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Abstract. Since the advent of the modern satellite altimeter
era, the understanding of the sea level has increased dramati-
cally. The satellite altimeter record, however, dates back only
to the 1990s. The tide gauge record, on the other hand, ex-
tends through the 20th century but with poor spatial cover-
age when compared to the satellites. Many studies have been
conducted to create a dataset with the spatial coverage of the
satellite datasets and the temporal length of the tide gauge
records by finding novel ways to combine the satellite data
and tide gauge data in what is known as sea level reconstruc-
tion. However, most of the reconstructions of sea level were
conducted on a global scale, leading to reduced accuracy on
regional levels, especially when there are relatively few tide
gauges. The seas around the Korean Peninsula are one such
area with few tide gauges before 1960. In this study, new
methods are proposed to reconstruct past sea level around
the Korean Peninsula. Using spatial patterns obtained from
a cyclostationary empirical orthogonal function decomposi-
tion of satellite data, we reconstruct sea level over the pe-
riod from 1900 to 2014. Sea surface temperature data and
altimeter data are used simultaneously in the reconstruction
process, leading to an elimination of reliance on tide gauge
data. Although we did not use the tide gauge data in the re-
construction process, the reconstructed sea level has a better
agreement with the tide gauge observations in the region than
previous studies that incorporated the tide gauge data. This
study demonstrates a reconstruction technique that can po-
tentially be used at regional levels, with particular emphasis
on areas with poor tide gauge coverage.

1 Introduction

Although sea level rise is a global phenomenon, the impacts
are different in localities. Changes in sea level are affect-
ing communities across the globe on an almost daily basis
through increased erosion, greater saltwater intrusion, more
frequent nuisance flooding, and higher storm surges caus-
ing severe damage on coastal structures (e.g., Nicholls, 2011;
Cheon and Suh, 2016; Suh et al., 2013). Planning for, adapt-
ing to, and mitigating current and future sea level has neces-
sarily begun in many threatened areas. Important decisions
have been made in both economic and societal activities.
Examples can be found throughout the world, with coastal
communities making difficult decisions on how to address
concerns associated with future sea level rise (e.g., Nicholls,
2011). The present and near-term threat of sea level rise
across the globe highlights the immediate need for actionable
regional sea level projections. In order to improve future pro-
jections of sea level, understanding past sea level change is
an important first step.

Before the satellite altimeter era, the only available sea
level observations came from tide gauge (TG, hereafter)
records. TGs provide records of local sea level variations,
covering nearly 200 years in some locations around the
globe. Using TG data, scientists have studied past sea level
changes around the world. However, TGs provide poor spa-
tial coverage as they are located at coastal sites and mostly
in the Northern Hemisphere. On the other hand, the satellite
altimeters collecting data since 1992 have near-global cov-
erage of sea level but a relatively short observation period
compared to TG observations, which is a severe handicap to
analyzing long-term changes in sea level. This disadvantage
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is particularly true given the presence of sea level variability
with decadal and longer timescales.

Chambers et al. (2002) was one of the first to recon-
struct sea level anomalies (SLAs) by combining TG data
and satellite altimeter data. In their research, they stud-
ied low-frequency variability in global mean sea level
(GMSL) from 1950 to 2000. They interpolated sparse TG
data into a global gridded SLA pattern applying EOFs
(empirical orthogonal functions) of SLA using data from
the TOPEX/Poseidon satellite altimeter to capture the
interannual-scale signals, e.g., ENSO (El Niño–Southern
Oscillation) and PDO (Pacific Decadal Oscillation). Building
on previous studies (Chambers et al., 2002; Kaplan et al.,
1998, 2000), Church et al. (2004) created a reconstruction
from 1950 to 2001 using EOFs of SLA data measured
from satellite altimeters and a reduced-space optimal inter-
polation scheme. This research was subsequently updated
to increase temporal coverage from 1870 to the present
(Church and White, 2006, 2011), and the reconstructions
have been made available to the public through their
website (https://research.csiro.au/slrwavescoast/sea-level/
measurements-and-data/sea-level-data/; last access: 1
January 2018). In these studies, GMSL was found to rise
approximately 210 mm from 1880 to 2009, with a linear
trend from 1900 to 2009 of 1.7± 0.2 mm yr−1. The resulting
SLA is one of the most comprehensive and widely cited
reconstructions. While these studies focused largely on the
reconstruction of GMSL, Hamlington et al. (2011) applied
cyclostationary empirical orthogonal functions (CSEOFs) as
basis functions for the reconstruction of SLA in an attempt to
improve the representation of variability about the long-term
trends. This approach provided an advantage for describ-
ing local variations such as ENSO and PDO. After that,
Hamlington et al. (2012a) proposed an improved scheme of
their reconstruction using sea surface temperature (hereafter
SST). Given the limited TG data in the past, reconstruction
of SLA relying only on TGs was inaccurate, particularly
before 1950. Leveraging other ocean observations (e.g.,
SST) led to an improved SLA reconstruction further into the
past. In addition, this approach provides an advantage for
describing local variations such as ENSO and PDO because
the SST data give information where only few TGs are
available.

