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Abstract. We assess the impact of assimilating the satellite
sea surface temperature (SST) data on the Baltic forecast,
particularly on the forecast of ocean variables related to SST.
For this purpose, a multivariable data assimilation (DA) sys-
tem has been developed based on a Nordic version of the Nu-
cleus for European Modelling of the Ocean (NEMO-Nordic).
We use Kalman-type filtering to assimilate the observations
in the coastal regions. Further, a low-rank approximation of
the stationary background error covariance metrics is used at
the analysis steps. High-resolution SST from the Ocean and
Sea Ice Satellite Application Facility (OSISAF) is assimi-
lated to verify the performance of the DA system. The as-
similation run shows very stable improvements of the model
simulation as compared with both independent and depen-
dent observations. The SST prediction of NEMO-Nordic is
significantly enhanced by the DA forecast. Temperatures are
also closer to observations in the DA forecast than the model
results in the water above 100 m in the Baltic Sea. In the
deeper layers, salinity is also slightly improved. In addition,
we find that sea level anomaly (SLA) is improved with the
SST assimilation. Comparisons with independent tide gauge
data show that the overall root mean square error (RMSE)
is reduced by 1.8 % and the overall correlation coefficient is
slightly increased. Moreover, the sea-ice concentration fore-
cast is improved considerably in the Baltic Proper, the Gulf
of Finland and the Bothnian Sea during the sea-ice formation
period, respectively.

1 Introduction

Monitoring the marine status of the Baltic Sea with relevant
resolution and accuracy is a key requirement to serve the ma-
rine policy for detecting the influence of human activities
on the environment and better understanding the response of
ocean to accelerating global climate change. The Baltic Sea
is one of the largest brackish seas in the world. It is a semi-
enclosed basin, whose hydrography is highly variable and in-
fluenced by large-scale atmospheric processes and significant
influx of freshwater from river runoff and precipitation (Lep-
päranta and Myrberg, 2009). In addition, the water exchange
between the North Sea and Baltic Sea through the Danish
Straits is hindered by shallow topographic restrictions in the
transition zone (Fig. 1).

A characteristic feature of numerical forecast in the Baltic
Sea is in itself a major challenge because of complex topog-
raphy and rich dynamics. A number of ocean forecasting sys-
tems for the Baltic Sea have been developed using hydrologi-
cal models by operational agencies around this region. Tradi-
tionally, these models have a horizontal resolution of 1–5 km
and approximately 20–100 layers in vertical structure (Om-
stedt et al., 2014). Due to the geographic location and con-
ditions of the Baltic Sea, even higher resolutions are often
needed to better understand the circulation dynamics. How-
ever, even ocean circulation models with a particularly high
spatial resolution (e.g., 1 km) cannot resolve all dynamically
important physical processes in the ocean (Malanotte-Rizzoli
and Tziperman, 1996). In general, the forecast quality for
a numerical model depends on initial conditions, boundary
conditions (lateral, open boundaries as well as meteorolog-
ical forcing and bathymetry) and a robust numerical model
itself. As an operational forecasting agency, the Swedish Me-
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Figure 1. Geographical domain and bathymetry (in meters) of the
NEMO-Nordic configuration.

teorological and Hydrological Institute’s (SMHI) needs to is-
sue well-informed forecasts and warnings for decision mak-
ing by other authorities during, e.g., severe weather events,
but also to the public. To improve the forecast quality, the
core three-dimensional dynamic model of the SMHI oper-
ational forecast system has recently migrated to the Nordic
version of the Nucleus for European Modelling of the Ocean
(NEMO-Nordic).

In additional to model development, an extended observa-
tional network has been established by the joint efforts of the
countries surrounding the Baltic Sea. The observation plat-
forms include vessels, buoys, coastal stations, satellites, etc.
Specially, the observations from satellites have dominated
the coverage of sea surface temperature (SST) observational
networks in the Baltic Sea (She et al., 2007). Among satel-
lite products, the SST is most popularly and widely used for
the operational forecast, reanalysis or validation of the model
because of both its coverage and properties. SST acts as a
medium between atmospheric and oceanic variations through
activation of coupling mechanisms. SST is also a key ocean
variable to link many processes that occur in the upper ocean,
for example, air–sea exchange of energy, primary productiv-
ity and formation of water masses.

A realistic forecast of SST is essential to an ocean fore-
casting system. SST is especially important for the Baltic
Sea because the average water depth is only 56 m and its
surface water is directly related to the bottom water by the
mixing in the shallow sub-basins. Recently, the applications
of SST for forecasting and analyzing the status of the North
Sea and Baltic Sea have received particular attention. In the
short-term forecast, Losa et al. (2012, 2014) investigated
the systematic model uncertainties for forecasting in the
North Sea and Baltic Sea by assimilating the Advanced Very
High Resolution Radiometer (AVHRR) SST data. Nowicki et

al. (2015) applied SST observed from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) aboard the Aqua
satellite into 3-D coupled ecosystem model of the Baltic Sea
with the Cressman analysis scheme. O’Dea et al. (2012) en-
hanced the SST prediction skill of the operational system
by assimilating both in situ data and level 2 SST data pro-
vided by the Global Ocean Data Assimilation Experiment
High-Resolution SST (GHRSST) into a European northwest
shelf operational model. Moreover, SST has been used in the
long-term analysis in this region. For instance, Stramska and
Bialogrodzka (2015) analyzed spatial and temporal variabil-
ity of SST in the Baltic Sea based on 32 years of satellite data,
which indicate that there is a statistically significant trend of
increasing SST in the entire Baltic Sea. However, these long-
term SST data have not been used to verify the application
of sophisticated data assimilation (DA) methods for hydrog-
raphy model in the Baltic profiles’ simulation, especially at
the Baltic deep water regions. Another important question is
what amount of satellite SST can improve long-term forecast
of ocean variables related to SST in the Baltic Sea.

