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Abstract. Two types of marine geoid exist with the first type
being the average level of sea surface height (SSH) if the
water is at rest (classical definition), and the second type
being satellite-determined with the condition that the wa-
ter is usually not at rest. The differences between the two
are exclusion (inclusion) of the gravity anomaly and non-
measurable (measurable) in the first (second) type. The as-
sociated absolute dynamic ocean topography (referred to as
DOT), i.e., SSH minus marine geoid, correspondingly also
has two types. Horizontal gradients of the first type of DOT
represent the absolute surface geostrophic currents due to
water being at rest on the first type of marine geoid. Hor-
izontal gradients of the second type of DOT represent the
surface geostrophic currents relative to flow on the second
type of marine geoid. Difference between the two is quan-
titatively identified in this technical note through compari-
son between the first type of DOT and the mean second type
of DOT (MDOT). The first type of DOT is determined by
a physical principle that the geostrophic balance takes the
minimum energy state. Based on that, a new elliptic equa-
tion is derived for the first type of DOT. The continuation of
geoid from land to ocean leads to an inhomogeneous Dirich-
let boundary condition with the boundary values taking the
satellite-observed second type of MDOT. This well-posed el-
liptic equation is integrated numerically on 1◦ grids for the
world oceans with the forcing function computed from the
World Ocean Atlas (T , S) fields and the sea-floor topogra-
phy obtained from the ETOPO5 model of NOAA. Between
the first type of DOT and the second type of MDOT, the
relative root-mean square (RRMS) difference (versus RMS
of the first type of DOT) is 38.6 % and the RMS difference
in the horizontal gradients (versus RMS of the horizontal
gradient of the first type of DOT) is near 100 %. The stan-
dard deviation of horizontal gradients is nearly twice larger

for the second type (satellite-determined marine geoid with
gravity anomaly) than for the first type (geostrophic balance
without gravity anomaly). Such a difference needs further at-
tention from oceanographic and geodetic communities, es-
pecially the oceanographic representation of the horizontal
gradients of the second type of MDOT (not the absolute sur-
face geostrophic currents).

1 Introduction

Let the coordinates (x, y, z) be in zonal, latitudinal, and
vertical directions. The absolute dynamic ocean topography
(hereafter referred to as DOT) D̂ is the sea surface height
(SSH, waves and tides filtered out) relative to the marine
geoid (i.e., the equipotential surface),

D̂ = S− N̂, (1)

where S is the SSH; N̂ is the marine geoid height above
the reference ellipsoid (Fig. 1). D̂ is an important signal in
oceanography and N̂ is of prime interest in geodesy. Equa-
tion (1) is also applicable if defined relative to the center
of the Earth. The geoid height N̂(x,y) and other associated
measurable quantities such as gravity anomaly 1g(x, y) are
related to the anomaly of the gravitational potential V (x, y,
z) to a first approximation by the well-known Brun’s formula
(e.g., Hofmann-Wellenhof and Moritz, 2005),

N̂(x,y)=
V (x,y,0)

g
, (2)

where g = 9.81 m s−2, is the globally mean normal gravity,
which is usually represented by g0 in geodesy. The gravity
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Figure 1. Two types of marine geoid and DOT: (a) the first type with
N being the average level of SSH if water is at rest (classical defi-
nition), and (b) represents the second type with satellite-determined
N∗ (water in motion on N∗).

anomaly is the vertical derivative of the potential

1g(x,y)=−
∂V (x,y,0)

∂z
, (3)

where the anomaly of the gravity potential V satisfies the
Laplace equation

∂2V

∂x2 +
∂2V

∂y2 +
∂2V

∂z2 = 0. (4)

The vertical deflection is the slope of the geoid

∂N̂

∂x
=

1
g

∂V

∂x
,
∂N̂

∂y
=

1
g

∂V

∂y
, (5)

which connects to the gravity anomaly by

∂(1g)

∂z
= g

(
∂2N̂

∂x2 +
∂2N̂

∂y2

)
. (6)

Equation (6) links the vertical gravity gradient to the hor-
izontal Laplacian of the marine geoid height N̂ and serves
as the basic principle in the satellite marine geodesy. Since
D̂ is the difference of the two large fields S and N̂ (2 orders
of magnitude larger than D̂), it is extremely sensitive to any
error in either S or N̂ – even a 1 % error in either field can
lead to error in D̂ that is of the same order of magnitude as D̂
itself (Wunsch and Gaposchkin, 1980; Bingham et al., 2008).

