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Abstract. The numerical modeling of two-dimensional sur-
face wave development under the action of wind is per-
formed. The model is based on three-dimensional equations
of potential motion with a free surface written in a surface-
following nonorthogonal curvilinear coordinate system in
which depth is counted from a moving surface. A three-
dimensional Poisson equation for the velocity potential is
solved iteratively. A Fourier transform method, a second-
order accuracy approximation of vertical derivatives on a
stretched vertical grid and fourth-order Runge–Kutta time
stepping are used. Both the input energy to waves and dis-
sipation of wave energy are calculated on the basis of earlier
developed and validated algorithms. A one-processor version
of the model for PC allows us to simulate an evolution of
the wave field with thousands of degrees of freedom over
thousands of wave periods. A long-time evolution of a two-
dimensional wave structure is illustrated by the spectra of
wave surface and the input and output of energy.

1 Introduction

The phase-resolving modeling of sea waves is the mathemat-
ical modeling of surface waves including explicit simulations
of surface elevation and a velocity field evolution. As com-
pared with spectral wave modeling, phase-resolving model-
ing is more general since it reproduces a real visible physi-
cal process and is based on well-formulated full equations.
Phase-resolving models usually operate with a large num-
ber of degrees of freedom. In general, this method is more
complicated and requires more computational resources. The

simplest way to model like this is to calculate wave field
evolution based on linear equations. Such an approach al-
lows the reproduction of the main effects of the linear wave
transformation due to the superposition of wave modes, re-
flections, refractions, etc. This approach is useful for many
technical applications but it cannot reproduce a nonlinear na-
ture of waves and the transformation of wave field due to the
nonlinearity. Another example of a relatively simple object
is a case of the shallow-water waves. The nonlinearity can
be taken into account in the more sophisticated models de-
rived from the fundamental fluid mechanics equations with
some simplifications. The most popular approach is based
on a nonlinear Schrödinger equation of different orders (see
Dysthe, 1979) obtained by expansion of the surface wave dis-
placement. This approach is also used for solving the prob-
lem of freak waves. The main advantage of a simplified ap-
proach is that it allows the reduction of a three-dimensional
(3-D) problem to a two-dimensional one (or 2-D problem to
1-D problem). However, it is not always clear which of the
nonrealistic effects is eliminated or included in the model af-
ter simplifications. This is why the most general approach
being developed over the past years is based on the initial
two-dimensional or three-dimensional equations (still poten-
tial). All the tasks based on these equations can be divided
into two groups: the periodic and nonperiodic problems. An
assumption of periodicity considerably simplifies construc-
tion of the numerical models, though such formulation can
be applied to the cases when the condition of periodicity is
acceptable, for example, when domain is considered to be a
small part of a large uniform area. For the limited domains
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with no periodicity the problem becomes more complicated
since the Fourier presentation cannot be used directly.

From the point of view of physics, the problem of phase-
resolving modeling can be divided into two groups: the adi-
abatic and nonadiabatic modeling. A simple adiabatic model
assumes that the process develops with no input or output
of energy. Being not completely free of limitations, such a
formulation allows the investigation of the wave motion on
the basis of true initial equations. Including the effects of in-
put energy and its dissipation is always connected with the
assumptions that generally contradict the assumption of po-
tentiality, i.e., the new terms added to the equations should be
referred to as pure phenomenological. This is why the treat-
ment of a nonadiabatic approach is often based on quite dif-
ferent constructions.

All of the phase-resolving models use the methods of com-
putational mathematics and inherit all their advantages and
disadvantages; i.e., on the one side, there is the possibility of
a detailed description of the processes, and on the other side,
there are a bunch of the specific problems connected with
the computational stability, space and time resolution. The
mathematical modeling produces tremendous volumes of in-
formation, the processing of which can be more complicated
than the modeling itself.

The phase-resolving wave modeling takes a lot of com-
puter time since it normally uses a surface-following coordi-
nate system, which considerably complicates the equations.
The most time-consuming part of the model is an elliptic
equation for the velocity potential usually solved with iter-
ations. Luckily, for a two-dimensional problem this trouble
is completely eliminated by use of the conformal coordi-
nates, reducing the problem to a one-dimensional system of
equations which can be solved with high accuracy (Chalikov
and Sheinin, 1998). For a three-dimensional problem, the re-
duction to a two-dimensional form is evidently impossible;
hence, the solution of a 3-D elliptical equation for the veloc-
ity potential becomes an essential part of the entire problem.
This equation is quite similar to the equation for pressure in
a nonpotential problem. It follows that the 3-D Euler equa-
tions, being more complicated, can still be solved over the
acceptable computer time.

There is a large volume of papers devoted to the numerical
methods developed for the investigation of wave processes
over the past decades. It includes a finite-difference method
(Engsig-Karup et al., 2009, 2012), a finite-volume method
(Causon et al., 2010), a finite-element method (Ma and Yan,
2010; Greaves, 2010), a boundary (integral) element method
(Grue and Fructus, 2010), and spectral methods (Ducroset
et al., 2007, 2012, 2016; Touboul and Kharif, 2010; Bon-
nefoy et al., 2010). These include a smoothed-particle hy-
drodynamics method (Dalrymple et al., 2010), a large-eddy
simulation (LES) method (Issa et al., 2010; Lubin and Cal-
tagirone, 2010), a moving particle semi-implicit method
(Kim et al., 2014), a constrained interpolation profile method
(Zhao, 2016), a method of fundamental solutions (Young et

al., 2010) and a meshless local Petrov–Galerkin method (Ma
and Yan, 2010). A fully nonlinear model should be applied
to many problems. Most of the models were designed for
engineering applications such as overturning waves, broken
waves, waves generated by landslides, freak waves, solitary
waves, tsunamis, violent sloshing waves, an interaction of ex-
treme waves with beaches and an interaction of steep waves
with the fixed structures or with different floating structures.
The references given above make up less than 1 % of the pub-
lications on those topics.

A two-dimensional approach (like a conformal method)
considers a strongly idealized wave field since even
monochromatic waves in the presence of lateral disturbances
quickly obtain a two-dimensional structure. The difficulty
arising is not a direct result of the increase in the dimen-
sion. The fundamental complication is that the problem can-
not be reduced to a two-dimensional problem, and even for
the case of a double-periodic wave field, the problem of so-
lution of a Laplace-like equation for the velocity potential
arises. The majority of the models designed for investigation
of the three-dimensional wave dynamics are based on simpli-
fied equations such as the second-order perturbation methods
in which the higher-order terms are ignored. Overall, it is un-
clear which effects are missing in such simplified models.

The most sophisticated method is based on the full three-
dimensional equations and surface integral formulations
(Beale, 2001; Xue et al., 2001; Grilli et al., 2001; Clamond
and Grue, 2001; Clamond et al., 2005, 2006; Fructus et al.,
2005; Guyenne et al., 2006; Fochesato et al., 2006). A fully
nonlinear model of three-dimensional water waves, which
extends an approach suggested by Craig and Sulem (1993),
was originally given in a two-dimensional setting. The model
is based upon the Hamiltonian formulation (Zakharov, 1968),
which allows the reduction of the problem of surface variable
computation by introducing a Dirichlet–Neumann operator,
which is expressed in terms of its Taylor series expansion in
homogeneous powers of surface elevation. Each term in this
Taylor series can be obtained from the recursion formula and
efficiently computed using a fast Fourier transform.

The main advantage of the boundary integral equation
methods (BIEMs) is that they are accurate and can describe
highly nonlinear waves. A method of solution of the Laplace
equation is based on the use of Green’s function, which al-
lows us to reduce a 3-D water wave problem to a 2-D bound-
ary integral problem. The surface integral method is well
suited for simulation of the wave effects connected with very
large steepness, specifically, for investigation of the freak
wave generation. These methods can be applied both to the
periodic and nonperiodic flows. The methods do not im-
pose any limitations on the wave steepness; thus they can be
used for simulation of the waves that even approach break-
ing (Grilli et al., 2001) when the surface obtains a non-single
value shape. The method allows us to take into account the
bottom topography (Grue and Fructus, 2010) and investigate
an interaction of waves with the fixed structures or with the
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freely responding floating structures (Liu et al., 2016; Gou et
al., 2016).