While sea level is a global phenomenon, the extent of sea
level change varies dramatically across the globe. During the
24-year satellite altimeter record, regional trends have been
measured to be 4 times greater than the global average in
some areas (AVISO, 2017). Therefore, sea level assessment
on a regional level is necessary to plan for future sea level.
Several studies have focused on regional reconstructions tar-
geting a particular area of interest. As an example, using an
optimal interpolation method, Calafat and Gomis (2009) re-
constructed the distribution of SLA in the Mediterranean Sea
over 1945–2000. They used EOFs of satellite altimeter data
spanning from 1993 to 2005 as basis functions and interpo-

lated the TG data using these spatial patterns. A spatial dis-
tribution of sea level rise trends for the Mediterranean for the
period of 1945–2000 indicated a positive trend in most ar-
eas. Hamlington et al. (2012b) performed a regional SLA re-
construction using CSEOFs as basis functions (Hamlington
et al., 2011) with a domain covering only the Pacific Ocean.
They found that a choice of basis functions had a significant
effect on the spatial pattern of the sea level rise and the ability
to capture internal variability signals. Global basis functions,
either CSEOFs or EOFs, are typically dominated by large-
scale variability in the Pacific Ocean associated with ENSO
or the PDO. As a result, global reconstructions are poorer in
some ocean basins (e.g., Indian Ocean, Atlantic Ocean) than
others (Pacific Ocean). This issue is likely exacerbated fur-
ther when looking at even smaller regions.

In this paper, we focus on one such region: the seas around
the Korean Peninsula. In South Korea, over 27 % of its 45
million people live in coastal city areas, and nearly 36 % of
gross regional domestic product is produced by coastal city
regions (Choi and Jeong, 2015). As a result, policymakers
have a keen interest in a sea level rise around the Korean
Peninsula (hereafter KP; a suffix, “-KP”, means the spatial
domain of the data or variable is around the Korean Penin-
sula) to establish proper remedies to sea level rise. Study-
ing SLA-KP, researchers have primarily relied upon globally
reconstructed SLAs (Hamlington et al., 2011; Church and
White, 2011). However, extracting SLA-KP (or more gener-
ally for any small region) from a globally reconstructed SLA
has some problems. First, global-scale reconstructions use a
limited number of basis functions to prevent the interpolation
from overfitting and creating spurious sea level fluctuations.
There is a difference between the dominant modes of vari-
ability at the global scale and local scale; e.g., there is a high
possibility that the globally selected basis functions, which
represent 90 % of the total variance in the global level, will
not represent 90 % of the total variance in local scale. Sec-
ond, the coverage of the TG around the KP (TG-KP) started
around 1930 and only one TG was available until 1950; it is
too little to secure accuracy on these local scales. As men-
tioned above, TG-KP coverage is poor extending back into
the 20th century, and relatively few TGs are available to an-
alyze in some areas (Fig. 1). Hence, the goal of this study
is to propose a new scheme that builds on Hamlington et al.
(2012b) that applies CSEOFs to reconstruct local SLA where
the TG data are not enough to ensure a quality reconstruction
through the 20th century. We focus on the KP both due to its
exposure to risk from impending sea level rise and also as a
test case to demonstrate how this technique could be applied
at other locations across the globe.
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Figure 1. (a) The locations of tide gauge station used in this study around the Korean Peninsula. The black square is Wajima station which
has the longest record length (1930–present); (b) the number of tide gauge stations provided by the Permanent Service for Mean Sea Level
(PSMSL) around the Korean Peninsula.

2 Data and methods

2.1 Data

2.1.1 Sea level anomalies

The basis functions of this study’s reconstructions are the
CSEOFs of gridded satellite data of SLA provided by
AVISO (the Archiving, Validation, and Interpretation of
Satellite Oceanographic data; https://www.aviso.altimetry.
fr/en/data/products/sea-surface-height-products/global/
msla-mean-climatology.html; last access: 1 March 2017)
from 1993 to 2015. These monthly data have a 0.25◦ × 0.25◦

resolution, and hereafter this dataset is written as AVISO.
Before conducting the CSEOF decomposition, mean values
for each grid point were removed. The annual signal has not
been removed as it is accounted for by the CSEOF analysis
(see more details in Sect. 2.2.1). The data were trimmed
to contain only the seas around the KP (31–46◦ N and
117–142◦ E), and they were multiplied by the square root of
the cosine of latitude to consider the actual area of each grid.