Before satellites came into operation, S was measured
from sparse surveying ships and tide gauge stations located
along irregular local coastlines. However, N̂ was not easy to
observe. Without satellite measurements, the marine geoid is
defined as the average level of SSH if the water is at rest and
denoted here byN , which is called the classical marine geoid
(or first type of marine geoid, Fig. 1a). The first type of ma-
rine geoid can be taken as a stand-alone concept in oceanog-
raphy since it is on the basis of the hypothesis (mean SSH

when the water at rest) without using the gravity anomaly. In
this framework, the geostrophic balance

ug =−
1
f ρ̂

∂p̂

∂y
, vg =

1
f ρ̂

∂p̂

∂x
(7)

and hydrostatic balance

∂p̂

∂z
=−ρ̂g (8)

are used for large-scale (i.e., scale > 100 km) processes. Here
(ug, vg) are geostrophic current components; f is the Corio-
lis parameter; (p̂, ρ̂) are in situ pressure and density, respec-
tively, which can be decomposed into

ρ̂ = ρ0+ ρ(z)+ ρ, p̂ =−ρ0gz+p(z)+p. (9)

Here, ρ0 = 1025 kg m−3 is the characteristic density; (ρ, p)
are horizontally uniform with ρ vertically increasing with
depth (stable stratification)

∂ρ/∂z≡−ρ0(n(z))
2/g, (10)

where n(z) is the buoyancy frequency (or called the Brunt–
Vaisala frequency); (p, ρ) are anomalies of pressure and den-
sity. Near the ocean surface, it is common to use the charac-
teristic density and corresponding pressure (p0,ρ0) to repre-
sent (p̂, ρ̂). Vertical integration of Eq. (8) from N to S after
replacing (p̂, ρ̂) by (p0,ρ0) in Eqs. (7) and (8) leads to

ug(S)− ug(N)=−
g

f

∂D

∂y
, vg(S)− vg(N)=

g

f

∂D

∂x
, (11)

where

D = S−N (12)

is the first type of DOT. Since the first type of marine geoid
(N ) is defined as the average level of SSH if the water is at
rest,

ug(N)= 0, vg(N)= 0, (13)

the horizontal gradient of D represents the absolute surface
geostrophic currents.

After satellites came into operation, SSH has been ob-
served with uniquely sampled temporal and spatial resolu-
tions by high-precision altimetry above a reference ellipsoid
(not geoid; Fu and Haines, 2013). Two Gravity Recovery and
Climate Experiment (GRACE) satellites, launched in 2002,
provide data to compute the marine geoid (called the GRACE
Gravity Model, GGM; see website: http://www.csr.utexas.
edu/grace/ (last access: 31 July 2018); Tapley et al., 2003;
Shum et al., 2011). In addition, the European Space Agency’s
GOCE mission data, along with the GRACE data, have pro-
duced the best mean gravity field or the geoid model at a
spatial scale longer than 67 km half-wavelength (or spherical
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harmonics completed to degree 300). This marine geoid is
the solution of Eq. (6),

∂2N∗

∂x2 +
∂2N∗

∂y2 =
1
g

∂(1g)

∂z
,

where N∗ is the satellite-determined marine geoid from the
measurable gravity anomaly 1g, and called the second type
of marine geoid (Fig. 1b), which is different from N , defined
by Eq. (13). Correspondingly, the second type of DOT is de-
fined by

D∗ = S−N∗(t), (14)

where N∗(t) changes with time due to temporally varying
gravity anomaly 1g. Thus, comparison between the first-
type and second-type geoids should be conducted between
N and N∗. Here, N∗ is the temporally mean of N∗(t). As for
DOT, the first type of DOT (D) should be compared to the
second type mean DOT (MDOT),

D∗ = S−N∗. (15)

The oceanic conditions at N and N∗ are different: wa-
ter is at rest on N (see Eq. 13), but in motion on N∗. The
oceanographic community ignores such a difference, also
treating horizontal gradients of the second type of DOT
as the absolute surface geostrophic currents. For example,
the second type of MDOT (D∗) data are posted at the
NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/
dynamic-ocean-typography/ (last access: 31 July 2018); its
horizontal gradients are also taken as the absolute surface
geostrophic currents.