However, the BIEM seems to be quite complicated and
time consuming when applied to the long-term evolution of
a multimode wave field in large domains. The simulation of
the relatively simple wave fields illustrates an application of
the method, and it is unlikely that the method can be applied
to the simulation of the long-term evolution of a large-scale
multimode wave field with a broad spectrum. An implemen-
tation of a multipole technique for a general problem of the
sea wave simulation (Fochesato et al., 2006) can solve the
problem but obviously leads to considerable algorithmic dif-
ficulties.

Currently, the most popular approach in the oceanogra-
phy approach is a HOS (high-order scheme) model devel-
oped by Dommermuth and Yue (1987) and West et al. (1987).
The HOS model is based on a paper by Zakharov (1968) in
which a convenient form of the dynamic and kinematic sur-
face conditions was suggested. The equations used by Za-
kharov were not intended for modeling, but rather for inves-
tigation of stability of the finite amplitude waves. In fact, a
system of coordinates in which depth is counted from the
surface was used, but the Laplace equation for the veloc-
ity potential was taken in its traditional form. However, the
Zakharov’s followers have accepted this idea literally. They
used the two coordinate systems: a curvilinear surface-fitting
system for the surface conditions and the Cartesian system
for calculation of the surface vertical velocity. An analytical
solution for the velocity potential in the Cartesian coordinate
system is known. It is based on the Fourier coefficients on
a fixed level, while the true variables are the Fourier coef-
ficients for the potential on a free surface. Here a problem
of transition from one coordinate system to another arises.
This problem is solved by expansion of the surface poten-
tial into the Taylor series in the vicinity of the surface. The
accuracy of this method depends on that of the representa-
tion of the exponential function with a finite number of the
Taylor series. For the small-amplitude waves and for a nar-
row wave spectrum, such accuracy is evidently satisfactory.
However, for the case of a broad wave spectrum that con-
tains many wave modes, the order of the Taylor series should
be high. The problem is now that the waves with high wave
numbers are superposed over the surface of larger waves.
Since the amplitudes of a surface potential attenuate expo-
nentially, the amplitude of a small wave at a positive eleva-
tion increases, and conversely, it can approach zero at neg-
ative elevations. It is clear that such a setting of the HOS
model cannot reproduce high-frequency waves, which actu-
ally reduces the nonlinearity of the model. This is why such
a model can be integrated for long periods using no high-
frequency smoothing. In addition, an accuracy of the calcu-
lation of a vertical velocity on the surface depends on full
elevation at each point. Hence, the accuracy is not uniform
along the wave profile. A substantial extension of the Taylor
series can definitely result in numerical instability due to the

occasional amplification of modes with high wave numbers.
The authors of a surface integral method share a similar point
of view (Clamond et al., 2005). We should note, however,
that the comparison of the HOS method based on the West et
al. (1987) approach using a method of the surface integral for
an idealized wave field (Clamond et al., 2006) shows quite
acceptable results. It was shown in the previous paper that
a method suggested by Dommermuth et al. (1987) demon-
strates poorer divergence of the expansion for the vertical ve-
locity than the method by West et al. (1987). The HOS model
has been widely used (for example, Tanaka, 2001; Toffoli et
al., 2010; Touboul and Kharif, 2010) and it has shown its
ability to efficiently simulate the wave evolution (propaga-
tion, nonlinear wave–wave interactions, etc.) in a large-scale
domain (Ducrozet et al., 2007, 2012). It is obvious that the
HOS model can be used for many practical purposes. Re-
cently, Ecole Centrale Nantes, LHEEA Laboratory (CNRÑ)
announced that the nonlinear wave models based on HOS
are published as an open source (https://github.com/LHEEA/
HOS-ocean/wiki, last access: 6 June 2018).

Opposite to the HOS method based on the analytical so-
lution of the Laplace equation in Cartesian coordinates, a
group of models is based on a direct solution of the equa-
tion for the velocity potential in the curvilinear coordinates
(Engsig-Karup et al., 2009, 2012; Chalikov et al., 2014). The
main advantage of a surface-following coordinate system is
that a variable surface is mapped onto the fixed plane. Since
the wave motion is very conservative, the highly accurate nu-
merical schemes should be used for a good description of the
nonlinearity and spectrum transformation. This most univer-
sal approach is being developed at the Technical University
of Denmark (TUD) (see Engsig-Karup, 2009). Actually, the
models ModelWave3D developed at TUD are targeted at the
solution of a variety of problems, including such problems as
the modeling of wave interaction with submerged objects as
well as the simulation of wave regime in basins with a real
shape and topography.

The model is based on the equations of a potential flow
with a free surface. An effect of variable bathymetry is
taken into account by using the so-called σ coordinate,
(straightening out the bottom and surface). At vertical sur-
faces a normal derivative of the velocity potential is equal
to zero. A flexible-order approximation for spatial deriva-
tives is used. The most time-consuming part of this mode
is a 3-D equation for the velocity potential. The strategy of
the model development is directed at exploiting the archi-
tectural features of modern graphics processing units for the
mixed precision computations. This approach is tested us-
ing a recently developed generic library for fast prototyp-
ing of PDE (partial differential equation) solvers. The new
wave tool is applicable for solving and analyzing a variety
of large-scale wave problems in coastal and offshore en-
gineering. A description of the project and references can
be found at the site https://www.researchgate.net/project/
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OceanWave3D-Open-Source-Marine-Hydrodynamics (last
access: 6 June 2018).

A comparison of a ModelWave3D with a HOS model was
presented by Ducrozet et al. (2012). It was shown that both
models demonstrate high accuracy, while the HOS model
shows a better performance. Note that the comparison of the
speed of the models in this case is irrelevant since the Model-
Wave3D was designed for investigation of complicated pro-
cesses, taking into account the real shape of a basin, variable
depth and even the presence of engineering constructions. All
these features are obviously not included in the HOS model.

The development of waves under the action of wind is a
process that is difficult to simulate since surface waves are
very conservative and change their energy for hundreds and
thousands of periods. This is why the most popular method is
spectral modeling. Waves as physical objects in this approach
are actually absent since an evolution of the spectral distri-
bution of wave energy is simulated. The description of in-
put and dissipation in this approach is not directly connected
with the formulation of the problem, but rather it is adopted
from other branches of wave theory in which waves are the
objects of investigation. However, the spectral approach was
found to be the only method capable of describing the space
and time evolution of wave field in the ocean. The phase-
resolving models (or “direct” models) designed for reproduc-
ing the waves themselves cannot compete with the spectral
models since the typical size of the domain in such models
does not exceed several kilometers. Such a domain includes
just several thousands of large waves. Nevertheless, the direct
wave modeling plays an ever-increasing role in geophysical
fluid dynamics because it gives the possibility of investigat-
ing the processes which cannot be reproduced with spectral
models. One such problem is that of an extreme wave gener-
ation (Chalikov, 2009; Chalikov and Babanin, 2016a). Direct
modeling is also a perfect instrument for the development
of parameterization of physical processes for spectral wave
models. In addition, such models can be used for direct sim-
ulation of wave regimes of small water basins, for example,
port harbors. Other approaches of direct modeling are dis-
cussed in Chalikov et al. (2014) and Chalikov (2016).

Until recently the direct modeling was used for repro-
duction of a quasi-stationary wave regime when the wave
spectrum did not change significantly. A unique example of
the direct numerical modeling of a surface wave evolution
is given in Chalikov and Babanin (2014), in which the de-
velopment of a wave field was calculated with the use of
a two-dimensional model based on the full potential equa-
tions written in the conformal coordinates. The model in-
cluded the algorithms for parameterization of the input and
dissipation of energy (a description of similar algorithms is
given below). The model successfully reproduced an evolu-
tion of wave spectrum under the action of wind. However,
the strictly one-dimensional (unidirected) waves are not re-
alistic; hence, a full problem of wave evolution should be

formulated on the basis of the three-dimensional equations.
An example of such modeling is given in the current paper.