2.1.2 Sea surface temperature

In this study, two SST reconstruction datasets were used:
ERSST (Extended Reconstructed Sea Surface Temperature;
Huang et al., 2015, 2016; Liu et al., 2015) and COBESST2

(Centennial in situ Observation-Based Estimates; Ishii et al.,
2005). The ERSST is a global monthly SST dataset that was
reconstructed based on the observation of ICOADS (Inter-
national Comprehensive Ocean-Atmosphere Dataset). This
monthly analysis has a 2◦ × 2◦ grid resolution and its time
coverage is from 1854 to the present, and the included data
are anomalies based on a monthly climatology computed
from 1971 to 2000. The COBESST2 dataset is a monthly
interpolated 1◦ × 1◦ SST product from 1850 to the present.
It integrates several SST observations: ICOADS 2.5, satellite
SST, and satellite sea ice. In addition to the OI (optimal inter-
polation) scheme, this dataset used an EOF reconstruction.

Each dataset was trimmed to three different regions: a
global domain (no trim), the northwest Pacific domain (25–
55◦ N and 110–160◦ E), and around the KP area. Before
conducting the CSEOF decomposition, these datasets were
treated as follows. (1) The mean values for each grid point
were removed. (2) The data were weighted by the square root
of the cosine of latitude to consider the actual area of each
grid. (3) Any grid points that were not continuous in time
were removed. Like the satellite altimeter dataset, an annual
signal was not removed.

2.1.3 Tide gauge data

Monthly mean records of 47 TGs were obtained from the
Permanent Service for Mean Sea Level (PSMSL, Fig. 1)
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from 1930 to 2013. The earliest data of the TGs are traced
back to 1930 at Wajima station (Fig. 1). Before 1965, the
number of available TG records is fewer than 10, with only
one TG (Wajima station) providing data until 1950. An ongo-
ing GIA (glacial isostatic adjustment) correction was applied
to the TG data using ICE-5G VM2 model (Peltier, 2004).
Since an IB (inverted barometer) correction was applied to
the satellite altimetry data, the TG data are IB corrected
based on the pressure fields from 20th century reanalysis V2c
data (Compo et al., 2006, 2011; Hirahara et al., 2014). The
TG data in this study are modified with further editing crite-
ria. The techniques for editing are similar to those of Ham-
lington et al. (2011), with TGs that have shorter record length
than 5 years and unphysical trends (greater than 7 mm yr−1,
likely due to uncorrectable vertical land motions) being re-
moved prior to analysis. After calculating a month-to-month
change, jumps greater than 250 mm were also removed.

2.1.4 Reconstructed sea level anomalies of previous
studies

Church and White (2011, 2006) created the reconstruction
of a global SLA from 1870 to 2009 using EOFs of SLA from
satellite altimetery over 1993–2009, and the resulting SLA is
one of the most comprehensive and widely cited reconstruc-
tion results. The Church and White (2011, 2006) dataset
was employed for the long-term background trend for this
study (see Sect. 2.2.3). The GMSL time series (Church and
White, 2011, 2006) has been extended and made publicly
available (https://research.csiro.au/slrwavescoast/sea-level/
measurements-and-data/sea-level-data/; last access: 1 Jan-
uary 2018). To reconstruct the past SLA, Hamlington et al.
(2011) combined the CSEOFs of the satellite altimetry and
historical TG record. This weekly analysis has a 0.5◦ × 0.5◦

grid resolution and its time coverage is over 1950–2009.
This dataset was used for the comparison with the recon-
struction of this study (see Sect. 2.2.3). This reconstruction
dataset (Hamlington et al., 2011) can be downloaded
from the NASA JPL/PO.DAAC (ftp://podaac.jpl.nasa.gov/
allData/recon_sea_level/preview/L4/tg_recon_sea_level/;
last access: 1 March 2017).

2.2 Methods

We propose a modified reconstruction method for the seas
around the Korean Peninsula which have poor TG coverage.
This method is a progression from the technique described
in Hamlington et al. (2012a). Previous studies (Church et al.,
2004; Church and White, 2006, 2011; Hamlington et al.,
2011, 2012a) decomposed SLA into spatial patterns and cor-
responding amplitude time series, and extended the time se-
ries back in time, assuming similar spatial patterns over the
full record. We decompose SLA-KP using CSEOF analysis
and extend amplitude time series using SST data applying
multivariate regression that accounts for time lags. In this

section, we detail the procedure and discuss the underlying
theory.

2.2.1 Cyclostationary empirical orthogonal functions

To understand the complex response of a physical system,
the decomposition of data into a set of basis functions is fre-
quently applied. The decomposed basis functions have the
potential to give a better understanding of complex variabil-
ity of the fundamental phenomenon. The simplest and most
common computational basis functions are EOFs, which
have often served as the basis for climate reconstructions.
When a reconstruction selects the EOFs as basis functions,
one basis function is defined as a single spatial map accom-
panied by a time series representing the amplitude modula-
tion of this spatial pattern over time. The EOF decomposition
of the spatiotemporal system, T (r, t), is defined by Eq. (1):

T (r, t)=
∑

i
LVi(r)PCTi(t), (1)

where LV(r) (loading vector) is a physical process modu-
lated by a time series PCT(t) (principal component time se-
ries or PC time series). Combining each LV and PCT pair, a
signal of single EOF mode can be produced.