A question arises: do the horizontal gradients of the sec-
ond type of MDOT (D∗) represent the absolute surface
geostrophic currents? This paper will answer the question us-
ing the temporally averaged SSH and marine geoid satellite
altimetric and gravimetric measurements from NASA (i.e.,
the second type of MDOT (D∗)), and solving a new elliptic
equation of D numerically. Given (S, N∗, D) leads to the
answer of the question.

The rest of the paper is outlined as follows. Section 2
describes the change in DOT due to the change in marine
geoid from the first to the second type. Section 3 describes
geostrophic currents and energy related to the first type of
DOT. Section 4 presents the governing equation of the first
type of DOT with the boundary condition at the coasts. Sec-
tion 5 shows the numerical solution for the world oceans.
Section 6 evaluates the change in global DOT from first to
second type with oceanographic implications. Section 7 con-
cludes the study.

2 Change in DOT from first to second type

The second type of MDOT (D∗) data are downloaded
from the NASA/JPL website: https://grace.jpl.nasa.gov/data/

get-data/dynamic-ocean-typography/. This dataset is a sub-
traction of a second type of marine geoid of GRACE (Bing-
ham et al., 2011) from a mean (1993 to 2006) altimetric sea
surface. The change in marine geoid from first (N) to second
(N∗) type is represented by

1N =N∗−N. (16)

Correspondingly, the change in DOT is given by

1D =D∗−D =−1N, (17)

where Eqs. (12) and (15) are used. 1D is of interest in
oceanography. 1N is of interest in geodesy. Equation (17)
shows that the key issue to evaluate 1D is to determine D
(i.e., first type of DOT).

Conservation of potential vorticity for a dissipation-free
fluid does not apply precisely to sea water where the den-
sity is a function not only of temperature and pressure but
also of the dissolved salts. The effect of salinity on density is
very important in the distribution of water properties. How-
ever, for most dynamic studies the effect of the extra state
variable is not significant and the conservation of potential
vorticity is valid (Veronis, 1980). Based on the conservation
of the potential vorticity, the geostrophic current reaches the
minimum energy state (Appendix A). Due to the minimum
energy state, an elliptic partial differential equation for D
is derived with coefficients containing sea-floor topography
H , and forcing function containing temperature and salinity
fields.

If1D is negligible in comparison toD, the change in ma-
rine geoid from N to N∗ does not change the oceanographic
interpretation of absolute DOT, i.e., the horizontal gradients
of D∗ also represent the absolute surface geostrophic cur-
rents. If 1D is not negligible, the horizontal gradient of D∗
does not represent the absolute surface geostrophic currents.

3 Geostrophic currents and energy

Equation (9) implies,

∂ρ̂

∂x
=
∂ρ

∂x
,
∂ρ̂

∂y
=
∂ρ

∂y
, (18)

∂p̂

∂x
=
∂p

∂x
,
∂p̂

∂y
=
∂p

∂y
. (19)

Using the first type of marine geoid N , the horizontal gra-
dients of D lead to the absolute surface geostrophic currents
(see Eqs. 11 and 13). Integration of the thermal wind relation,

∂ug

∂z
=

g

f ρ0

∂ρ

∂y
,
∂vg

∂z
=−

g

f ρ0

∂ρ

∂x
, (20)

from the ocean surface to depth z leads to depth-dependent
geostrophic currents,

ug(z)= ug(S)+ uBC(z), vg(z)= vg(S)+ vBC(z), (21)
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where

uBC(z)=−
g

f ρ0

0∫
z

∂ρ

∂y
dz′, vBC(z)=

g

f ρ0

0∫
z

∂ρ

∂x
dz′, (22)

are the baroclinic geostrophic currents. Here, f = 2�sin(ϕ)
is the Coriolis parameter; �= 2π/(86400s) is the mean
Earth rotation rate; and ϕ is the latitude.