2 Equations

Let us introduce a nonstationary surface-following
nonorthogonal coordinate system:

ξ = x, ϑ = y, ζ = z− η(ξ,ϑ,τ ), τ = t, (1)

where η(x,y, t)= η(ξ,ϑ,τ ) is a moving periodic wave sur-
face given by the Fourier series

η(ξ,ϑ,τ )=
∑

−Mx<k<Mx

∑
−My<l<My

hk,l (τ )2k,l, (2)

where k and l are the components of a wave number vector
k, hk,l (τ ) are Fourier amplitudes for elevations η(ξ,ϑ,τ ),
Mx and My are the numbers of modes in the directions ξ
and ϑ , respectively, and 2k,l are the Fourier expansion basis
functions, represented as the matrix

2kl =


cos(kξ + lϑ) −Mx ≤ k ≤Mx , −My < l < 0

cos(kξ) −Mx ≤ k ≤ 0, l = 0
sin(kξ) 0≤ k ≤My , l = 0

sin(kξ + lϑ) −Mx ≤ k ≤Mx , 0< l ≤My

. (3)

The 3-D equations of potential waves in the system of co-
ordinates (1) at ζ ≤ 0 take the following form:

ητ =−ηξϕξ − ηϑϕϑ +
(

1+ η2
ξ + η

2
ϑ

)
8ς , (4)

ϕτ =−
1
2

(
ϕ2
ξ +ϕ

2
ϑ −

(
1+ η2

ξ + η
2
ϑ

)
82
ζ

)
− η−p, (5)

8ξξ +8ϑϑ +8ζ ζ = ϒ (8), (6)

where ϒ is the operator:

ϒ()= 2ηξ ( )ξζ + 2ηϑ ( )ϑζ +
(
ηξξ + ηϑϑ

)
( )ζ −

(
η2
ξ + η

2
ϑ

)
( )ζ ζ . (7)

Capital fonts 8 are used for domain ζ < 0 while the lower
case ϕ refers to ζ = 0. A term p in Eq. (5) described the
pressure on the surface ζ = 0.

It is suggested in Chalikov et al. (2014) that it is con-
venient to represent the velocity potential ϕ as a sum
of two components, i.e., an analytical (linear) component
8̄
(
ϕ̄ = 8̄(ξ,ϑ,0)

)
and an arbitrary (nonlinear) component

8̃
(
ϕ̃ = 8̃(ξ,ϑ,0)

)
:

ϕ = ϕ+ ϕ̃, 8=8+ 8̃. (8)

The analytical component 8̄ satisfies the Laplace equation

8̄ξξ + 8̄ϑϑ + 8̄ζ ζ = 0, (9)

with a known solution:

8̄(ξ,ϑ,ζ,τ )=
∑
k,l

ϕ̄k,l(τ )exp(|k|ζ )2k,l (10)

Ocean Sci., 14, 453–470, 2018 www.ocean-sci.net/14/453/2018/

https://www.researchgate.net/project/OceanWave3D-Open-Source-Marine-Hydrodynamics


D. Chalikov: Numerical modeling of surface wave development under the action of wind 457

(where |k| =
(
k2
+ l2

)1/2 and ϕ̄k,l are the Fourier coefficients
of a surface analytical potential ϕ̄ at ζ = 0). The solution sat-
isfies the following boundary conditions:

ς = 0 : 8̄= ϕ̄

ς→−∞ : 8̃ζ → 0
. (11)

The nonlinear component satisfies an equation:

8̃ξξ + 8̃ϑϑ + 8̃ζ ζ = ϒ
(
8̃
)
+ϒ

(
8̄
)
. (12)

Equation (12) is solved with the boundary conditions

ς = 0 : 8̃= 0
ς→−∞ : 8̃ζ → 0

. (13)

The derivatives of a linear component 8̄ in Eq. (7) are
calculated analytically. The scheme combines a 2-D Fourier
transform method in the “horizontal surfaces” and a second-
order finite-difference approximation on a stretched stag-
gered grid defined by the relation 1ζj+1 = χ1ζj (1ζ is a
vertical step, while j = 1 at the surface). A stretched grid
provides an increase in accuracy of approximation for the
exponentially decaying modes. The values of a stretching
coefficient χ lie within the interval 1.01–1.20. A finite-
difference second-order approximation of the vertical opera-
tors in Eq. (12) on a nonuniform vertical grid is quite straight-
forward. Equation (12) is solved as the Poisson equations
with the iterations over the right-hand side. At each time step,
the iterations start with the right-hand side calculated at the
previous time step. The initial elevation was generated as a
superposition of linear waves corresponding to a JONSWAP
spectrum (Hasselmann et al., 1973) with random phases. The
initial Fourier amplitudes for the surface potential were cal-
culated using the formulas of the linear wave theory. A de-
tailed description of the scheme and its validation is given in
Chalikov et al. (2014) and Chalikov (2016).

Equations (4)–(6) are written in a nondimensional form by
using the following scales: length L where 2πL is a (dimen-
sional) period in the horizontal direction, timeL1/2g−1/2 and
the velocity potential L3/2g1/2 (g is an acceleration of grav-
ity). The pressure is normalized by water density, so that the
pressure scale is Lg. Equations (4)–(6) are self-similar to the
transformation with respect to L. The dimensional size of
the domain is 2πL, so the scaled size is 2π . All of the re-
sults presented in this paper are nondimensional. Note that
the number of the Fourier modes can be different in the x
and y directions. In this case it is assumed that the two-length
scales Lx and Ly are used. The nondimensional length of the
domain in the y direction remains equal to 2π and a factor
r = Lx/Ly is introduced into the definition of a differential
operator in the Fourier space.

3 Energy input and dissipation

The energy input to waves is described by a pressure term p

in a dynamic boundary condition (Eq. 5). The tangent stress

on the surface cannot be taken into account in the potential
formulation. The dissipation cannot be described either with
use of the potential equations, but for a realistic description
of wave dynamics, the dissipation of wave energy should be
taken into account, i.e., we should include additional terms
in Eqs. (4) and (5), which, strictly speaking, contradict an
assumption of potentiality.

3.1 Energy input from wind

According to the linear theory (Miles, 1957), the Fourier
components of surface pressure p are connected with those
of the surface elevation through the following expression:

pk,l + ip−k,−l =
ρa

ρw

(
βk,l + iβ−k,−l

)(
hk,l + ih−k,−l

)
, (14)

where hk,l, h−k,−l, βk,l, β−k,−l are real and imaginary parts
of elevation η and the so-called β function (i.e., Fourier co-
efficients at COS and SIN, respectively); ρa/ρw is a ratio of
the air and water densities. Equation (14) is a standard pre-
sentation of pressure above a multimode surface. It means