The objective of this study is to address the impact of as-
similating a high-resolution SST product on the forecast of
the Baltic Sea, particularly the forecast of SST-related vari-
ables like sea level and sea ice. It is also the first time that
satellite SST from the Ocean and Sea Ice Satellite Applica-
tion Facility (OSISAF) was assimilated into NEMO-Nordic
model (NEMO variant for the North Sea and Baltic Sea).
For operational forecast, the SST from OSISAF is the most
important dataset in the Baltic Sea because it differs from
hindcast-analyzed products like OSTIA (Operational SST
and Sea Ice Analysis) data. As a level 2 product, the OS-
ISAF SST has both good temporal and spatial coverage in
the Baltic Sea. As there is no hindcast information included
in the OSISAF SST, we are able to assess direct impacts of
assimilating SST observations. Therefore, exploring the po-
tential of this product is critically important to further im-
proving the new operational forecast system. In addition, our
study will enrich the reanalysis database of the Baltic Sea.
In this study, we use the local singular evolutive interpo-
lated Kalman (LSEIK) filter (Pham, 2001) to account for the
model uncertainties arising from a wide range of spatial and
temporal scales (Haines, 2010). One of our focuses is the im-
pact of assimilating SST on the modeled sea level and the sea
ice in the Baltic Sea. For the whole Baltic Sea, how the SST
assimilation influences the temperature and salinity (T /S) at
different depths is another focus of this study.

The outline of the paper is as follows: the model configura-
tion and LSEIK scheme are described in Sect. 2. An overview
of the observations used in this study is presented in Sect. 3.
The implementation of the DA experiment is given in Sect. 4
together with the sampling of ensemble and localization. Re-
sults are compared with observations for temperature, salin-
ity, sea level anomaly and sea ice in Sect. 5. In this section,
the impact of data assimilation on the forecasts is also inves-
tigated. Conclusions and discussions are given in Sect. 6.
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2 Methodology

2.1 NEMO-Nordic

NEMO-Nordic has been set up at SMHI for the North Sea
and the Baltic Sea (Hordoir et al., 2015) (Fig. 1). Open
boundaries are implemented in the northern North Sea be-
tween Scotland and Norway, and in the English Channel be-
tween Brittany and Cornwall, respectively (Hordoir et al.,
2013). In this study, NEMO-Nordic employs a horizontal res-
olution of 2 nautical miles (3.7 km) and 56 vertical levels, and
with a vertical resolution of 3 m close to the surface, decreas-
ing to 22 m at the bottom of the deepest part of the Norwe-
gian trench. NEMO-Nordic uses a fully nonlinear, explicit
free surface (Adcroft and Campin, 2004). A bulk formula-
tion is used for the surface boundary condition (Large and
Yeager, 2004). The ocean model is coupled to the Louvain-
la-Neuve (LIM3) sea-ice model (Vancoppenolle et al., 2008)
with a constant value of 10−3 psu for the sea-ice salinity. A
time-splitting approach is used to compute a barotropic and a
baroclinic mode, as well as the interaction between them. A
tidal inversion model is used to define the barotropic mode at
the open boundary conditions (Egbert and Erofeeva, 2002).
A total of 11 tidal harmonics are defined for sea level and
barotropic tidal velocities. In addition, a coarse-resolution
barotropic storm surge model covering a large area of the
northern Atlantic Basin provides wind-driven sea level that
is added to the tidal contribution. The T /S data at the open
boundary are provided by the Levitus climatology (Levitus
and Boyer, 1994). Radiation conditions are applied to cal-
culate baroclinic velocities at these boundaries. A quadratic
friction is applied with a constant bottom roughness of 3 cm,
and the drag coefficient is computed for each bottom grid
cell. NEMO-Nordic uses a total variation diminishing (TVD)
advection scheme with a modified leapfrog approach that en-
sures a very high degree of tracer conservation (Leclair and
Madec, 2009). Unresolved vertical turbulence is parameter-
ized with κ − ε scheme (Umlauf and Burchard, 2003). In
addition, Galperin parameterization is used to obtain a sta-
ble long-term stratification for the Baltic Sea (Galperin et al.,
1988).

A Laplacian isopycnal diffusion is used for both momen-
tum and tracers with a diffusion parameter that is constant
in time but varies in space. Additional strong isopycnal dif-
fusion is used close to the Neva River inflow (Gulf of St.
Petersburg) in order to avoid negative salinities. The bottom
boundary layer is parameterized to ease the propagation of
saltwater inflows between the Danish Straits and the deepest
layers of the Baltic Sea (Beckmann and Döscher, 1997). A
free-slip option is used for lateral boundaries.

The model is forced by meteorological forcing derived
from a downscaled run of Euro4M reanalysis (Dahlgren et
al., 2014). The downscaling is based on the regional atmo-
spheric model RCA4 (Samuelsson et al., 2011) which uses
the reanalysis data as boundary conditions. A runoff database
provides the river flow to NEMO-Nordic (Donnelly et al.,
2016); it includes interannual variability for the Baltic Sea
basin and is based on climatological values for the North Sea
basin. The salinity of the river runoff is set to a constant value
of 10−3 psu, which is the same value used for the sea ice to
avoid any negative salinity.

2.2 Local singular evolutive interpolated Kalman
(LSEIK) filter

The method used to assimilate SST into NEMO-Nordic is
the local singular evolutive interpolated Kalman (LSEIK) fil-
ter (Pham, 2001; Nerger et al., 2006). This is a sequential
data assimilation scheme, which is an error subspace ex-
tended Kalman filter that uses a minimum number of ensem-
ble members to reduce the prohibitive computation burden
(Pham, 2001). The LSEIK filter produces the correction for
the model state by weighting the difference between the ob-
servations and the model state estimation. The weight coef-
ficients are constructed by the model error covariance ma-
trix and observation error covariance matrix. Similar to other
ensemble-based data assimilation methods, the LSEIK filter
uses the spread of the sample ensemble to estimate the un-
certainties of the model state. Further, a forgetting factor ρ
is introduced to parameterize the imperfect model by am-
plifying the already existing modes of the background error
(Pham et al., 1998; Pham, 2001). Furthermore, the LSEIK
filter is based on an explicit low-rank approximation of the
model error covariance matrix. A second-order exact sam-
pling method is used to initialize the LSEIK filter (Pham,
2001). Localization was also used to remove the unrealistic
long-range correlation with a quasi-Gaussian function and a
uniform horizontal correlation scale (Liu et al., 2013). It was
performed by neglecting observations that were beyond cor-
relation distance from an analyzed grid point. In other words,
only data located in the “neighborhood” of an analyzed grid
point should contribute to the analysis at this point (Liu et al.,
2009; Janjić et al., 2011).