The assumption underlying EOF-based reconstruction is
the stationarity of the spatial pattern represented by the EOF
over the entire period. However, the fact that many geophysi-
cal phenomena are cyclostationary is well known (Kim et al.,
2015). That is, some processes are periodic over a certain
inherent timescale, with corresponding amplitudes varying
over time. Even though EOFs represent cyclostationary sig-
nals through a superposition of multiple modes, as stated in
Dommenget and Latif (2002), representing the cyclostation-
ary signals with stationary EOFs can lead to an erroneous and
ambiguous interpretation of the data. It also requires many
EOFs to explain a relatively small amount of variability in a
dataset.

To remedy some of these issues, Hamlington et al. (2011)
introduced CSEOFs as the basis for the global reconstruction
of SLA instead of EOFs. The CSEOF analysis proposed to
capture the cyclostationary patterns and longer-scale fluctu-
ations in geophysical data (Kim et al., 1996, 2015; Kim and
North, 1997; Kim and Wu, 1999; Kim and Chung, 2001).
The CSEOF analysis can capture the time-varying signals as
a single mode by giving a time dependency to the loading
vectors.

The system is defined as Eqs. (2) and (3):

T (r, t)=
∑

i
CSLVi(r, t)PCTi(t) (2)

CSLV(r, t)= CSLV(r, t + d), (3)

where CSLV(r, t) is a cyclostationary loading vector (for
convenience, we call this LV) and it is time dependent and
periodic with a particular period d (called a “nested period”).
Previous studies (Kim et al., 1996, 2015; Kim and North,
1997) provide more detailed walk-through for the CSEOF
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computation and properties. CSEOFs have a significant ad-
vantage over EOFs since CSEOFs can explain cyclostation-
ary signals in one mode; that is, CSEOFs of periodic pro-
cesses are much easier to interpret than EOFs (Kim et al.,
1996, 2015; Kim and North, 1997; Kim and Wu, 1999).
Hamlington et al. (2011, 2012a, b) demonstrated that CSE-
OFs provided significant benefits dealing with repeating sig-
nals such as ENSO and modulated annual cycle signals.

2.2.2 Multivariate regression using CSEOFs

When considering the complete Earth climate system, one
variable is often directly connected to another variable. In
some cases, they are impacted by a common physical pro-
cess, or in other cases, one variable may directly influence
another. To take advantage of these relationships and estab-
lish links, we can perform a multivariate linear regression
such as Eq. (4).

y = β0+β1x1+β2x2+ ·· ·+βkxk + ε, (4)

where β0, β1, β2, · · ·, and βk are regression coefficients, and
ε is random error. In this study, the response variables are
each PCT of AVISO’s CSEOF and the predictor variables
are all PCTs of each SST dataset’s CSEOF. Equation (4) can
be rewritten as follows:

PCT(m,n)SLA = β
m
0 +β

m
1 PCT(1,n)SST +β

m
2 PCT(2,n)SST

+ . . .βmk PCT(k,n)SST + ε
(m,n), (5)

where PCT(m,n)SLA is the nth component of the mth PCT of
AVISO’s CSEOF, PCT(k,n)SST is the nth component of the kth
PCT of SST’s CSEOF, and βmk are regression coefficients for
themth target and kth PCT of SST (k = 1,2, . . .,K ,m= 1,2,
. . . ,M , and n= 1,2, . . . , N ;K ,M , and N are the total num-
bers of predictors, targets, and time steps, respectively). The
matrix form of Eq. (5) is
T m1
T m2
...

T mN

=


1 P 1
1 P 2

1 · · · PK1
1 P 1

2 P 2
2 · · · PK2

...
...

...
. . .

...

1 P 1
N P 2

N · · · PKN

×

βm0
βm1
...

βmK

 , (6)

where T mn and P kn are PCT(m,n)SLA and PCT(k,n)SST , respectively.
Additionally, many geophysical signals have lagged rela-

tions with other geophysical signals (Bojariu and Gimeno,
2003; Dettinger et al., 1998; Hamlet et al., 2005; Hendon
et al., 2007; Kawamura et al., 2004; McPhaden et al., 2006;
Redmond and Koch, 1991). Hence, by assuming that each
mode of CSEOF represents an independent physical event,
we can assume the PCTs which are mathematically inde-
pendent of each other also can have a lagged relationship.
If we consider the lagged relationships between the target
and predictor variables and use only the predictors having a
higher correlation, we can reduce the number of predictors

in the regression; generally, the more predictors applied for
the regression, the more noise is likely to appear in the re-
sult. Before performing the multivariate linear regression as
in Eq. (5), we calculated the cross-correlation between the
target PCT of AVISO and predictor PCTs of SST. The pre-
dictors were selected based on their cross-correlation values.
The threshold cross-correlation value did not have a signifi-
cant effect on the regression as long as the value was chosen
to allow for at least 10 predictors; in this study, we used 0.3
as the threshold. By assuming the lag of the ith mode with
the mth target having maximum cross-correlation at ρmi , the
mth mode’s PCT of AVISO can be given as follows based on
Eq. (5):