that every wave mode with amplitude
(
h2
k,l +h

2
−k,−l

)1/2
ini-

tiates the pressure mode with amplitude
(
p2
k,l +p

2
−k,−l

)1/2

shifted off the phase of a wave mode by angle α = atanβ−k,−l
βk,l

.
Both coefficients in Eq. (14) are a function of the ratio of
wind velocity at half the mode of the length height λk,l/2 to
the virtual phase velocity. Hence, for derivation of the shape
of the β function it is necessary to simultaneously measure
the wave surface elevation and the nonstatic pressure on the
surface. Measurement of surface pressure is a very difficult
problem since measurements should be carried out very close
to a moving surface, preferably, with a surface-following sen-
sor. Such measurements are performed quite seldom, espe-
cially, in the field. The measurements were carried out for
the first time by a team of authors in both laboratory and field
(Snyder et al., 1981; Hsiao and Shemdin, 1983; Hasselmann
and Bösenberg, 1991; Donelan et al., 2005, 2006). The data
obtained in this way allowed the construction of an imagi-
nary part of the β function used in some versions of wave
forecasting models (Rogers et al., 2012). Such measurements
and their processing are quite complicated since the wave-
produced pressure fluctuations are masked by the turbulent
pressure fluctuations. The second method of the β function
evaluation is based on the results of numerical investigations
of the statistical structure of a boundary layer above waves
with the use of Reynolds equations and an appropriate clo-
sure scheme. In general, this method works so well that many
problems in the technical fluid mechanics are often solved
using numerical models, not experimentally (Gent and Tay-
lor, 1976; Riley et al., 1982; Al-Zanaidi and Hui, 1984).
This method was being developed beginning from Cha-
likov (1978, 1986), followed by Chalikov and Makin (1991),
Chalikov and Belevich (1992) and Chalikov (1995). The re-
sults were implemented in a WAVEWATCH model, i.e., a
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third-generation wave forecast model (Tolman and Chalikov,
1996), and thoroughly validated against the experimental
data in the course of developing WAVEWATCH III (Tolman
et al., 2014). This method was later improved on the basis of
a more advanced coupled modeling of waves and boundary
layer (Chalikov and Rainchik, 2010), while the β function
used in WAVEWATCH III was corrected and extended up to
the high frequencies. A direct calculation of the energy in-
put to waves requires both the real and imaginary parts of
the β function. The total energy input to waves depends on
an imaginary part of the β function, while the moments of a
higher order depend on both the imaginary and real parts of
β. This is why a full approximation constructed in Chalikov
and Rainchik (2010) was used in the current work. Note that
in a range of relatively low frequencies the new method is
very close to the scheme implemented in WAVEWATCH III.

It is a traditional suggestion that both coefficients are
the functions of the virtual nondimensional frequency �=
ωk,lU cosψ = U/ck,l cosψ (where ωk,l and U are the nondi-
mensional radian frequency and wind speed, respectively;
ck,l is a phase speed of the kth mode; ψ is an angle be-
tween the wind and wave mode directions). Most of the
schemes for calculations of the β function consider a rela-
tively narrow interval of the nondimensional frequencies �.
In the current work, the range of frequencies cover an in-
terval (0<�< 10), and occasionally the values of �> 10
can appear. This is another reason why the function derived
in Chalikov and Rainchik (2010) through the coupled sim-
ulations of waves and the boundary layer is used here. The
wave model is based on the potential equations for a flow
with a free surface, extended with an algorithm for the break-
ing dissipation (see below a description of the breaking dis-
sipation parameterization). The wave boundary layer (WBL)
model is based on Reynolds equations closed with a K − ε
scheme; the solutions for air and water are matched through
the interface. The β function was used for the evaluation of
accuracy of the surface pressure p calculations. The shape
of the β function connecting surface elevations and surface
pressure is studied up to the high nondimensional wave fre-
quencies in both positive and negative (i.e., for wind oppo-
site to waves) domains. The data on the β function exhibit
wide scatter, but since the volume of the data was quite large
(47 long-term numerical runs allowed us to generate about
1 400 000 values of β), the shape of the β function was de-
fined with satisfactory accuracy up to the very high nondi-
mensional frequencies (−50<�< 50). As a result, the data
on the β-function in such a broad range allow us to calculate
the wave drag up to very high frequencies and to explicitly
divide the fluxes of energy and momentum transferred by the
pressure and molecular viscosity. This method is free of arbi-
trary assumptions on a drag coefficient Cd, and, conversely,
such calculations allow the investigation of the nature of the
wave drag (see Ting et al., 2012).

The most reliable data on β function are concentrated in
the interval −10<�< 10 (negative values of � correspond

to the wave modes running against wind). The real and imag-
inary parts of the β function are shown in Fig. 1. It is a cor-
rected version of an approximation given in Chalikov and
Rainchik (2010) in which the data at negative � were in-
terpreted erroneously. In the current calculations the modes
running against wind are absent. The function β can be ap-
proximated by the formulas

βk,l =

{
β0+ a0 (�−�0)+ a1(�−�0)

2 �0 <�

β0+ a0 (�−�0)− a1(�−�0)
2 �<�0

, (15)

β−k,−l =

{
β1+ a3 (�−�2) � < �2
a2(�−�1)

2 �2 <�<�3
β1− a3 (�−�3) �3 <�

, (16)

where the coefficients are a1 = 0.09476, a2 =

−0.3718, a3 = 14.80, β0 =−0.02, β =−148. a0 =

0.02277, �0 = 0.02277, �1 = 1.20, �2 =−18.8, �3 =

21.2.
It was indicated above that an initial wave field is assigned

as a superposition of linear modes whose amplitudes are cal-
culated with a JONSWAP spectrum with an initial peak wave
number k0

p = 100. An initial valueU/c0
p = 6 was chosen, i.e.,

a ratio of the nondimensional wind speed at the height of
one-half the initial peak wave length λ0/2= 2π/100, and the

phase speed c0
p =

(
k0

p

)−1/2
is equal to 6. Such a high ratio

corresponds to the initial stages of wave development. The
wind velocity 6c0

p remains constant throughout the integra-
tion. The values of � for other wave numbers are calculated
by assuming that the wind profile is logarithmic:

�k,l =
U

ck,l
ln
λk,l

2z0

(
ln
λ0

2z00

)−1

cosψk,l, (17)

where z00 is an effective nondimensional roughness for the
initial wind profile, while z0 is an actual roughness parame-
ter that depends on the energy in a high-frequency part of the
spectrum and on the wind profile. We call it “effective” since
very close to the surface the wind profile is not logarithmic
(Chalikov, 1995; Tolman and Chalikov, 1996; Chalikov and
Rainchik, 2010). The value of this parameter depends on the
wind velocity and energy in a high-wave-number interval of
the wave spectrum, as well as on the length scale of the prob-
lem. All these effects are possible to include by matching the
wave model with a one-dimensional WBL model (Ting et al.,
2012). Here, a simplified scheme for the roughness parame-
ter is chosen. It is well known that the roughness parameter
(as well as a drag coefficient) increases with a decrease in the
inverse wave age. In our case the wind speed is fixed, and de-
pendence for a nondimensional roughness parameter is con-
structed on the basis of the results obtained in Chalikov and
Rainchik (2010):

z0 = 15z00�, (18)

where z00 = 10−3 is an initial value of the roughness parame-
ter. Equation (18) approximates the dependence of the effec-
tive roughness at the stage of wave development. Note that
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Figure 1. Real (dashed curve) and imaginary (solid curve) parts of
the β function.

the results are not sensitive to the variation of the roughness
parameter within reasonable limits.

3.2 High-wave-number energy dissipation

A nonlinear flux of energy directed to the small wave num-
bers produces the downshifting of the spectrum, while an
opposite flux forms the shape of the spectral tail. The sec-
ond process can produce the accumulation of energy near a
“cut” wave number. Both processes become more intensive
with an increase in the energy input. The growth of ampli-
tudes at high wave numbers is followed by that of the local
steepness and numerical instability. This well-known phe-
nomenon in the numerical fluid mechanics is eliminated by
use of a highly selective filter simulating the nonlinear vis-
cosity. To support stability, additional terms are included in
the right-hand sides of Eqs. (4) and (5):

∂ηk,l

∂τ
= Ek,l −µk,lηk,l, (19)

∂ϕk,l

∂τ
= Fk,l −µk,lϕk,l . (20)

Ek,l and Fk,l are the Fourier amplitudes of the right-hand
sides of Eqs. (4) and (5) while a factorµk,l is calculated using
the formula

µk,l =


0 |k|< kd

cmk0

(
|k| − kd

(k0− kd)

)2

kd ≤ |k| ≤ k0

cmk0 |k|> k0

, (21)

where k and l are components of wave number |k|, while the
coefficients kd and k0 are defined by the expression:

kd = d
2
mMxMy

((
l|k|−1dmMx

)2
+

(
k|k|−1dmMy

)2
)−1/2

, (22)

k0 =MxMy

((
l|k|−1Mx

)2
+

(
k|k|−1My

)2
)−1/2

, (23)

where cm = 0.1 and dm = 0.75. The expressions (19)–(21)
can be interpreted in a straightforward way: the value of µk,l
is equal to zero inside the ellipse with semiaxes dmMx and
dmMy ; then it grows linearly with |k| up to the value cm
and is equal to cm outside the outer ellipse. This method
of filtration that we call “tail dissipation” was developed
and validated with a conformal model by Chalikov and
Sheinin (1998). The sensitivity of the results to the param-
eters in Eqs. (21)–(23) is not high. The aim of the algorithm
is to support smoothness and monotonicity of the wave spec-
trum within a high wave number range. Since the algorithm
affects the amplitudes of small modes, it actually does not
reduce the total energy, though it efficiently prevents devel-
opment of the numerical instability. Note that no long-term
calculations can be performed without tail dissipation elimi-
nating the development of numerical instability at high wave
numbers.

