wave theory differs from observations sporadically
(see Fig. 5 of De-Leon and Paldor, 2017b).
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