PCT(m,n)SLA = β
m
0 +

∑K

i=1
βmi PCT

(i,n−ρmi )

SST + ε(m,n), (7)

where PCT(m,n)SLA is the nth component of the mth PCT of
AVISO’s CSEOF, and PCT(i,n)SST is the nth component of the
ith PCT of SST’s CSEOF; ρmi is a lag of maximum correla-
tion between the ith predictor and themth target; βm0 and βmi
represent regression constants and regression coefficients for
the mth target.

To use Eq. (7), we need time lags of the maximum correla-
tion (ρmi ) and the results of CSEOF decomposition of SLA-
KP and SST for the same period (PCT(m,n)SLA and PCT(i,n)SST );
by Eq. (7), we can estimate the regression coefficients (βm0
and βmi ). Using the regression coefficients and SST’s PCTs
which cover the past, we can extend SLA’s PCTs prior to the
altimeter record.

2.2.3 Reconstruction of sea level anomalies

As a starting point, AVISO was trimmed around the KP
and the southeast sea of the Japanese islands was removed.
GMSL and mean values were removed from AVISO at each
grid point. Each SST dataset was trimmed to have the time
span of 1891–2014 and cut into three regions: around the
KP, the northwest Pacific Ocean, and global (no trimming).
In total, we made six different SST combinations (ERSST
and COBESST2 for three regions). All grid points that were
not continuous in time were removed for every dataset. Each
data point was weighted by the square root of the cosine of
latitude to consider the actual area of each grid. We con-
ducted the CSEOF decomposition for all data (AVISO with-
out GMSL over 1993–2014 and six SST combinations over
1891–2014) with a 12-month nested period because an an-
nual signal is the most robust repeating signal of SLA. The
lagged relation between PCTs of AVISO and SST datasets
were estimated with 2 years maximum lag. Using the PCTs
of each dataset’s CSEOF, we built the multiple linear regres-
sions based on Eq. (7) over 1993–2014. In this regression,
the target variables were each PCT of AVISO and the pre-
dictors are PCTs of each SST combination; the regression
coefficients and their confidence intervals were estimated.
Applying a Monte Carlo simulation that used the confidence
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Figure 2. (a) Linear trend map of sea level anomalies around
the Korean Peninsula from AVISO without annual signal from
1993 to 2015 (the red-colored area has a higher linear trend than
3.0 mm yr−1, and the blue-colored area has a lower linear trend than
3.0 mm yr−1); (b) spatial mean time series of sea level anomalies
around the Korean Peninsula (red) and global (blue) from AVISO
without annual signal.

intervals of regression coefficients, we randomly generated a
thousand sample sets of the regression coefficients; by substi-
tuting the regression coefficient sets and PCTs of SSTs over
1891–2014 into Eq. (7), we reproduced a thousand sets of
PCTs of AVISO from 1891 to 2014. By combining the ex-
tended PCTs to the LVs of AVISO, we produced a thousand
SLAs without GMSL. By adding randomly generated GM-
SLs (Church and White, 2011, see Sect. 2.1.4) to the recon-
structed SLAs, a thousand SLAs were generated. Finally, by
statistical analysis of each time step of the random samples,
we estimated the mean variation and their confidence inter-
vals of each reconstruction.

For comparison, in addition to the TG, we used the recon-
structed dataset of Hamlington et al. (2011). We trimmed the
dataset to have same domain as this study. The reconstruc-
tion results over 1970–2009 are quite reliable, because, after
1970, the number of available TG records around the world
is enough to accurately represent sea level in the reconstruc-
tion. The correlation coefficient (ρ) and NRMSE (normal-
ized root mean square error; we obtain this value through
dividing RMSE by the standard deviation of the reference
dataset; Eq. 8) values for the entire domain and each TG loca-
tion were calculated. By using these two values, we decided
the best reconstruction case among the six reconstructions
which are introduced in Sect. 3.2.

NRMSE= 1−
‖ xref(i)− x(i) ‖

‖ xref(i)−µxref ‖
, (8)

Figure 3. (a) Mean correlation coefficient map of sea level anoma-
lies around the Korean Peninsula from AVISO without annual sig-
nal from 1993 to 2015; (b) spatial mean time series of sea level
anomalies from two regions of panel (a) where the red-colored area
is the high-correlation coefficient zone and the blue-colored area is
the low-correlation coefficient zone.