3.3 Dissipation due to wave breaking

The main process of wave dissipation is wave breaking. This
process is taken into account in all the spectral wave forecast-
ing models similar to WAVEWATCH (see Tolman and Cha-
likov, 1996). Since there are no waves in the spectral models,
no local criteria of wave breaking can be formulated. This is
why the breaking dissipation is represented in spectral mod-
els in a distorted form. A real breaking occurs in relatively
narrow areas of the physical space; however, a spectral im-
age of such breaking is stretched over the entire wave spec-
trum, while in reality the breaking decreases height and en-
ergy of dominant waves. This contradiction occurs because
the waves in spectral models are assumed to be the linear
ones, while in fact the breaking occurs in the physical space
with a nonlinear sharp wave, usually composed of several
modes. However, progress has been gradually made in spec-
tral wave modeling over the past decade. It became clear that
state-of-the-art wave models should account for the thresh-
old behavior of the dominant wave breaking, i.e., waves will
not break unless their steepness exceeds the threshold (Alves
and Banner, 2003; Babanin et al., 2010).

The mechanics of wave breaking at a developed wave
spectrum differs from that in a wave field represented by the
few modes normally considered in many theoretical and lab-
oratory investigations (e.g., Alberello et al., 2018). Since the
breaking in laboratory conditions is initiated by special as-
signment of amplitudes and phases, it cannot be similar to
the breaking in natural conditions. To some degree the wave
breaking is similar to the development of an extreme wave
that appears suddenly with no pronounced prehistory (Cha-
likov and Babanin, 2016a, b). There are no signs of modula-
tional instability in both phenomena, which suggests a pro-
cess of energy consumption from other modes. The evolu-
tion leading to the breaking or “freaking” seems just oppo-
site: the full energy of a main wave remains nearly constant
while the columnar energy is focused around the crest of this
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wave, which becomes sharper and unstable. Probably even
more frequent cases of wave breaking and extreme wave ap-
pearance can be explained by a local superposition of several
modes.

The instability of interface leading to the breaking is an
important and poorly developed problem of fluid mechanics.
In general, this essentially nonlinear process should be inves-
tigated for a two-phase flow. Such an approach was demon-
strated, for example, by Iafrati (2009). However, progress in
solving this highly complicated problem is slow.

A problem of the breaking parameterization includes two
points: (1) establishing of a criterion of the breaking onset
and (2) development of an algorithm of the breaking param-
eterization. The problem of breaking is discussed in detail in
Babanin (2011). Chalikov and Babanin (2012) performed a
numerical investigation of the processes leading to the break-
ing. It was found that a clear predictor of the breaking for-
mulated in dynamical and geometrical terms probably does
not exist. The most evident criterion of the breaking is the
breaking itself, i.e., the process when some part of the upper
portion of a sharp wave crest is falling down. This process
is usually followed by separation of the detached volume of
liquid into the water and air phases. Unfortunately, there is
no possibility of describing this process within the scope of
the potential theory.

Some investigators suggest using a physical velocity ap-
proaching the rate of surface movement in the same direction
as a criterion of the breaking onset. This is incorrect since a
kinematic boundary condition suggests that these quantities
are exactly equal to each other. It is quite clear that the onset
of breaking can be characterized by the appearance of a non-
single-value piece of surface. This stage can be investigated
with a two-dimensional model, which due to a high flexi-
bility of the conformal coordinates allows us to reproduce
a surface with an inclination in the Cartesian coordinates ex-
ceeding 90 degrees. (In the conformal coordinates the depen-
dence of elevation on a curvilinear coordinate is always a sin-
gle value). The duration of this stage is extremely short, the
calculations being always interrupted by the numerical insta-
bility with sharp violation of the conservation laws (constant
integral invariants, i.e., full energy and volume) and strong
distortion of the local structure of flow. The numerous numer-
ical experiments with a conformal model showed that after
the appearance of a non-single value the model never returns
to stability. However, the introduction of a non-single surface
as a criterion of the breaking instability even in a conformal
model is impossible since a behavior of the model at a critical
point is unpredictable, and the run is most likely to be termi-
nated, no matter what kind of parameterization of breaking is
introduced. It means that even in a precise conformal model
the stabilization of the solution should be initiated prior to
the breaking.

A consideration of an exact criterion for the breaking on-
set for the models using transformation of the coordinate type
of point (1) is useless since the numerical instability in such

models arises not because of the approach of breaking but be-
cause of the appearance of large local steepness. The multiple
experiments with a direct 3-D wave model show that the ap-
pearance of the local steepness max(∂η/∂x,∂η/∂y) exceed-
ing ≈ 2 (that corresponds to a slope of about 60 degrees) is
always followed by the numerical instability but the instabil-
ity can happen well before reaching this value. The decrease
in a time step does not make any effect. As seen, a surface
with such a slope is very far from being a vertical wall, when
the real breaking starts. However, an algorithm for the break-
ing parameterization must prevent numerical instability. The
situation is similar to the numerical modeling of turbulence
(LES technique) in which a local highly selective viscosity
is used to prevent the appearance of too large local gradients
of the velocity. A description of the breaking in the direct
wave modeling should satisfy the following conditions. (1) It
should prevent the onset of instability at each point of half a
million grid points over more than 100 thousand time steps.
(2) It should describe in a more or less realistic way the loss
of kinetic and potential energies with preservation of balance
between them. (3) It should preserve the volume. It was sug-
gested in Chalikov (2005) that an acceptable scheme can be
based on a local highly selective diffusion operator with a
special diffusion coefficient. Several schemes of such type
were validated, and finally the following scheme was cho-
sen:

ητ = Eη+ J
−1
(
∂

∂ξ
Bξ
∂η

∂ξ
+
∂

∂ϑ
Bϑ

∂η

∂ϑ

)
, (24)

ϕτ = Fϕ + J
−1
(
∂

∂ξ
Bξ
∂ϕ

∂ξ
+
∂

∂ϑ
Bϑ
∂ϕ

∂ϑ

)
, (25)

where Fη and Fϕ are the right-hand sides of Eqs. (4) and
(5) including the terms introduced in terms of Fourier coef-
ficients by Eqs. (19)–(23); Bξ and Bϑ are diffusion coeffi-
cients. It was suggested in the first versions of the scheme
that a diffusion coefficient depends on a local slope; how-
ever, such a scheme did not prove to be very reliable since it
did not prevent all of the events of the numerical instability.
A scheme based on the calculation of the local curvilinearity
ηξξ and ηϑϑ turned out to be a lot more robust. The calcu-
lations of 75 different runs were performed with a full 3-D
model in Chalikov et al. (2014) over the period of t = 350
(70 000 time steps). The total number of values used for the
calculations of dependence in Fig. 2 (thick curve) is about
6 billion. The normal probability calculated with the same
dispersion is shown by a thin curve.

It is seen that the probability of large negative values of the
curvilinearity is calculated over an ensemble of linear modes
by orders larger than the probability with the spectra gener-
ated by a nonlinear model.