3 Observations

3.1 Satellite observations

The satellite SST used in DA was provided
by OSISAF (http://www.osi-saf.org/?q=content/
high-latitude-sea-and-ice-surface-temperature, last ac-
cess: 10 June 2018). OSISAF’s aim is to produce, control
and distribute operationally near-real-time products using
available satellite data. The satellite dataset products used
here include the observations from polar-orbiting satellites
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(the EUMETSAT MetOp-A and NOAA-18, -19) with the
AVHRR instrument. The SST product has a resolution of
5 km and is produced twice daily at 00:00 and 12:00 UTC.
It covers the Atlantic Ocean from 50 to 90◦ N. The SST
observations are thermal infrared observations from the
AVHRR instrument and are therefore limited by cloud
cover (Kilpatrick et al., 2001). The cloud mask in use is
based on a multispectral thresholding algorithm by SMHI.
The products were retrieved using a nonlinear split win-
dow algorithm (Walton et al., 1998). The coefficients in
the retrieval algorithm are determined through regression
toward in situ observations, and the dataset thus represents
the sub-skin temperature of the oceans. Further, sub-skin
observations are subject to diurnal warming effects, which
can be significant in the Baltic Sea. Here, only the sub-skin
SST at night (00:00 UTC), which is comparable to in situ
(buoy) measurement, is used to minimize this effect. The
SST is controlled with the climatology check. A quality
level from 0 to 5 is associated with every pixel. The higher
the level value, the better the quality of the observations
(Brisson et al., 2002). Observations with quality level 4
(good) or 5 (excellent) are collected for the analysis, and
low-quality observations were removed. By applying the
above quality control processes, only a subset of the original
OSISAF products is kept in this study. Based on the former
validation, a bias value of 0.5 ◦C is given for this product.

Further, the IceMap from a sea-ice concentration dataset
with a high spatial resolution of 5 km (https://www.smhi.se/
klimatdata/oceanografi/havsis, 8 February 2018) is used to
validate the DA results. It is produced by SMHI and origi-
nates from digitized ice charts. An advantage of these data
is that the ice charts are quality checked manually. However,
the drawback is that they include some subjective steps. The
temporal resolution of the IceMap SST is twice a week in the
experimental period. Sea ice occurs most frequently in the
Bay of Bothnia, with up to 100 ice-covered days per year.
However, sea ice can occur in all parts of the Baltic Sea and
Danish Straits, demonstrating the need for careful treatment
of sea ice in the SST analysis.

3.2 In situ data

The observations from the German Maritime and Hy-
drographic Agency (BSH) moored buoy stations were
collected as an independent dataset to validate the as-
similation results. The observations have high tempo-
ral resolution and a long continuous record. The second
dataset was downloaded from the Swedish Oceanographic
Data Centre SHARK database (http://sharkweb.smhi.se, 8
February 2018). SHARK mainly contains low-resolution
conductivity–temperature–depth (CTD) data from a list of
predefined standard stations in the Baltic Sea, as well as
in Kattegat and Skagerrak. Only observations that have
passed gross quality control procedures are collected into
the SHARK database. This procedure includes, for example,

location checks and local stability checks. In addition, vali-
dated data records from tide gauges are also used. The sea
level anomaly measurements from tide gauges (sea level sta-
tions) are measured in a local height system, and values are
presented relative to theoretical mean sea level, a level cal-
culated from many years of annual means, which takes into
account the effect of land uplift and sea level rise. The values
are averaged over a 1 h period.

Not all the available observations from satellites, moored
buoys, CTDs and tide gauges were included in this study. To
obtain the high assimilation quality results, another quality
control was applied for these data before they were used in
assimilation and validation. These controls include examina-
tion of forecast observation differences by excluding those
observations for which the difference between the forecast
and the measurement exceeded given standard maximum de-
viations. The criteria were set up empirically based on past
validation results of the model (Liu et al., 2013). Further-
more, stations located on land, according to the NEMO-
Nordic grid, were excluded. We also removed the duplicate
records of these data.

The accuracy of observation error is difficult to be defined
for all water points. The observation is commonly assumed
to be spatially irrelevant, which results in an error covari-
ance matrix that is time-invariant diagonal and its diagonal
elements equal the variance of observation error. The error
for an observation used in data assimilation mainly includes
the representation error and the measurement error. The mea-
surement error arises primarily from the measurement device
alone, the temporary reading error and imperfect retrieval al-
gorithm. According to Janjić et al. (2017), the representa-
tion error in data assimilation comprises the error due to un-
solved scales or processes, the preprocessing error and the
observation-operator error. In this study, the observation er-
ror was estimated to one value as the sum of all observa-
tion uncertainties used in the analysis. In addition, the un-
certainties of satellite SST vary from the coast to the open
sea, i.e., higher uncertainties in the coastal region relative to
the open sea. We used a constant standard deviation value of
0.4 ◦C based on the standard deviation of satellite SST, which
ranged from the ∼ 0.1 to ∼ 0.5 ◦C in the Baltic Sea (She et
al., 2007; Høyer et al., 2016).