The volume-integrated total energy, i.e., sum of kinetic en-
ergy of the geostrophic currents and the available potential
energy (Oort et al., 1989), for an ocean basin (W ) is given by

E =

∫ ∫ ∫
W

[
1
2
(u2

g+ v
2
g)+

g2ρ2

2ρ2
0n

2

]
dxdydz. (23)

Substitution of Eqs. (21) and (22) into Eq. (23) leads to

E(Dx ,Dy ,ρ)=
g2

2

∫ ∫ ∫
W[

(−Dy +
f uBC
g

)2/f 2
+ (Dx +

f vBC
g

)2/f 2
+

ρ2

ρ2
0n

2

]
dxdydz

=
g2

2

∫ ∫ ∫
W

[
D2
x/f

2
+D2

y/f
2
+ 2Dx

vBC
fg
− 2Dy

uBC
fg

]
dxdydz

+
1
2

∫ ∫ ∫
W

[
u2

BC+ v
2
BC+

g2ρ2

ρ2
0n

2

]
dxdydz (24)

4 Governing equation of D

For a given density field, the second integration in the right
side of Eq. (24) is known. The geostrophic currents taking
the minimum energy state provides a constraint for D,

G(Dx,Dy)≡

∫ ∫ ∫
W[(

D2
x +D

2
y + 2Dx

f vBC
g
− 2Dy

f uBC
g

)
/f 2

]
dxdydz→min. (25)

The three-dimensional integration Eq. (25) over the ocean
basin is conducted by

∫ ∫ ∫
W

[. . .]dxdydz=
∫ ∫
R


0∫

−H

[. . .]dz

dxdy, (26)

where R is the horizontal area of the water volume, H is the
water depth. Thus, Eq. (25) becomes

G(Dx,Dy)=

∫ ∫
R

L(Dx,Dy)dxdy→min, (27)

L(Dx,Dy)≡
[
H(D2

x +D
2
y)+ 2DxY − 2DyX

]
/f 2, (28)

where the parameters (X, Y ) are given by

X(x,y)≡
f

g

0∫
−H

uBCdz=−
1
ρ0

0∫
−H

0∫
z

∂ρ̂

∂y
dz′dz (29)

Y (x,y)≡
f

g

0∫
−H

vBCdz=
1
ρ0

0∫
−H

0∫
z

∂ρ̂

∂x
dz′dz, (30)

which represent vertically integrated baroclinic geostrophic
currents scaled by the factor f/g (unit: m). Here, Eq. (18) is
used (i.e., horizontal gradient of in situ density is the same as
that of density anomaly).

The Euler–Lagragian equation of the functional Eq. (27)
is given by

∂L

∂D
−
∂

∂x

(
∂L

∂Dx

)
−
∂

∂y

(
∂L

∂Dy

)
= 0. (31)

Substitution of Eq. (28) into Eq. (31) gives an elliptic par-
tial differential equation (i.e., the governing equation) for the
first type of DOT (i.e., D),

f 2
∇

[(
H/f 2

)
∇D

]
=−F,

or

H

[
∇

2D+ r(x)
∂D

∂x
+ r(y)

∂D

∂y
− 2(β/f )

∂D

∂y

]
=−F, (32)

where

F ≡

(
∂Y

∂x
−
∂X

∂y

)
, ∇ ≡ i

∂

∂x
+ j

∂

∂y
(33)

r(x) ≡
1
H

∂H

∂x
, r(y) ≡

1
H

∂H

∂y
, β =

2�
a

cos(ϕ), (34)

where a = 6370km, is the mean Earth radius. The
geostrophic balance does not exist at the Equator. The Cori-
olis parameter f needs some special treatment for low lati-
tudes. In this study, f is taken as 2�sin(5π/180) if latitude
is between 10◦ N and 0◦; and as −2�sin(5π/180) if latitude
is between 0◦ and 10◦ S.

Let 0 be the coastline of the ocean basin. Continuation of
the geoid from land to oceans gives

N |0 =Nl|0, N∗|0 =Nl|0, (35)

which leads to

N |0 =N∗|0. (36)
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Figure 2. (a) First type of DOT (i.e., D) which is the solution of Eq. (32) with boundary condition of Eq. (37, unit: cm), (b) sec-
ond type of MDOT (1993–2006, i.e., D∗, unit: cm) downloaded from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/
dynamic-ocean-typography (31 July 2018), (c) difference between the two DOTs (i.e., 1D), (d) histogram of global D, and (e) histogram
of global D∗.