The curvilinearity turned out to be very sensitive to the
shape of surface. This is why it was chosen as a criterion
of the breaking approach. Coefficients Bξ and Bϑ depend
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Figure 2. Probability of the curvilinearity ηξξ . The thick curve is
calculated with a full 3-D model; the thin curve is the probability
calculated over an ensemble of linear modes with the same spec-
trum.

nonlinearly on the curvilinearity:

Bξ =

{
1ξCBη

2
ξξ ηξξ < η

cr
ξξ

0 ηξξ ≥ η
cr
ξξ

, (26)

Bϑ =

{
1ϑCBη

2
ϑϑ ηϑϑ < η

cr
ξξ

0 ηϑϑ ≥ η
cr
ξξ

, (27)

where 1ξ and 1ζ are the horizontal steps in the x and y
directions in a grid space, and the coefficients are CB = 2.0
and ηcrξξ = η

cr
ϑϑ =−50. Equations (24)–(27) do not change

the volume and decrease the local potential and kinetic en-
ergy. It is assumed that the lost momentum and energy are
transferred to the current and turbulence (see Chalikov and
Belevich, 1992). In addition, the energy also goes to other
wave modes. The choice of parameters in Eqs. (24)–(27) is
based on simple considerations: a local piece of surface can
closely approach the critical curvilinearity but not exceed it.
The values of the coefficients are picked with reserve to pro-
vide stability for long runs.

We do not think that the suggested breaking parameteri-
zation is a final solution to the problem. Other schemes will
be tested in the next version of the model. However, the re-
sults presented below show that the scheme is reliable and
provides a realistic energy dissipation rate.

4 Calculations and results

The elevation and surface velocity potential fields are ap-
proximated in the current calculations by Mx = 256 and
My = 128 modes in directions x and y. The correspond-
ing grid includes Nx ×Ny = (1024× 512) knots. The ver-
tical derivatives are approximated at a vertical stretched grid
dζj+1 = χdζj, (j = 1,2,3. . .,Lw), where ν =1.2 and Lw =
10. A small number of levels used for the solution of the
equation for a nonlinear component of the velocity potential
are possible because just a surface vertical derivative for the
velocity potential ∂8/∂ζ (ζ = 0) is required. The velocity
potential mainly consists of an analytical component ϕ̄, while

a nonlinear component provides only a small correction. To
reach the accuracy of the solution ε = 10−6 for Eq. (11), no
more than two iterations were usually sufficient.

The parameters chosen were used for solution of a prob-
lem of a wave field evolution over the acceptable time (of the
order of 10 days). The initial conditions were assigned on
the basis of the empirical spectrum JONSWAP (Hasselmann
et al., 1973) with a maximum placed at the wave number
kp = 100 with the angle spreading (coshψ)256. The details
of the initial conditions are of no importance because an ini-
tial energy level is quite low.

The total energy of a wave motion E = Ep+Ek (Ep is a
potential energy, while Ek is a kinetic energy) is calculated
with the following formulas:

Ep = 0.25η2, Ek = 0.5
(
ϕ2
x +ϕ

2
y +ϕ

2
z

)
, (28)

where a single bar denotes averaging over the ξ and ϑ coor-
dinates, and a double bar denotes averaging over the entire
volume. The derivatives in Eq. (25) are calculated according
to the transformation (1). An equation of the integral energy
E = Ep+Ek evolution can be represented in the following
form:
dE
dt
= I +Db+Dt+N, (29)

where I is the integral input of energy from wind (Eqs. 14–
18); Db is the rate of the energy dissipation due to the wave
breaking (Eqs. 24–27); Dt is the rate of the energy dissipa-
tion due to filtration of high-wave-number modes (tail dissi-
pation, Eqs. 19–23); N is an integral effect of the nonlinear
interactions described by the right-hand side of the equations
when the surface pressure p is equal to zero. The differential
form for calculation of the energy transformation can be, in
principle, derived from Eqs. (4)–(6), but here a more conve-
nient and simple method was applied. Different rates of the
integral energy transformations can be calculated with the
help of fictitious time steps (i.e., apart from the basic cal-
culations). For example, the value of I is calculated by the
following relation:

I =
1
1t

(
Et+1t −Et

)
, (30)

where Et+1t is the integral energy of a wave field obtained
after one time step with the right side of Eq. (6) contain-
ing only the surface pressure calculated with Eqs. (14)–(18).
For calculation of the dissipation rate due to filtration, the
right-hand side of the equations contains just the terms intro-
duced in Eqs. (19)–(23), while for calculation of the effects
of breaking, only the terms introduced in Eqs. (24)–(27) are
in use.

An evolution of the characteristics calculated by Eq. (30)
is shown in Fig. 3. The sharp variations in all the characteris-
tics at t < 50 can probably be explained by adjustment of the
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Figure 3. Evolution of integral characteristics of the solution, a rate
of evolution of the integral energy multiplied by 107 due to 1 – tail
dissipation Dt (Eqs. 19–23), 2 – breaking dissipation Db (Eqs. 24–
27), 3 – input of energy from wind I (Eqs. 14–18) and 4 – balance
of energy I+Dt+Db. Curve 5 shows the evolution of wave energy
105E. Grey vertical bars show the instantaneous values; the thick
curve shows the smoothed behavior.

initial linear fields to the nonlinearity. Up to the end of inte-
gration, the sum of all energy transition terms (tail dissipation
Dt, breaking dissipation Db and energy input I ) approaches
zero (curve 4), and the energy growthE (curve 5) stops. Then
the energy tends to decrease, but we are not sure about the na-
ture of this effect. Such behavior can be explained by a fluc-
tuating character of mutual adjustment of input and dissipa-
tion or simply by deterioration of the approximation because
of the downshifting process. Note that opposite to a more or
less monotonic behavior of the tail dissipation (curve 1), the
breaking dissipation is highly intermittent, which is consis-
tent with the common views on the wave breaking nature.

The data on the evolution of the wave spectrum
are shown in Fig. 4. A 2-D wave spectrum S(k, l)(
0≤ k ≤Mx,−My ≤ l ≤My

)
averaged over 13 time inter-

vals of length equal to 1t ≈ 100 was transferred to the
polar coordinates Sp(ψ,r)(−π/2≤ ψ ≤ π/2, 0≤ r ≤Mx)

and then averaged over the angle ψ to obtain a 1-D spectrum
Sh (r):

Sh (r)=
∑

Sp (ψ,r)r1ψ. (31)

An angle ψ = 0 coincides with the direction of wind U ,
1ψ = π/180.

Figure 4. The wave spectra Sh (r) integrated over angleψ in the po-
lar coordinates and averaged over the consequent intervals of length
for about 100 units of the nondimensional time t . The spectra grow
and shift from right to left.

As seen, each spectrum consists of separated peaks and
holes1. This phenomenon was first observed and discussed
by Chalikov et al. (2014). The repeated calculations with
different resolution showed that such a structure of the 2-D
spectrum is typical. It cannot be explained by a fixed com-
bination of interacting modes since in different runs (with
the same initial conditions but a different set of phases for
the modes) the peaks are located at different locations in a
Fourier space.

Another presentation is given in Fig. 6 in which the
log10 (S (ψ,r)), averaged over the successive seven-period
length 1t = 200, is given. The first panel with a mark of 0
refers to the initial conditions. The disturbances within the
range (125< k < 150) reflect the initial adjustment of input
and dissipation at a high-wave-number slope of spectrum.
The pictures characterize the downshifting and angle spread-
ing of the spectrum well due to the nonlinear interactions.