4 Configuration of LSEIK in the experiment

As above mentioned, the initialization of the filter requires
an initial analyzed state and a low-rank approximation of
the corresponding estimation of error covariance matrix. The
data assimilation process was initialized by a free model sim-
ulation. First, the model was spinning up 20 years to reach a
statistically steady state. Then, a further (free-run) integra-
tion that covered the period 2006–2009 was carried out to
generate a historical sequence of model state. To reduce the
calculation cost, we took a snapshot every 6 days and saved
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183 state vectors, which includes sea level, temperature and
salinity, in total to describe the model variability because suc-
cessive states are quite similar. The initial ensemble provided
an estimate of the initial model state and its uncertainty be-
fore the assimilation of SST observations. The quantity of
the model variability was expected to be reasonably compa-
rable with the forecast error, which was dominated by mis-
placement of mesoscale features and varied in location and
intensity seasonally. Further, the very high frequencies of
model variability were also unfavorable in an ensemble of
state vectors for SST data assimilation (Oke et al., 2005).
Therefore, a band-pass filter was used to remove the un-
wanted frequency of model variability. To initial the low-rank
error covariance matrix, a multivariable empirical orthogonal
function (EOF) analysis was applied on the 183 state vec-
tors of model variables (sea level, temperature and salinity).
In the North Sea and Baltic Sea, error covariances of dif-
ferent variables are not uniform and strongly dependent on
whether the variable resides in the open sea or coastal zone.
Each state variable was then normalized by the inverse of its
spatially averaged variance at every model level. At last, 34
leading EOF modes were kept and they explained 85 % over-
all variability. Then, the initial error covariance matrix was
estimated by Pa (t0)≈ L0U0LT0 , where the L0 is composited
by the leading EOF modes and U0 is diagonal matrix with the
corresponding eigenvalues on its diagonal. We used a time-
invariant sample ensemble to approximate the background
error covariance during the experimental period (Korres et
al., 2012; Liu et al., 2017). This stationary ensemble affords
a good approximation of the ocean’s background error co-
variance. Meanwhile, it is computationally efficient for our
objective.

The localization scale is another import factor to the as-
similation system, especially at the coastal region. Large cor-
relation scale may transfer artificial increments to the po-
sitions far away from the analysis observation during the
DA process. However, the small correlation scale is prone to
cause the singularity of ocean state around analyzed observa-
tion and break the continuity of the ocean state. Hence, an un-
reasonable scale causes the instability of the model integra-
tion or degrades the assimilation quality. Unfortunately, the
accuracy length for the correlation is unknown for the North
Sea and Baltic Sea. The correlation length scale is to some
extent dependent on the Rossby radius of deformation (Losa
et al., 2012), which varies from ∼ 200 km in the barotropic
mode to∼ 10 km or even less in the baroclinic mode (Fennel
et al., 1991; Alenius et al., 2003). According to the former
research like Liu et al. (2013, 2017), a length scale of 70 km
was specified for both the North Sea and Baltic Sea in this
study. Note that this value may be not perfect and more ac-
curate correlation length needs to be tested for LSEIK. For
example, spatially variable length scales are the next step for
the regional DA simulations.

To define the forgetting factor, a 1-month simulation ex-
periment with varying the factor ρ was done in January 2010.

At last, a factor ρ = 0.3 resulted in the best assimilation per-
formance. Further, we define a 2-day assimilation window in
assimilation experiment. As a result, the observations in the
2 days before the assimilation time were used to calculate the
innovation with observation operator. When we calculated
the innovation, we also changed the observation error accord-
ing to the observation time by ε = 0.4×exp(−0.151t); here,
1t is the absolute time difference between observation time
and DA time.

5 Results

In the following subsections, we conducted two runs with
and without assimilation of the SST observations from the
OSISAF database, both runs with the above setup of the anal-
ysis system. Accordingly, the runs with and without assim-
ilation are called ASSIM and FREE, respectively. We con-
sidered the evolution of SST based on 48-hourly local anal-
ysis from 1 January to 31 December 2010. The 48-hourly
forecast SST from two runs was assessed with observations
from different datasets. Then, we analyzed the impact of the
data assimilation on the profile simulation of T /S. At last, we
evaluated the system performance with respect to sea surface
anomaly and sea ice, respectively.

5.1 Comparison with satellite data

First, we presented two cases to show the ocean state before
and after the assimilation of the OSISAF SST data in Fig. 2.
The first case was given at 11 January 2010, a date with clear
weather and many observations available. The model has ob-
vious difficulties in reproducing the observed SST. The cold
biases in the forecast were found in the Skagerrak, west coast
of the Baltic Proper and the Bothnian Bay, respectively. How-
ever, the warm biases appeared in the interior of the Baltic
Sea and the Kattegat. The largest deviation in FREE reached
2.2 ◦C at the Skagerrak. Apparently, temperature by assimila-
tion analysis agreed with the satellite-derived data much bet-
ter. This correction at the analysis step has allowed us to re-
duce the deviation of the SST forecast from the observations.
The DA system simulation was also verified on 2 June 2010,
which has also many available OSISAF observations. The bi-
ases on 2 June 2010 were obviously different from those on
11 January 2010. Moreover, it was found they had a roughly
opposite bias signal. For example, relative to the OSISAF
SST at the Baltic Proper, Bothnian Sea and Bothnian Bay,
FREE produced relatively warmer water on 11 January and
colder water on 2 June (Fig. 2), respectively. After data as-
similation, the analysis increments were appropriately added
to the model field. In general, the SST DA has improved the
simulated SST in both cases (Fig. 2).

Maps of annual averaged root mean square error (RMSE)
of SST from two runs relative to the IceMap observation are
shown in Fig. 3. Obviously, the RMSE in FREE and AS-
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Figure 2. Map of SST from FREE (a, e), OSISAF (b, f), ASSIM (c, g) and the assimilation increments (d, h) on 11 January 2010 (a–d) and
2 June 2010 (e–h), respectively.

SIM had different distributions in the Baltic Sea. In general,
FREE had smaller error in the Skagerrak, the eastern Katte-
gat and the interior of the Bothnian Sea relative to other sub-
basin of the Baltic Sea. The largest RMSE was found at the
connection region between the Baltic Proper and the Both-
nian Sea. This could be caused by the shallow water, com-
plicated bathymetry and large observation biases in this area.
It was also noted that the RMSE was larger in the coastal
region compared to its interior in the Baltic Proper and Both-
nian Sea. After the assimilation, the SST was significantly
improved. The RMSE of SST from ASSIM was generally
smaller than 1.0 ◦C. However, there were still some regions
where the improvements were relatively small and the RMSE
of SST was greater than 1.0 ◦C. These large errors were pre-
dominantly located at the edge of the Baltic Sea and the Dan-
ish Straits. For instance, the RMSE of SST was greater than
1.2 ◦C at both the entrance of the Gulf of Finland and the
west coast of the Bothnian Sea. The relatively small improve-
ments were regularly caused by the rare observations or the
less accurate observations near the coastal water.