Figure 3. Derivatives in the x direction of (a) the first-type DOT (i.e., ∂D/∂x), (b) the second-type MDOT (i.e., ∂D∗/∂x), (c) the difference
1(∂D/∂x)= ∂D∗/∂x− ∂D/∂x, (d) histogram of global ∂D/∂x, and (e) histogram of global ∂D∗/∂x.
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Here, Nl is the geoid over land. The boundary condition
Eq. (36) can be rewritten as

D|0 = (S−N)|0 = (S−N∗)|0 =D∗|0 (37)

which is the boundary condition of D.

5 Numerical solution of D

The well-posed elliptic Eq. (32) is integrated numerically on
1◦× 1◦ grids for the world oceans with the boundary val-
ues (i.e., Eq. 37) taken from the MDOT (1993–2006) field
(i.e., D∗), at the NASA/JPL website: https://grace.jpl.nasa.
gov/data/get-data/dynamic-ocean-typography/ (last access:
31 July 2018) (0.5◦ interpolated into 1◦ resolution). The forc-
ing function F is calculated on a 1◦×1◦ grid from the World
Ocean Atlas 2013 (WOA13) temperature and salinity fields,
which was downloaded from the NOAA National Centers for
Environmental Information (NCEI) website: https://www.
nodc.noaa.gov/OC5/woa13/woa13data.html (last access: 31
July 2018). The three-dimensional density was calculated us-
ing the international thermodynamic equation of seawater –
2010, which is downloaded from the website: http://unesdoc.
unesco.org/images/0018/001881/188170e.pdf (last access:
31 July 2018). The ocean bottom topography data H was
downloaded from the NCEI 5-Minute Gridded Global Relief
Data Collection at the website: https://www.ngdc.noaa.gov/
mgg/global/etopo5.HTML (last access: 31 July 2018). Dis-
cretization of the elliptic Eq. (32) and numerical integration
are given in Appendix B.

6 Difference between the two DOTs

The first-type global DOT (Di,j ; Fig. 2a) is the numerical
solution of the elliptic Eq. (32) with the boundary condition
Eq. (37). The second type global MDOT (D∗i,j ; Fig. 2b) is
downloaded from the NASA/JPL website: https://grace.jpl.
nasa.gov/data/get-data/dynamic-ocean-typography/ (last ac-
cess: 31 July 2018). The difference between the two DOTs,

1Di,j =D∗i,j −Di,j , (38)

is evident in the world oceans (Fig. 2c). Here, (i, j ) de-
note the horizontal grid point. The relative root-mean square
(RRMS) of 1D is given by

RRMS(1D)=

√
1
M

∑
i

∑
j

(1Di,j )2√
1
M

∑
i

∑
j

(Di,j )2
= 0.386, (39)

where M = 38877 is the number of total grid points. Both
D and D∗ have positive and negative values. The arith-
metic mean values (0.524 and −3.84 cm) are much smaller
than the RMS mean values. They are 1 order of magnitude

smaller than the corresponding standard deviations (54.9 and
71.2 cm; see Fig. 2d, e). The magnitude ofD andD∗ are rep-
resented by their root-mean squares, which are close to their
standard deviations.

Histograms for Di,j (Fig. 2d) and D∗i,j (Fig. 2e) are both
non-Gaussian and negatively skewed. The major difference
between the two is the single modal form ofDi,j with a peak
at around 20 cm and the bimodal form of D∗i,j with a high
peak at around 30 cm and a low peak at −140 cm. The sta-
tistical parameters are different, e.g., mean value and stan-
dard deviation are 0.524 and 54.9 cm for Di,j , and −3.84
and 71.2 cm for D∗i,j . Skewness and kurtosis are −0.83 and
3.01 for Di,j , and −0.87 and 2.80 for D∗i,j .

Horizontal gradients of the DOT, (∂Di,j/∂x, ∂Di,j/∂y)
and (∂D∗i,j/∂x,∂D∗i,j/∂y), have oceanographic signifi-
cance (related to the geostrophic currents). They are calcu-
lated using the central difference scheme at inside-domain
grid points and the first order forward/backward difference
scheme at grid points next to the boundary. The difference
in global ∂Di,j/∂x (Fig. 3a) and ∂D∗i,j/∂x (Fig. 3b) is ev-
ident with much smaller-scale structures in ∂D∗i,j/∂x. The
difference between the two gradients (Fig. 3c),

1(∂Di,j/∂x)= ∂D∗i,j/∂x− ∂Di,j/∂x, (40)

has the same order of magnitude as the gradients themselves
with the relative RRMS of 1(∂D/∂x),