Evolution of the integrated-over-angles ψ wave spectrum
Sh (r) can be described with the equation

dSh (r)
dt
= I (r)+Dt (r)+Db (r)+N(r), (32)

where I (r) ,Dt (r) , Db (r) andN(r) are the spectra of the
input energy, tail dissipation, breaking dissipation and the
rate of the nonlinear interactions, all obtained by integration
over angles ψ . All of the spectra shown below were obtained
by transformation of the 2-D spectra into a polar coordinate
(ψ,r) and then integrated over angles ψ within the interval
(−π/2,π/2). The spectra can be calculated using an algo-
rithm similar to that (Eq. 30) for integral characteristics. For

1The wave spectrum looks more like the Sagrada Família
(Gaudí) in Barcelona than the St Mary Axe (“The Gherkin”) in Lon-
don.
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Figure 5. Sequence of 3-D images of lg10 (S (k, l)), in which each
panel corresponds to a single curve in Fig. 3. The left side refers
to the wave number l

(
−My ≤ l ≤My

)
and the front side refers to

k (0≤ k ≤M). The numbers indicate the end of the time interval
expressed in hundreds of nondimensional time units.

example, a spectrum of the energy input I (k, l) is calculated
as follows:

I (k, l)=
(
St+1tc (k, l)− Stc (k, l)

)
/1t, (33)

where Sc
(
kx,ky

)
is the spectrum of the columnar energy cal-

culated by the relation

Sc(k, l)=
1
2

(
h2
k,l +h

2
−k,−l +

0∫
−H

(u2
k,l + u

2
−k,−l + v

2
k,l + v

2
−k,−l +w

2
k,l +w

2
−k,−l)dζ

)
,

(34)

where the grid values of velocity components u,v and w are
calculated by the relations

u= ϕξ +ϕζηξ , v = ϕϑ +ϕζηϑ , w = ϕζ , (35)

and uk,l, vk,l andwk,l are their Fourier coefficients.
For calculation of I (k, l) the fictitious time steps 1t are

made only with a term responsible for the energy input, i.e.,

Figure 6. Sequence of 2-D images of lg10 (S(k, l)) averaged over
the consequent seven periods of length 1t = 200. The numbers in-
dicate the period of averaging (first panel marked 0, refers to the
initial conditions). The horizontal and vertical axes correspond to
the wave numbers k and l, respectively.

surface pressure p. A spectrum I (k, l)was averaged over the
periods 1t ≈ 100, then transformed into a polar coordinate
system and integrated in a Fourier space over anglesψ within
the interval (−π/2,π/2) .

Evolution of the input spectra (Fig. 7) is in general similar
to that of the wave spectra shown in Fig. 4. Note that the
maximum of the spectra is located at the maximum of the
wave spectra since the input depends mainly on the spectral
density, while the dependence on frequency is less important.

An algorithm (Eq. 30) was applied for calculation of the
dissipation spectra due to dumping of a high-wave-number
part of spectrum (tail dissipation) and for calculation of the
spectrum of the breaking dissipation. In the first case, the
fictitious time step was made taking into account the terms
described by Eqs. (19)–(23), while in the second case the
time step was made using the terms described by Eqs. (24)–
(27).

The spectra of the tail dissipation calculated similarly to
the spectra I (r) are shown in Fig. 8. The dissipation occurs
at the periphery of the spectrum, outside an ellipse with semi-
axes dmMx and dmMy

2. This is why such dissipation, aver-
aged over angles, seems to affect the middle part of a 1-D
spectrum. The tail dissipation effectively stabilizes the solu-
tion.

2The 2-D Fourier spectral “tail” looks like a peacock tail.
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Figure 7. The spectrum of energy input I (r) integrated over angle
ψ in the polar coordinates and averaged over the consequent inter-
vals of length for about 100 units of the nondimensional time t .

Figure 8. The tail dissipation spectraDt (r) integrated over angle ψ
in the polar coordinates and averaged over the consequent intervals
of length for about 100 units of the nondimensional time t .

The breaking dissipation averaged over angles is presented
in Fig. 8. As seen, the breaking dissipation has a maximum
at the spectral peak. This does not mean that in the vicin-
ity of the wave peak the probability of large curvilinearity
is quite high. A high rate of the breaking dissipation can be
explained by high wave energy in the vicinity of the wave
peak. The energy lost through the breaking, described by the
diffusion mechanism, correlates with the energy of breaking
waves. Opposite to the high-wave-number dissipation which
regulates the shape of the spectral tail, the breaking dissipa-
tion forms the main energy-containing part of the spectrum.

The diffusion mechanism suggested in Eqs. (24)–(27)
modifies an elevation and surface stream function in close
vicinity of the breaking point. The amplitudes of side per-
turbation are small and decrease very quickly throughout the
distance from the breaking point.

An example of the profile of the energy input due to the
breaking Db (x) is given in Fig. 10. As seen, the energy in-
put fluctuates around the breaking point. A diffusion operator

Figure 9. The breaking dissipation spectra Db (r) integrated over
angle ψ in the polar coordinates and averaged over the consequent
intervals of length for about 100 units of the nondimensional time
t .

chosen for the breaking parameterization not only decreases
total energy but also redistributes the energy between Fourier
modes in a Fourier space.

In general, for the specific conditions considered in this
paper, the breaking is an occasional process taking place in
a small part of the domain. The kurtosis of the input energy
due to the breaking Db (ξ,ϑ), i.e., the value

Ku=D4
b

(
D2

b

)−2

− 3, (36)

is of the order of 103, which corresponds to a plain function
with occasional separated peaks.

The number of breaking points in terms of percentage of
the total number of points is given in Fig. 11. As seen, the
number of breaking events decreases to t = 600 and then in-
creases till the end of the calculations. The number of break-
ing events is not directly connected with the intensity of
breaking, which is seen when comparing Fig. 11 and curve 2
in Fig. 3.

An integral term describing a nonlinear interaction N in
Eq. (29) is small (compared with the local values of Nk,l),
but the magnitude of spectrum N (r) is comparable with in-
put I (r) and dissipation terms Dt (r) and Db (r). The pre-
sentation of term N(r) in the form shown in Figs. 6–8 is not
clear. This is why the spectra 108N(r) averaged over inter-
val 1t = 100 are plotted separately in Fig. 11 for the last
eight intervals (thick curves) together with a wave spectrum
106Sh (r). In general, the shapes of spectrum N (r) agree
with the conclusions of the quasi-linear Hasselmann (1962)
theory (Hasselmann et al., 1985). At a low-wave-number
slope of spectrum the nonlinear influx of energy is positive,
while at the opposite slope it is negative. This process pro-
duces the shifting of the spectrum to a lower wave number
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Figure 10. Example of the energy input due to the breaking Db(x).

(downshifting). Opposite to the Hasselmann’s theory, these
results are obtained by solution of the full three-dimensional
equations. It would be interesting to compare our results with
the calculations of Hasselmann’s integral. Unfortunately, nei-
ther of the existing programs of such a type permits cal-
culations with the high resolution that was used in the cur-
rent model. Note that the nonlinear interactions also produce
widening of the spectrum.

As can be seen, the nonlinearity is quite an important prop-
erty of surface waves. The contribution of nonlinearity can be
estimated, for example, by comparison of the kinetic energy

of a linear component El = 0.5
(
ϕ̄2
x + ϕ̄

2
y + ϕ̄

2
z

)
and the total

kinetic energy Ek (Fig. 13). A ratio El/Ek as a function of
time remains very close to 1, which proves that the nonlinear
part of energy makes up just a small percentage of the total
energy. It does not mean that the role of the nonlinearity is
small; its influence can manifest itself over large timescales.

The time evolution of the integral spectral characteristics
is presented in Fig. 14. Curve 1 corresponds to the weighted
frequency ωw

ωw =

(∫
kSdkdl∫
Sdkdl

)1/2

, (37)

where integrals are taken over the entire Fourier domain. The
valueωw is not sensitive to the details of the spectrum; hence,
it characterizes the position of spectrum and its shifting well.
Curve 2 describes an evolution of the spectral maximum. The
step shape of the curve corresponds to the fundamental prop-
erty of downshifting. Opposite to the common views, the de-
velopment of spectrum occurs not monotonically but by the
appearance of a new maximum at a lower wave number as
well as by attenuation of the previous maximum. It is inter-
esting to note that the same phenomenon is also observed in
a spectral model (Rogers et al., 2012). Curve 3 describes the
change of total energyE = Ep+Ek. As seen, all three curves
have a tendency to slow down the evolution rate. Then the en-
ergy tends to decrease, but we are not sure about the nature
of this effect. Such behavior can be explained by a fluctuat-
ing character of mutual adjustment of input and dissipation
or simply by deterioration of the approximation because of
the downshifting process. The numerical experiment repro-
duces the case when development of wave field occurs un-
der the action of a permanent and uniform wind. This case
corresponds to a JONSWAP experiment. Despite large scat-
ter, the data allow us to construct empirical approximations
of a wave spectrum, as well as to investigate the evolution

Figure 11. Evolution of a number of the wave breaking events Nb
expressed in percentage of the number of grid points Nx ×Ny .

of a spectrum as a function of fetch F . In particular, it is
suggested that the frequency of a spectral peak changes as
F−1/3, while the full energy grows linearly with F . Neither
of the dependences can be exact since they do not take into
account the approach to a stationary regime. In addition, the
dependence of frequency on fetch is singular at F = 0.