The overall daily averaged SST errors against the IceMap
observations have been estimated (Fig. 4). The observations
had better coverage in summer and autumn than in winter and
spring. The variability of the number of observations directly
affected the assessment of DA results. The model biases had
pronounced seasonal variability, which had small values in
spring and winter. In general, the assimilation provided bet-
ter SST estimations. The free run had a RMSE of 1.47 ◦C.
After the assimilation, the RMSE was reduced to 1.03 ◦C,
whereas the bias was reduced by 0.73 ◦C. An interesting fea-
ture was that the SST error reduction due to the assimilation
was almost consistent with the variability of the number of

IceMap observations. For example, the improvement became
larger with the increasing number of IceMap observations
from March to June 2010. However, the number of obser-
vations was kept constant during the period June–November
2010 and the improvement shown in both the bias and RMSE
of SST did not exhibit large variability, which meant reliable
performance of the DA system.

5.2 Comparison with independent in situ data

The time series of T /S were compared with independent ob-
servations located at the Arkona station (54.88◦ N, 13.87◦ E)
in the Arkona Basin and at BY15 (57.33◦ N, 20.05◦ E) in the
Eastern Gotland Basin, respectively. These two stations were
selected to verify the experiment results because of their rel-
atively completed observation records for the experimental
period. In the Arkona Basin, the water depth was shallow
and the water column can be well mixed between the surface
and bottom water. Thus, the bottom T /S was largely affected
by the surface dynamic (Liu et al., 2014). Relative to obser-
vations, the model had warm biases at this station (Fig. 5). At
a depth of 25 m, the observed temperature showed the largest
variability, which was a good representation of the bottom
characteristics of the mixed layer. In mid-August, the temper-
ature was abruptly increased by 10 ◦C at a depth of 25 m and
slightly decreased at the surface, respectively. The reason is
that the surface water suddenly sinks to deeper layers, which
warm the deep water. However, this dynamic process has
not reached to Arkona bottom and it did not cause the obvi-
ous bottom temperature variability (Fig. 9). Both FREE and
ASSIM had reproduced this process, whereas FREE showed
larger temperature biases. To the salinity at the Arkona sta-
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Figure 3. Map of the RMSE of SST from ASSIM (a) and FREE (b) calculated against IceMap SST in 2010, respectively.

Figure 4. The evolution of basin-averaged bias and RMSE of SST
from FREE and ASSIM relative to IceMap SST and the number of
IceMap observations in 2010.

tion, the surface observations were missing; the comparison
at 7 m depth verified the subsurface simulations. The ob-
servations showed larger salinity variability in winter rela-
tive to summer. This pronounced seasonal variation is asso-
ciated with the variation of fresh river runoff and net E–P
(evaporation–precipitation) flux (Fu et al., 2012). At a depth
of 7 m, salinity was obviously underestimated from April
to September and overestimated after November, although
ASSIM had slightly better results compared to FREE. The
DA also provided better simulation of salinity at 25 m depth.
For example, the salinity bias in the October was reduced
by 3 psu by DA. At a depth of 40 m, the saltwater inflows
were observed, resulting in sudden increases of salinity. For

instance, the salinity was increased by 3.5 psu in February
followed by a decreasing trend. The variations were repro-
duced in both FREE and ASSIM, whereas the intensity of
the decreased process is weakly simulated with a difference
of 3 psu, and the inflow in March was not strong enough rel-
ative to the observed one. Observations also showed that a
large salinity variability amounts to 4–8 psu in the autumn.
Although FREE and ASSIM had shown these changes, their
magnitude was obviously weaker than observations. The pos-
sible reason was that the model’s resolution was inadequate
to well resolve the topography and eddies in this area. Both
the large runoff and the complicated bathymetry posed chal-
lenges for the model to tackle the small-scale dynamic pro-
cess in such a shallow basin. A higher-resolution model per-
haps was more preferable to study this dynamic process.

The Eastern Gotland Basin has deeper water depth com-
pared to the Arkona Basin, in which the water column is
permanently stratified and the halocline lies at about 60–
80 m (Fu et al., 2012). The mixing and sinking of T /S are
hindered by the strong stratification. Unlike observations in
the Arkona Basin (Fig. 5), the CTD observations at BY15
had lower temporal resolution with almost one observation
per month. In the mixing layer, it can be seen model had
overestimated the temperature (Fig. 6). At a depth of 10 m,
ASSIM has remarkably improved the simulation of temper-
ature relative to FREE. The bias has been reduced by 3 ◦C
in the spring of 2010. At 175 m depth, observed tempera-
ture showed very small variation. The reason was that the
main source for deep water ventilation is the saltwater in-
flows which are suppressed by runoff within a depth range of
75–135 m in the Eastern Gotland Basin (Väli et al., 2013). As
a result, updating the bottom water is very slow. Both FREE
and ASSIM overestimated the temperature in the spring and
the beginning of summer of 2010. Further, ASSIM has in-
creased the temperature bias after midsummer relative to
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Figure 5. The time series of temperature (a) at depths of 0, 25 and 40 m and salinity (b) at depths of 7, 25 and 40 m at the Arkona station
(54.88◦ N, 13.87◦ E), respectively.

FREE. This result might be explained by the fact that the
strong correlation is not expected between surface and lay-
ers below the halocline because of the strong stratification
in this basin, which perhaps yield the artificial correction.
Therefore, the improvement of the surface temperature can-
not guarantee its positive influence on the bottom tempera-
ture. To the salinity, the model had less accurate simulation
with generally low salinity biases at 10 m depth. ASSIM pro-
vided better salinity simulation compared to FREE. At 70 m
depth, the small variation of salinity was found after DA.
Moreover, at 175 m depth, the observation had very small
variability (about 0.1 psu). In general, both experiments have
reproduced these variations. However, FREE increased salin-
ity by 0.2 psu from March to April relative to the observa-
tion, which caused the overall salinity overestimated amount
to 0.2 psu. This increasing process was not shown in obser-
vations and the reason remained unclear. The DA has shown
slight improvement, but it is still saltier than the observations.