Figure 4. Linear trends comparison (shapes) and correlation coeffi-
cients (colors) between tide gauge and the closest AVISO grid point
(< 12 km) from 1993 to 2014, where FD = SLRTG/SLRAVISO
(without annual signals).

where ‖ . . . ‖ indicates the Euclidean norm (or 2-norm) of a
vector, xref and x are reference data and tested data, respec-
tively.

3 Results and discussions

3.1 Sea level anomalies around the Korean Peninsula

Using AVISO over 1993–2015, a linear trend map was esti-
mated as shown in Fig. 2. The mean trend was found to be
3.1± 0.5 mm yr−1. The linear trend of mean SLA-KP agrees
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Figure 5. Spatial mean time series of sea level anomalies of tide
gauge and AVISO around the Korean Peninsula without annual sig-
nal.

closely with the GMSL trend, 3.0± 0.4 mm yr−1 (Fig. 2).
Due to the similarity between the long-term trends of mean
SLA-KP and GMSL (Fig. 2), it is reasonable to assume that
the SLA-KP can be described as the combination between
background signals (GMSL) and the residuals which contain
local characteristics of SLA-KP. Most of the SLA-KP trends
were close to the mean, but some parts of the East Sea/Sea of
Japan, and of the Yellow Sea close to land exhibited extreme
patterns. Some areas showed trends over 7 mm yr−1, while
in other regions the linear trends were less than 1 mm yr−1

(Fig. 2). To check whether the extreme linear trend patterns
had a significant influence on mean SLA-KP, we compared
the mean SLA of the area having the extreme linear trends
and the other area. We calculated the mean correlation (here-
after ρ) of each grid point of AVISO to separate the two ar-
eas. For example, ρ at a single grid point P was calculated
by taking mean of ρ values that had been estimated between
P and all other points. By repeating these calculations at all
the points of AVISO, we obtained Fig. 3. We thought that
the SLAs of the regions having relatively high ρ fluctuate
together; on the other hand, the SLAs of the low ρ regions
oscillate separately. The regions that had the relatively low
correlation coefficient agreed with the regions that had the
extreme linear trends (Figs. 2 and 3). We divided the SLA-
KP into two regions according to the mean correlation coef-
ficient; we roughly selected the threshold value as 0.5, which
can separate the area having extreme trends and the remain-
ing area. The mean SLAs of the two regions agree well with
each other (Fig. 3). This demonstrates that the small-scale
extreme features tend to cancel out and do not significantly
impact mean SLA-KP. This also suggests that the entire re-
gion can be treated as local variability fluctuating about some
background long-term mean, an important feature for this re-
construction procedure.

The linear trend at each TG location was estimated and
it was compared with the nearest point in AVISO; using
the same data, the ρ values were estimated and the mean
value of the ρ was about 0.72 (Fig. 4). In Fig. 4, 11 TG
stations (square shapes) have an estimated linear trend at
least 30 % less than AVISO, while 21 TG stations (dia-

mond shapes) have an estimated trend exceeding AVISO by
more than 30 %. To figure out the effect of these disagree-
ments, the mean SLA of AVISO was compared with the TG’s
mean SLA, and they showed ρ = 0.89 and NRMSE= 0.52
(Fig. 5). The linear trend of mean SLA of the TGs was es-
timated as 4.31 mm yr−1 and this value is about 40 % higher
than the mean SLA of AVISO (3.1 mm yr−1). This disagree-
ment likely results from the mismatch between locations of
TG stations and AVISO grid points, the short time period,
and a lack of TGs. Unresolved vertical land motion at the
TGs could also lead to such disagreements.

CSEOF decomposition was conducted to investigate the
variability of SLA-KP with the 12-month nested period after
removing mean values at each grid point. The first mode rep-
resents an annual variation considering the spatial patterns
and PCT of the CSEOF (Fig. 6a). Nearly 60 % of SLA-KP
variations can be presented by the first mode. The second
mode shows similar spatial patterns having positive value
for all months, and the PCT shows a clear positive trend
(Fig. 6b). This mode can be interpreted as representing the
rising sea levels, explaining 10 % of variations of SLA-KP
roughly. The third and fourth modes were not obviously re-
lated to specific modes of variability, explaining only 5 and
3 %, respectively. Using the four modes, we can explain
about 70 % of SLA-KP. The first and second modes have a
linear trend, but the linear trend in the first mode is negligibly
small compared with the signal itself (Fig. 7). Hence, we can
say that the second mode is the most important to estimating
SLA-KP.