The value of fetch in a periodic problem can be calcu-
lated by integration of a peak phase velocity cp = |k|

−1/2

over time.

F =

t∫
t0

cpdt (38)

The JONSWAP dependencies for the frequency of a spec-
tral peak ωp and the full energy E are shown in Fig. 14 by
thin curves. Dependence ωp ∼ F

1/3 is qualitatively valid. A
dependence of the total energy on fetch does not look like
a linear one, but it is worth noting that the JONSWAP de-
pendence is evidently inapplicable to a very small and large
fetch.

5 Discussion

A model based on the full three-dimensional equations of
a potential motion with a free surface was used for simu-
lation of development of wave fields. The model is written
in a surface-following nonstationary nonorthogonal coordi-
nate system. The details of a numerical scheme and the re-
sults of the model validation were described in Chalikov et
al. (2014). The main difference between the given model and
HOS model (Ducroset et al., 2016) is that our model is based
on a direct solution of the 3-D equations for the velocity po-
tential. This approach is similar to that developed at the Tech-
nical University of Denmark (TUD; see Engsig-Karup et al.,
2009). Actually, the models developed at TUD are targeted at
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Figure 12. Sequence of wave spectra Sh (r) (thick curves) and a nonlinear input term N (r) (thin curves) averaged over the eight consequent
intervals of length 1t = 100 starting from the sixth period.

Figure 13. Time evolution of the ratio El/Ek.

the solution of a variety of problems including such problems
as the modeling of wave interaction with submerged objects
and the simulation of a wave regime in basins with real shape
and topography.

In the current paper a three-dimensional model was used
for simulation of the development of a wave field under the
action of wind and dissipation. The input energy is described

by a single term, i.e., surface pressure p in Eq. (4). It is tra-
ditionally assumed that the complex pressure amplitude in
a Fourier space is linearly connected with the complex el-
evation amplitude through a complex coefficient called the
β function. Such simple formulations can be imperfect. First,
it is assumed that the wave field is represented by a super-
position of linear modes with the slowly changing ampli-
tudes and the phase velocity obeying a linear dispersive rela-
tion. This assumption is valid only for a low-frequency part
of the spectrum. In reality, the amplitudes of the medium-
and high-frequency modes undergo fluctuations created by
reversible interactions. A solid dispersion relation does not
connect their phase velocities with a wave number. In addi-
tion, it is also quite possible that a suggestion of the linearity
of the connection between the pressure and elevation ampli-
tudes is not precise, i.e., the β function can depend on the
amplitudes of modes.
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Figure 14. Time evolution of weighted frequency ωw (1) (Eq. 34),
the spectral peak frequency ωp = k

1/2
p (2) and full energy E(3)

(Eq. 28). Thin curves correspond to the empirical dependences for
the peak wave number and energy. F is a distance passed by the
spectral peak.

We are not familiar with any observational data that can
be used for the formulation of a statistically provided scheme
for calculation of the input energy to waves. The only method
that can give more or less reliable results is the mathematical
modeling of the statistical structure of a turbulent boundary
layer above a curvilinear moving surface whose characteris-
tics satisfy the kinematic conditions. The method described
above is based on several millions of values of the pres-
sure referred strictly to the surface. As a whole, the prob-
lem of a boundary layer seems even more complicated than
the wave problem itself. Some early attempts to solve this
problem were made on the basis of a finite-difference two-
dimensional model of a boundary layer written in a sim-
ple surface following the coordinate (see review Chalikov,
1986). Waves were assigned as a superposition of linear
modes with random phases, corresponding to the empirical
wave spectrum. This approach was not quite accurate since
it did not take into account the nonlinear properties of sur-
face (for example, the sharpness of real waves and the ab-
sence of a dispersive relation for the waves of medium and
high frequencies). The next step was the formulation of cou-
pled models for a boundary layer and potential waves, both
written in the conformal coordinates (Chalikov and Rainchik,
2010). The calculations showed that the pressure field con-
sists mostly of random fluctuations not directly connected
with the waves. A small part of these fluctuations are in phase
with the surface disturbances. The calculated values of β in
Eq. (13) have large dispersion. However, since the volume of
data was very large, the shape of the β function was found

with a high level of accuracy. Probably, the approximation
of β used in the current work can be considered most ad-
equate. We are planning additional investigations based on
the coupled wind–wave models. The next step in the inves-
tigations of wave boundary layer (WBL) should use a three-
dimensional LES approach. Note that even the availability
of a large volume of data on the structure of WBL does
not make the problem of parameterization of wind input in
the spectral wave models easily solvable since the pressure
is characterized by a broad continuous spectrum created by
nonlinearity.

The wave breaking is obviously even more complicated
than the input energy. Nevertheless, this problem can be sim-
plified, if the common ideas used in the numerical fluid me-
chanics are accepted. For example, in the LES modeling a
more or less artificial viscosity is introduced to prevent too
large local velocity gradients. In fact the numerical insta-
bility terminating computations precedes the wave breaking.
Hence, the scheme should prevent the breaking approach to
preserve stability of the numerical scheme. Hence, a wave
model should contain the algorithms preventing the appear-
ance of too large slopes. A criterion of breaking is introduced
not for recognizing the breaking itself, but for the choice
of places where it might happen (or, unfortunately, might
not happen). Finally, the algorithm should produce the lo-
cal smoothing of elevation (and the surface potential). The
algorithm should be highly selective so that the “breaking”
could occur within narrow intervals and not affect the entire
area. The exact criteria of the breaking events (most evident
of them is the breaking itself) cannot be used for parame-
terization of breaking since in a coordinate system (1) the
numerical instability occurs long before the breaking. In our
opinion, the most sensitive parameter indicating potential in-
stability is the curvilinearity (second derivative) of elevation.

In the current work, the breaking is parameterized by a
diffusion algorithm with a nonlinear coefficient of diffusion
providing high selectivity of the smoothing. We admit that
such an approach can be realized in many different forms.
The same situation is observed in a problem of the turbu-
lence modeling for parameterization of subgrid scales. Note
that the breaking dissipation in phase-resolving models is in-
cluded in a more realistic manner than in spectral models.
For example, the breaking is simulated in a physical space,
which allows us to reduce the height and energy of the non-
linear waves composed of several modes. In spectral models
the dissipation is distributed more or less arbitrarily over the
entire spectrum. The spectral models sometimes include ad-
ditional dissipation of short waves due to their modulation by
long waves (Young and Babanin, 2006; Babanin et al., 2010).
In the phase-resolving models this process has been included
explicitly.

We can finally conclude that the physics included in wave
models still rests on shaky ground. Nevertheless, the result
of the calculations looks quite realistic, which convinces us
that the approach deserves further development.

www.ocean-sci.net/14/453/2018/ Ocean Sci., 14, 453–470, 2018



468 D. Chalikov: Numerical modeling of surface wave development under the action of wind

The numerical models of waves similar to that considered
in this paper have a lot of important applications. First, they
are a perfect tool for the development of physical parame-
terization schemes in spectral wave models. Second, a di-
rect model can be used in future for the numerical simula-
tion of wave processes in the basins of small and medium
size. These investigations can be based on the HOS model
(Ducrozet et al., 2016) or the model used in the current pa-
per. However, the most universal approach seems to be de-
veloped at the Technical University of Denmark (see Engsig-
Karup, 2009). Any model used for the long-term simulation
of wave field evolution should include the algorithms de-
scribing transformation of energy similar to those considered
in the current paper.
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