The mixed layer depth (MLD) was calculated at the
Arkona and BY15 stations and compared with the SHARK
observations in Fig. 7. We used the temperature criterion to
define the MLD, i.e., the depth at which the temperature de-
viated from the surface value by 0.5 ◦C (Fu et al., 2012). Fig-
ure 7 shows that the MLD at the Arkona station had larger
variability relative to the MLD at BY15. The reason for this
feature is that the deeper water at Arkona is easily affected
by wind forcing because of the shallow bathymetry and well
mixing, whereas the temperature variation in the upper wa-
ter at BY15 has difficulty influencing the deeper water be-
cause of the strong stratification. Both runs had reproduced
the MLD variability feature similarly to the observations. For
example, the minimum MLD appeared in summer, which

was about several meters. The assimilation of satellite SST
caused strong changes in the MLD at both stations, espe-
cially in winter. One explanation was that the Baltic Sea was
largely affected by wind forcing and the winter wind was
much stronger than the summer wind. Further, strong heating
in summer promoted stratification in summer and shoaled the
MLD.

Further, the temporal and spatial distribution of the
SHARK observations is shown in Fig. 8a. These observations
were unevenly distributed in the Baltic Sea. In the Skager-
rak, the observations appeared at the Danish and Swedish
coast. However, in the Bornholm Basin, Kattegat and Baltic
Proper, the observations mainly were found in the central
and the Swedish coast sides. There were also many obser-
vations in the Bothnian Sea and rare observations in the cen-
tral part of the Bothnian Bay. It must be noticed that there
are no SHARK observations in both the Gulf of Finland and
Gulf of Riga during the experimental period. Moreover, these
SHARK profiles in the first 4 months were mainly located in
the Skagerrak to the Baltic Proper, which are relatively rare
in the northern Baltic Sea. In the Bothnian Bay, the observa-
tions are mainly in the winter period.

Figure 9 shows the change of overall bias and RMSE of
T /S with depth against the SHARK dataset. In the Baltic
Sea, DA had a large impact on the temperature forecast in the
water above 100 m. The RMSE showed that the forecast of
temperature was obviously improved from surface to thermo-
cline in ASSIM and the improvements generally decreased
with depth. Above 100 m, the overall RMSE of temperature
in ASSIM was decreased by 21.38 % (from 1.59 to 1.25 ◦C).
It was also found the temperature error had similar variabil-
ity to the warm biases in the two runs. In the transition zone,
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Figure 6. The time series of temperature (a) and salinity (b) at the BY15 station (57.33◦ N, 20.05◦ E) at depths of 10, 70 and 175 m,
respectively.

Figure 7. The time series of mixed layer depth at the Arkona and
BY15 stations.

the RMSE in ASSIM was reduced by 5.59 and −20.31 %
above and below 100 m relative to FREE, respectively. Below
90 m, the temperature was also overadjusted, which changed
the warm bias to cold bias. It is worth noting that the num-
ber of the deeper water observations in the transition zone is
substantially less than that in the Baltic Sea. For the salinity,
both RMSE and bias of ASSIM showed very minor changes
relative to FREE inside the Baltic Sea. For the water above
100 m, the total RMSE of salinity was increased by 3.48 %
(from 1.15 psu in FREE to 1.19 psu in ASSIM) in the transi-

tion zone and 1.04 % (from 0.96 psu in FREE to 0.97 psu in
ASSIM) in the Baltic Sea.

5.3 Sea level anomaly

SLA represents a vertically integrated effect of the T /S vari-
ations over the whole water column. The accurate simulation
of SLA is thus a good indicator of the model performance.
Therefore, validating the impact of SST assimilation on the
simulation of SLA is very important to the Baltic Sea fore-
cast. The observations from the 24 tide gauge stations were
used. These gauge stations are mainly located on the Swedish
coast (see Fig. 8b). Since only the SST is assimilated in this
study, the SLA observations are completely independent.

We calculated the RMSE and correlation coefficients
for both FREE and ASSIM against the observations from
tide gauges (Fig. 10). The overall RMSE was reduced by
1.8 % and the correlation coefficients were slightly increased.
Among these stations, RMSE at Oskarshamn was decreased
by 5.6 %, which is larger than that at other stations. The min-
imum RMSE change of SLA was seen at Klagshamn. For the
correlation coefficient, improvement in the SLA by the DA
is very small. The Simrishamn station showed the biggest
change of correlation coefficient, which is 1.1 %. The RMSE
and correlation comparison demonstrated that the SST DA
has generally positive effects on the forecast of the SLA.

In addition, the time series of the SLA error discrepancy
(ASSIM minus FREE) in two runs at four stations were se-
lected to evaluate the simulation results (Fig. 11). These four
stations were selected to represent the model performance at
different positions on the Swedish coast. Two runs showed
evidently different performance at these four stations. The
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Figure 8. (a) Map of the temperature and salinity profiles from the SHARK database in 2010. The colors show the observation months.
(b) The tide gauge stations along the Swedish coast.

Figure 9. The overall RMSE and bias of temperature (a, b) and
salinity (c, d) from FREE and ASSIM relative to observations as a
function of water depth inside (b, d) and outside (a, c) of the Baltic
Sea.

variability of the SLA difference between two experiments at
the Smogen station had higher frequency compared to other
stations. The reason was that the Smogen station was located
at the transition zone where the water had higher frequency
variations caused by the brackish Baltic in-/outflowing water
relative to other three stations. At these four stations, the im-
provements were mainly in late spring and summer, whilst
the degraded simulations were mostly after mid-September,
respectively. The SST assimilation had less impact in late
winter and early spring compared to other seasons. In ad-
dition, the impact of SST assimilation on SLA simulation
was not the same at the four positions. For instance, dur-
ing the period from mid-November to mid-December, the
SLA in ASSIM was improved at Simrishamn and degraded
at both the Ratan and Landsort Norra stations, respectively.
This phenomenon was possibly caused by the imperfect cor-
relation between SST and SLA in the stationary samples.
Further, these steric small changes of SLA by DA were what
we expected because only SST was assimilated into NEMO-
Nordic.

5.4 Sea ice

Sea ice in the Baltic Sea occurs primarily in its north re-
gion and influences the Baltic climate. Accurately detect-
ing the sea ice is very useful to the northern Baltic popu-
lation because too much or too little sea ice can be a prob-
lem for wildlife and people. Sea-ice concentration (SIC) and
sea-ice extent (SIE) are two important and common indica-
tors for modeling sea-ice environment. We assessed the SIC
and SIE from simulations against the IceMap observations
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Figure 10. The improvement (%) of correlation and RMSE for the SLA at the tide gauge stations. The station positions are shown in Fig. 8b.