3.2 Reconstruction of sea level anomalies

One of the unique characteristics of the current study is that
we only used SST as a proxy of former SLA; other stud-
ies, however, used TG data or combined data (TG and SST).
There are multiple reasons why we chose not to use TG data
for the current reconstruction. The first reason is due to both
the poor data coverage and the poor data quality. There are
relatively few tide gauges extending into the past in our study
area and even fewer that are of high quality (i.e., unaffected
by vertical land motion, with few gaps, free of non-physical
jumps). The second reason, and related to the first, is that due
to a methodological characteristic of the CSEOF analysis, a
dataset that is free of gaps (temporally continuous) is needed.
To satisfy this requirement, we are led to other gridded re-
construction or reanalysis products. There are many types of
data that could potentially be used in our scheme (e.g., wind,
ocean current, precipitation, atmospheric pressure). We used
only SST for the following reasons. (1) SST and SLA have a
distinct relationship when we analyze both of them through
CSEOF (Hamlington et al., 2016, 2011, 2012b), and Ham-
lington et al. (2012a) showed that SST could be a good proxy
of SLA in this part of the ocean. (2) Limiting our analysis
to SST reduces the possibility of overfitting in the regression
scheme we use to reconstruct. As a final benefit of using SST,
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Figure 6. The first (a) and second (b) CSEOF modes of AVISO around the Korean Peninsula.

Figure 7. Mean SLA of the four biggest modes of CSEOF decom-
position of AVISO around the Korean Peninsula.

we can check against the available tide gauge data to provide
an independent comparison with our reconstruction.

We made six reconstructions (Sect. 2.1.2 and Fig. 8) and
compared the six reconstructions with TG over 1970–2008;
we could not use complete TG coverage for the compari-
son because there were only a few TG data available be-
fore 1970. Both a correlation coefficient and an NRMSE
were applied for the quantified comparison (Fig. 8). Con-
sidering the NRMSE, all reconstructions except the global
ERSST case provided a better agreement than Hamling-
ton et al. (2011); the best reconstruction was the case of

Figure 8. Results of the goodness-of-fit test for reconstructed mean
SLA according to Hamlington et al. (2011) and TG mean SLA; the
top panel includes normalized root mean squared error and the bot-
tom includes the correlation coefficients; here, subscripts K, G, and
N represent around the Korean Peninsula, global, and the northwest
Pacific, respectively, and CB2 and ER represent COBESST2 and
ERSST.
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Figure 9. Comparison of spatial mean time series of sea level
anomalies around the Korean Peninsula without annual signal; the
top panel shows the expansion of a box in the bottom panel.

COBESST2 of the northwest Pacific. Regarding correlation
coefficient, two reconstructions (COBESST2 of the north-
west Pacific and ERSST of the northwest Pacific) showed
better results than Hamlington et al. (2011); the reconstruc-
tion from COBESST2 of the northwest Pacific provided
the best result. Consequently, we selected the reconstruction
from COBESST2 of the northwest Pacific as the best recon-
struction regarding both NRMSE and correlation coefficient.
The mean SLA of the best case showed a reasonable agree-
ment with the mean SLA of TG over 1965–2014 (Fig. 9). For
the period before 1965, however, the result showed consider-
able disagreement.

Most of the reconstructions show a better agreement than
Hamlington et al. (2011) when considering the correlations
with the TGs despite not using TG data during the recon-
struction process. The mean of reconstructed SLA shows
good agreement with the Hamlington et al. (2011) but poor
agreement with the TG (Fig. 9). This disagreement with TG,
however, is likely caused by lack of high-quality TGs before
1970. We further calculated correlation coefficients and lin-
ear trends using TGs and reconstructions (current study and
Hamlington et al., 2011) at each TG location. For the recon-
structed data, we calculated the linear trends at the nearest
grid points. We made two correlation comparisons: one be-
tween this study and TG, and the other between Hamling-
ton et al. (2011) and TG. This study’s reconstruction showed
higher correlation coefficients than Hamlington et al. (2011),
demonstrating the better agreement between the current re-
construction and TG (Fig. 10a). The linear trends of TG, the
current reconstruction, and Hamlington et al. (2011) were es-
timated at the TG locations over 1970 to the present. For the
calculation, each time series was edited to have the same time
span. The estimated linear trends are given in Fig. 10b. The
current study has similar linear trends to Hamlington et al.
(2011) at the TG locations, and the variance of the trends are

smaller than TG (Fig. 10b). We conducted a t test to check
statistical significance of the trend values, and most of values
are statistically significant except some values (TG: nos. 2, 3,
29, and 47; Hamlington et al. (2011): no. 3; current study: no.
35). The current study shows a better agreement with AVISO
than Hamlington et al. (2011) over the satellite era (Fig. 11).
It also has more fluctuations (Fig. 9), and these detailed fluc-
tuations are closer to AVISO, and this is likely a result of
two reasons: (1) using a greater number of target modes for
the reconstruction process than previous studies (Hamling-
ton et al., 2011, 2012a, b), and (2) considering lagged re-
lations between PCTs. Hamlington et al. (2011, 2012a, b)
used a limited number (< 90 % of total variance) of CSEOF
modes to avoid overfitting issues, but in this study, we used
19 CSEOF modes which explain 98 % of total variance of
SLA-KP by using selective predictors. Further considering
lagged relation between targets and predictors, we have a bet-
ter representation of targets even using fewer predictors.