RRMS
[
1(∂D/∂x)

]
=√

1
M

∑
i

∑
j

[
1(∂Di,j/∂x)

]2
√

1
M

∑
i

∑
j

(∂Di,j/∂x)2
= 1.04, (41)

which implies that the non-surface latitudinal geostrophic
current component of the second type of MDOT has the same
order of magnitude as the surface latitudinal geostrophic cur-
rent component of the first type of DOT. Histograms for
∂Di,j/∂x (Fig. 3d) and ∂D∗i,j/∂x (Fig. 3e) are near sym-
metric with mean values around (−1.29, −0.78)×10−8 and
standard deviations (2.69, 4.95)×10−7. The standard devia-
tion of ∂D∗i,j/∂x is almost twice that of ∂Di,j /∂x.

Similarly, the difference in global ∂Di,j/∂y (Fig. 4a) and
∂D∗i,j/∂y (Fig. 4b) is evident with much smaller-scale struc-
tures in ∂D∗i,j/∂y. The difference between the two gradients
(Fig. 4c),

1(∂Di,j/∂y)= ∂D∗i,j/∂y− ∂Di,j/∂y, (42)
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Figure 4. Derivatives in the y direction of (a) the first-type DOT (i.e., ∂D/∂y), (b) the second-type MDOT (i.e., ∂D∗/∂y), and (c) the
difference 1(∂D/∂y)= ∂D∗/∂y− ∂D/∂y; (d) histogram of global ∂D/∂y and (e) histogram of global ∂D∗/∂y.

has the same order of magnitude as the gradients themselves
with the relative root-mean square (RRMS) of 1(∂D/∂y),

RRMS
[
1(∂D/∂y)

]
=√

1
M

∑
i

∑
j

[
1(∂Di,j/∂y)

]2
√

1
M

∑
i

∑
j

(∂Di,j/∂y)2
= 0.98, (43)

which implies that the non-surface zonal geostrophic current
component of the second type of MDOT has the same order
of magnitude as the surface zonal geostrophic current com-
ponent of the first type of DOT. Histograms for ∂Di,j /∂y
(Fig. 4d) and ∂D∗i,j/∂y (Fig. 4e) are also near symmetric
with the mean values around (2.32, 1.18)×10−7 and stan-
dard deviations (1.20, 2.44)×10−6 . The standard deviation
of ∂D∗i,j/∂y is twice that of ∂Di,j/∂y. The denominators of
Eqs. (41) and (43) represent the magnitude of the horizontal
gradients of the first type of DOT.

7 Conclusions

The change in marine geoid from classically defined (first
type, stand-alone concept in oceanography) to satellite-
determined (second type, stand-alone concept in marine
geodesy) largely affects oceanography. With the classically
defined marine geoid (average level of SSH if the water is at

rest), the horizontal gradients of the first type of DOT rep-
resent the absolute surface geostrophic currents. With the
satellite-determined (second type) marine geoid by Eq. (6),
the horizontal gradients of the second type of MDOT do
not represent the absolute surface geostrophic currents. The
difference between the two types of DOT represents an ad-
ditional component to the absolute surface geostrophic cur-
rents.

With conservation of potential vorticity, geostrophic bal-
ance represents the minimum energy state in an ocean basin
where the mechanical energy is conserved. A new governing
elliptic equation of the first type of DOT is derived with wa-
ter depth (H ) in the coefficients and the three-dimensional
temperature and salinity in the forcing function. This gov-
erning elliptic equation is well posed. Continuation of the
geoid from land to ocean leads to an inhomogeneous Dirich-
let boundary condition.

Difference between the two types of DOT is evident with
a RRMS difference of 38.6 %. Horizontal gradients (repre-
senting geostrophic currents) of the two types of DOTs are
different with much smaller-scale structures in the second
type absolute DOT. The RRMS difference is near 1.0 in both
(x, y) components of the DOT gradient, which implies that
the non-absolute surface geostrophic currents identified from
the second type has the same order of magnitude as the ab-
solute surface geostrophic currents identified by the first type
of DOT.