Figure 11. The variation of SLA biases in ASSIM relative to FREE
against observations as a function of time. The station positions are
shown in Fig. 8b.

in Figs. 12–13. In contrast to the daily evaluation in Losa et
al. (2014), the monthly mean SIC was used to represent the
general status of sea ice in the Baltic Sea. In addition, SIC in
January, February and December showed the variation of the
sea ice in winter.

In January 2010, the observations showed large ice cover-
age in the Bothnian Bay and the Gulf of Finland, and small
SIC in the Gulf of Riga, respectively. Models generally re-
produced this distribution of sea ice. However, FREE simu-
lated too much sea ice in the Gulf of Finland and the east-
ern coast of the Baltic Proper relative to the observations.

For example, SIC from FREE was almost 30 % higher than
observations along the Estonian coastline. It could be seen
that the SST DA reduced these biases. The reason is the
SST DA modified the thermal expansion by providing the
well temperature fields above the thermocline. The temper-
ature in February became colder relative to January in the
Baltic Sea. As a result, the sea ice in February extended to
the Bothnian Sea and the whole Gulf of Riga. Observations
also showed small SIC in Kattegat and Skagerrak. The model
simulated higher SIC in the Bothnian Sea with largest biases
along the Swedish and Finnish coasts. As an example, the
observed ice in the Bothnian Sea was characterized by con-
centrations mainly smaller than 0.5, whereas modeled ice in
FREE had concentrations greater than 0.9 in the shallow re-
gion of the Bothnian Sea. FREE also had smaller ice cover-
age with lower SIC in the transition zone between the North
Sea and the Baltic Sea relative to IceMap. After the SST as-
similation, ASSIM reduced SIC in the Bothnian Bay and the
west coast of the Baltic Sea, which was closer to the obser-
vations. The ice in ASSIM did not have obvious variations in
Kattegat and Skagerrak yet. ASSIM also reduced too much
ice at the southern end of the Bornholm Basin. The reason is
that the satellite SST observations had limited accuracy near
the coast and could bring artificial information into the mod-
eling. In March, compared to observations, FREE produced
low SIC at the western coast of the Bothnian Sea, Gulf of
Finland, Gulf of Riga and the connecting zone between the
Bothnian Sea and Gulf of Finland. However, the model SIC
in FREE was higher than IceMap in the interior the Bothnian
Bay. For instance, the SIC from FREE in the western Both-
nian Sea was 40 % higher than the observation. On the south
coast of the Arkona Basin and Baltic Proper, FREE failed
to reproduce the sea ice as in the observation. After the DA,
the high SIC was decreased in the western Bothnian Sea and
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closer to that in IceMap in Bothnian Sea. In the Gulf of Fin-
land and Gulf of Riga, the SIC error was increased in ASSIM.
In April, the large SIC error in FREE was shown in the Both-
nian Sea, Bothnian Bay, Gulf of Riga and Gulf of Finland,
where no clear improvements were seen in ASSIM. In De-
cember, sea-ice coverage was smaller because of relatively
warm temperature compared to that in other winter months.
Most of the sea ice with high concentration was observed at
the edge of the Bothnian Bay. Nevertheless, high concentra-
tion ice in FREE also formed at the transition zone between
the Bothnian Sea and Bothnian Bay. Relatively, ASSIM re-
duced the high concentration biases of sea ice. By contrast,
both ASSIM and FREE had lower concentration ice than ob-
servations on the eastern coast of the Bothnian Sea. The SIC
from ASSIM was relatively lower than that from FREE in
the northern Finish coast, whereas the observations had high
concentration ice there.

The daily SIE from FREE and ASSIM was compared with
observations in Fig. 13. The observed SIE was generally in-
creased from January to February and reached the maximum
in mid-February. During the period of March–May, SIE was
decreased as temperature was increasing. SIEs in both FREE
and ASSIM experiments were generally underestimated by
comparison with the observations in 2010, especially in the
period from mid-March to early April. The SIE bias in both
runs was roughly increased from January to early April. In
early April, the maximum negative bias of SIE was found to
be 105 000 km2 for ASSIM and 10 000 km2 for FREE. The
impact of SST assimilation on the SIE was positive during
the phase of sea-ice formation. For example, the SIE bias
was reduced by 25 000 km2 at the end of February and in
mid-December. However, during the phase of sea-ice melting
(March to April), the SIE error was increased in ASSIM even
with the decreased error of SST. For example, the SIE bias
in ASSIM was increased by 42 000 km2 relative to FREE in
the early March. These increased SIE error in March mainly
happened in the Gulf of Riga and Gulf of Finland.

6 Conclusion and discussions

A DA system based on a LSEIK filter has been coupled to the
NEMO circulation model of the North Sea and Baltic Sea.
The method was successfully applied for assimilating high-
resolution satellite SST data. We demonstrated that, over the
period of 2010, the agreement of the SST forecast with the in-
dependent satellite observation was improved by ∼ 29.93 %
in comparison with the regular forecast without DA. The as-
similation quality is directly related to the number of obser-
vations.

Compared with independent in situ data from SHARK,
the RMSE of temperature was reduced by 21.38 and 5.59 %
for the water above 100 m inside and outside of the Baltic
Sea, respectively. However, in the deeper layers, the temper-
ature was slightly degraded in the Baltic Sea. This is partially

caused by the artificial correlation between surface layer and
deeper layers. The improvement of temperature by SST DA
cannot guarantee corresponding improvement of the salinity.
The statistics show that the salinity RMSE was increased by
1.04 and 3.48 % in the transition zone and the Baltic Sea, re-
spectively. Both ASSIM and FREE have captured the main
dynamic process in the Baltic Sea, for example, the inflow
and the sink. However, ASSIM is closer to the observed one
relative to FREE.

The forecast results were further validated with the inde-
pendent SLA observations. The result shows that all RMSEs
and correlations for all 21 stations are smaller than 0.12 m
and greater than 0.86, respectively. After DA, the SLAs at
these stations have been slightly improved. In general, the
RMSE was reduced by 1.8 % and correlation coefficients
were slightly increased, respectively. Further, the model–
observation comparison at the selected four stations indicates
that these improvements are mainly in late spring and sum-
mer. The comparisons also denote the SST assimilation has
less impact in the late winter and early spring relative to other
seasons.