Using the Monte Carlo simulation, the means and stan-
dard deviations of reconstructed SLAs were estimated for
the best reconstruction case (COBESST2 of the northwest
Pacific). By applying the means and standard deviations of
regression coefficients (Eq. 7), each mode’s PCT was ran-
domly extended into the past, and the process was repeated
a thousand times. The extended PCTs were combined with
corresponding LVs of AVISO. Through this process, a thou-
sand SLAs were generated, and the mean and standard de-
viation were estimated at each time step and grid point. The
resulting mean SLA and 95 % confidence interval are shown
in Fig. 12. The wider confidence interval of early years is
likely due to two reasons: the large uncertainties of observa-
tion of SST and the large uncertainties of added GMSL in
early years.

The linear trend in the reconstructed SLA over 1900–
2014 is estimated as 1.71± 0.04 mm yr−1, and this value
is similar to the linear trend of Church and White (2011)
as 1.70± 0.02 mm yr−1. A linear trend map of the recon-
structed SLA was calculated, and the maximum and mini-
mum linear trends are about 2.1 and 1.4 mm yr−1, respec-
tively (Fig. 12). The difference, about 0.7 mm yr−1, between
two extreme values of the reconstructed SLA is much less
than AVISO over 1993–2015 (about 7 mm yr−1), particularly
in the Yellow Sea (Figs. 2 and 12). This alleviation means
that the extended reconstruction period can reduce the im-
pact of internal variability on estimated trends.

4 Summary

There were two primary goals of the work presented in this
study: (1) improve the understanding of the sea level around
the KP both in the past and present, and (2) present a new
reconstruction scheme for local areas with insufficient tide
gauge coverage. To meet these goals, we used the satellite
altimeter data over 1993–2015 and the TG data to investigate
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Figure 10. (a) Comparison of correlation coefficients between TGs and the reconstructions over 1970–2008; (b) comparison of linear trends
over 1970–2008.

Figure 11. (a) Correlation coefficient map between Hamlington
et al. (2011) and AVISO over 1993–2008; (b) correlation coefficient
map between this study and AVISO over 1993–2008.

the characteristics of SLA-KP. The linear trend of SLA-KP
was estimated as 3.1± 0.5 mm yr−1 from the satellite altime-
ter data (Fig. 2). However, when we looked into the trend
map, some areas (such as near the river mouth in the Yellow
Sea and in the middle of the East Sea/Sea of Japan) showed
significant departures from the mean trend (Fig. 2).

To investigate this further, the reconstruction was per-
formed using AVISO and two SST reanalysis datasets.
Each SST dataset was divided into three cases (global, the
northwest Pacific, and KP). The six datasets were decom-
posed by CSEOF analysis; AVISO was decomposed into
CSEOF modes after removing the GMSL. The decomposed
LVs played the role of basis functions for the reconstruc-
tion, and the main process of reconstruction was extend-
ing the PCTs of each mode into the past. Six reconstruc-
tions were generated by this study over 1900–2014. Using

Figure 12. (a) Linear trend map of the best reconstruction of the
current study from 1900 to 2014; (b) spatial mean time series
of sea level anomalies (MSLAs) of the best reconstruction case
(COBESST2 of the northwest Pacific) and 95 % confidence inter-
val.
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a correlation coefficient and an NRMSE, the best reconstruc-
tion was selected. The best reconstruction was produced by
COBESST2 of the northwest Pacific. Through the best re-
construction results, the linear trend of SLA was estimated
as 1.71± 0.04 mm yr−1 over 1900–2014 (Fig. 12). The ex-
treme linear trends shown in Fig. 2 did not appear in the re-
constructed SLA-KP (Figs. 2 and 12).

While we focus here on a specific example (the KP), this
study can be used to inform other efforts in studying past and
present sea level in areas with poor tide gauge coverage. Our
interest was on the KP, specifically, but it was found that in-
cluding information from the northwest Pacific improved the
localized representation of sea level. Consequently, consider-
ing large-scale ocean variability and teleconnections between
different parts of the ocean is important when selecting the
reconstruction domain. This study also demonstrates that TG
data may not even be necessary to understand sea level in
the past. Using only satellite-based sea level information and
SST, we found dramatic improvements between the current
reconstruction and past efforts, particularly when comparing
to the TG variability. Many TGs are influenced by vertical
land motion that cannot easily be corrected for. Relying on
SST alleviates concerns associated with non-ocean-related
trends. It should be noted that this reconstruction may not
work as well in other parts of the ocean, especially those with
a less pronounced agreement between sea level and SST. This
study does, however, demonstrate the extended efforts that
must be made to obtain accurate information about past sea
level. As planning efforts get underway in more parts of the
world, such comparisons between past and present sea level
will become more important, and alternative approaches to
simply using TG information are going to be needed.

Data availability. The reconstructed SLA data is available upon re-
quest from Se-Hyeon Cheon (shcheon95@gmail.com).
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