www.ocean-sci.net/14/947/2018/ Ocean Sci., 14, 947–957, 2018
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The notable difference between the two types of DOT
raises more questions in oceanography and marine geodesy:
is there any theoretical foundation to connect the classical
marine geoid (stand-alone concept in oceanography using
the principle of surface geostrophic currents without 1g) to
the satellite-determined marine geoid (stand-alone concept
in marine geodesy using 1g without the principle of sur-
face geostrophic currents)? How can the satellite-determined
marine geoid using the gravity anomaly (1g) be conformed
to the basic physical oceanography principle of surface
geostrophic currents? What is the interpretation of the hor-
izontal gradients of the second type of MDOT (D∗)? Is there
any evidence or theory to show (ug(N∗)= 0, vg(N∗)= 0)
similar to Eq. (13)? More observational and theoretical stud-
ies are needed in order to solve those problems. The main
challenge for oceanographers is how to use the satellite al-
timetry observed SSH such as the Surface Water and Ocean
Topography (SWOT, https://swot.jpl.nasa.gov/, last access:
31 July 2018) to infer the ocean general circulations at
the surface. A new theoretical framework rather than the
geostrophic constraint needs to be established.

The GOCE satellite-determined data-only geoid model
is more accurate and with higher resolution than GRACE.
The change of GRACE to the GOCE geoid model may in-
crease the accuracy of the calculation of the second type of
DOT. However, such a replacement does not solve the funda-
mental problem presented here, i.e., incompatibility between
satellite-determined marine geoid using the gravity anomaly
(1g) and the classical marine geoid (mean SSH when the
water at rest) on the basis of the basic physical oceanography
principle of surface geostrophic currents.

Finally, the mathematical framework described here (i.e.,
the elliptic Eq. 32 with boundary condition Eq. 37) may lead
to a new inverse method for calculating three-dimensional
absolute geostrophic velocity from temperature and salinity
fields since the surface absolute geostrophic velocity is the
solution of Eq. (32). This will be a useful addition to the
existing β-spiral method (Stommel and Schott, 1977), box
model (Wunsch, 1978), and P -vector method (Chu, 1995;
Chu et al., 1998, 2000).

Data availability. The datasets used for this research are
all from open sources listed as follows: (1) Satellite-
determined DOT data: https://grace.jpl.nasa.gov/data/get-data/
dynamic-ocean-typography/ (Tapley et al,. 2003; last ac-
cess: 31 July 2018), (2) World Ocean Atlas 2013 (WOA13):
https://www.nodc.noaa.gov/OC5/woa13/woa13data.html (NOAA
National Centers for Environmental Information; last access: 31
July 2018), and (3) NCEI 5- 5-Minute Gridded Global Relief Data
Collection: https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
(NOAA National Centers for Environmental Information; last
access: 31 July 2018).
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Appendix A: Geostrophic balance as a minimum energy
state in an energy conserved basin

In large-scale motion (small Rossby number) with the
Boussinesq approximation, the linearized potential vorticity
(5) is given by

5≈

[
f +

(
∂v

∂x
−
∂u

∂y

)]
∂ρ̂

∂z
≈ f

(
−
ρ0n

2

g
+
∂ρ

∂z

)
−
ρ0n

2

g

(
∂v

∂x
−
∂u

∂y

)
, (A1)

where, ρ0 = 1025 kg m−3 is the characteristic density. With-
out the frictional force and 0 horizontally integrated buoy-
ancy flux at the surface and bottom, the energy (including ki-
netic and available potential energies) is conserved in a three-
dimensional ocean basin (V )

E =

∫ ∫ ∫
V

Jdxdydz, J ≡
1
2

(
u2
+ v2
+w2

)

+
g2ρ2

2ρ2
0n

2
, (A2)

dE
dt
= 0. (A3)

The two terms of J are kinetic energy and available poten-
tial energy.

To show the geostrophic balance taking the minimum en-
ergy state for a given linear PV (see Eq. A1), the constraint is
incorporated by extremizing the integral (see also in Vallis,
1992; Chu, 2018)

I ≡

∫ ∫ ∫
V

{
1
2

(
u2
+ v2
+w2

)
+
g2ρ2

2ρ2
0n

2
+µ(x,y,z)

[
f

(
−
ρ0n

2

g
+
∂ρ

∂z

)
−
ρ0n

2

g

(
∂v

∂x
−
∂u

∂y

)]}
dxdydz,

(A4)

where µ(x,y,z) is the Lagrange multiplier, which is a func-
tion of space. If it were a constant, the integral would merely
extremize energy subject to a given integral of PV, and re-
arrangement of PV would leave the integral unaltered. Ex-
tremization of the integral Eq. (A4) gives the three Euler–