When compared with monthly mean observations of SIC,
both the assimilation run and free run reproduced the main
spatial distributions of sea ice in the Baltic Sea. During the
sea-ice formation period, the SST assimilation has improved
the results of SIC from FREE in the Gulf of Finland, the
Bothnian Sea and eastern coast of the Baltic Proper. How-
ever, minor improvements were found in Kattegat and Sk-
agerrak. In addition, over the sea-ice melting period, the SIE
comparison showed the SST assimilation increased the SIE
error, especially in the Gulf of Finland and Gulf of Riga.

The daily MLD from two runs has been compared with the
observations at the Arkona and BY15 stations. The model
could capture the variability features of the MLD. Similar to
Fu et al. (2012), it was found that SST assimilation had less
impact on the MLD in summer than in winter. In general, the
SST DA produced less influence on the MLD in the deeper
region (BY15) relative to that in the shallow region (Arkona).

Further, the reliability of the DA system is worthy of as-
sessment. In Rodwell et al. (2016), a perfectly reliable sys-
tem error variance for ensemble assimilation was calculated
by the sum of the variance of the sample ensemble, the square
of innovation (misfit between observation and model) and the
variance of observation at assimilation time. In this study,
we used a constant observation error similar to Rodwell et
al. (2016) because our DA design is different from that pa-
per. The major difference between these two studies is that
we estimate the background error covariance from a station-
ary ensemble and avoid the perturbation of observation error.
Therefore, the variance of the sample ensemble and observa-
tion is univariate and the diagnostic of the assimilation sta-
bility can be directly obtained from the forecast error like the
RMSE in Fig. 4.

The results of the SST assimilation are encouraging and
the assimilation helps to ameliorate some model deficiencies
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Figure 12. The monthly mean sea-ice concentrations in FREE (a), ASSIM (b) and IceMap (c), respectively.
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Figure 13. The daily sea-ice extent from FREE, ASSIM and IceMap, and the sea-ice extent bias (modeled minus observed field), respectively.

such as the simulation of sea ice in the Gulf of Finland. How-
ever, some problems need to be further addressed in the SST
DA in the future. Firstly, the SST assimilation has a worse in-
fluence on the simulation of salinity in the upper layers and
temperature in the deeper layers. Losa et al. (2012) denoted
that the salinity simulation quality crucially depends on the
assumptions about the model and data error statistics. Here,
a stationary ensemble sample was used to represent the cor-
relation between T /S and between surface and deep water.
These relationships could be changed with the varying dy-
namics and forcing conditions. More sophisticated assump-
tions should be used in the DA of the Baltic Sea. Secondly,
the SHARK observations in this study are absent in the Gulf
of Finland and Gulf of Riga. This denotes the validation re-
sults with SHARK observations did not include the evalu-
ation of the simulation of T /S in the deep water of these
two basins. Thirdly, the univariate localization scale used in
this study could be another problem. The spreading of ob-
servation information strongly depended on the correlation
scale. The large localization scale can introduce the artificial
information, which could degrade the assimilation quality.
A flow-dependent background error covariance with varying
correlation scale may be more appropriate for the Baltic Sea
with complex bathymetry and rich dynamics. Fourthly, the
remote sensing observations near the coast could have a large
bias because of the limit of the instrument itself. More strict
quality controlling methods needed to be used for the satel-
lite coastal observations before their assimilation.

Data availability. The datasets used in this study can be obtained
from the corresponding author (ye.liu@smhi.se).
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Appendix A

Here, we describe the details of the mathematical formula-
tion used in the forecast and correction (analysis) steps of
the LSEIK filter:

1. Forecast: the analysis state Xa at time ti−1 is integrated
forward to the time of the next available observations ti
to compute the forecast state Xf,

Xf (ti)=M(ti−1, ti)Xa (ti−1) , (A1)

where M denotes the nonlinear dynamic model opera-
tor that integrates a model state from time ti−1 to time
ti . The superscripts “f” and “a” denote the forecast and
analysis. The corresponding error covariance matrix can
be expressed as

Pf (ti)= Li
[
(r + 1)TTT

]−1LT
i +Qi, (A2)

Li = Xf (ti)T, (A3)

with Qi being the covariance matrix of model uncer-
tainties and r+1 is the minimum number of sample en-
semble members for error covariance matrix. The super-
script “T” denotes the transpose of matrix. The full-rank
matrix T has a dimension of (r + 1)× r with zero col-
umn sums, and L is a full-rank (r + 1)×r matrix which
implicitly represents the model variability.

2. Correction: when the observation is available at time
ti , the LSEIK filter merged the information from model
and observations to produce the analysis state with the
formula:

Xa (ti)= Xf (ti)+Ki

[
Y o (ti)−HiXf (ti)

]
. (A4)

Here, Y o is a vector of observations. The gain matrix
K, which linearly interpolates between the observations
and the forecast, is given by

Ki = Pf
iH

T
i

(
HiPf

iH
T
i +Ri

)−1

= LiUi(HiLi)TR−1
i , (A5)

where Hi denotes the linearization of observation op-
erator, which maps the model space to the observation
space. R is the observation error covariance matrix. The
matrix Ui is updated according to

U−1
i = ρ (r + 1)TTT+LT

i HT
i R−1

i HiLi . (A6)

Here, ρ is a forgetting factor.

A second-order exact sampling is used to initialize the
LSEIK filter. At time ti−1, a analysis state Xa (ti−1) and
its corresponding error covariance matrix Pa (ti−1), in

the factorized form Li−1Ui−1LT
i−1, are available. The

samples can be given by the following formula:

Xa
k (ti−1)= Xa (ti−1)+

√
r + 1Li−1(

�k, i−1Ci−1
)T
. (A7)

For 1≤ k ≤ r+1, the Ci−1 is the Cholesky decomposition
of U−1

i−1 and �i−1 is a (r + 1)× r matrix with orthonormal
columns and zero column sums, where �k,i−1 denotes the
kth row of �i−1. Xa is the average of the analysis state.
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