Lagrange equations,

∂K

∂ρ
−
∂

∂z

∂K

∂ρz
= 0, (A5)

∂K

∂u
−
∂

∂y

∂K

∂uy
= 0, (A6)

∂K

∂v
−
∂

∂x

∂K

∂vx
= 0, (A7)

where K is in the integrand appearing in Eq. (A4). Substitu-
tion of K into Eqs. (A5), (A6), (A7) leads to

g2

ρ2
0n

2
ρ = f

∂µ

∂z
, (A8)

u=
ρ0n

2

g

∂µ

∂y
, v =−

ρ0n
2

g

∂µ

∂x
. (A9)

Differentiation of Eq. (A9) with respect to z and use of
Eq. (A8) leads to

∂u

∂z
=

g

f ρ0

∂ρ

∂y
=
∂ug

∂z
,
∂v

∂z
=−

g

f ρ0

∂ρ

∂x
=
∂vg

∂z
, (A10)

which shows that (u, v)= (ug, vg) have the minimum energy
state.

Appendix B: Numerical solution of the Eq. (32)

Let the three axes (x, y, z) be discretized into local rectangu-
lar grids in horizontal and non-uniform grids in vertical (xi,j ,
yi,j , zk) with cell sizes (1◦× 1◦),

1y =
π

360
rE, 1xj =1y cosφj , 1zk = zk − zk+1,

i = 1,2, . . ., I ; j = 1,2, . . .,J ; k = 1,2, . . .,Ki,j , (B1)

where k =1 for the surface, k =Ki,j for the bottom; φj is the
latitude of the grid point; rE = 6371km, is the Earth radius;
I = 360; and J = 1804. The subscripts in Ki,j in Eq. (B1)
indicates non-uniform water depth in the region.
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The parameters (Xi,j , Yi,j ) in Eqs. (29) and (30) (in
Sect. 4) are calculated by

Xi,j ≡
1

4ρ0

Ki,j∑
k=2

k∑
l=1


ρ̂i,j+1,l − ρ̂i,j,l

1y
+
ρ̂i+1,j+1,l − ρ̂i+1,j,l

1y

+
ρ̂i,j+1,l+1− ρ̂i,j,l+1

1y
+
ρ̂i+1,j+1,l+1− ρ̂i+1,j,l+1

1y

1zk
(
1zl+1zl+1

2

)]
(B2)

Yi,j ≡
1

4ρ0

Ki,j∑
k=2

k∑
l=1


ρ̂i+1,j,l − ρ̂i,j,l

1xj
+
ρ̂i+1,j+1,l − ρ̂i,j+1,l

1xj

+
ρ̂i+1,j,l+1− ρ̂i,j,l+1

1xj
+
ρ̂i+1,j+1,l+1− ρ̂i,j+1,l+1

1xj

1zk
(
1zl+1zl+1

2

)]
, (B3)

which gives the discretized forcing function

Fi,j =
Yi+1,j −Yi−1,j

21xj
−
Xi,j+1−Xi,j−1

21y
. (B4)

The governing Eq. (32) is discretized by

Di+1,j − 2Di,j +Di−1,j

(1xj )2
+
Di,j+1− 2Di,j +Di,j−1

(1y)2

+ r
(x)
i,j
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+

(
r
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21y
=−
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, (B5)

which is reorganized by

2
(

1+ cos2φj
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1
2
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]
Di,j−1
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Hi,j
(1y)2cos2φj . (B6)

The iteration method is used to solve the algebraic
Eq. (B6) with a large value of I × J . It starts from the 0th
step,

D
(0)
i,j = 0, i = 1,2, . . ., I ; j = 1,2, . . .J. (B7)

With the given boundary condition (Eq. 37, see Sect. 4)
and forcing function (Eq. B4), the first type of DOT at the
grid points can be computed from steps n to n+1,
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Such iteration continues until the RRMS difference
reaches the criterion,

r =

√
1
M

I∑
i=1

J∑
j=1

[
D
(n+1)
i,j −D

(n)
i,j

]2

√
1
M

I∑
i=1

J∑
j=1

[
D
(n)
i,j

]2
< 10−6, (B9)

where M = 38877, is the total number of the grid points on
the ocean surface.
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