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Abstract. A relocatable ocean prediction system (ROPS)
was employed to an observational data set which was col-
lected in June 2014 in the waters to the west of Sardinia
(western Mediterranean) in the framework of the REP14-
MED experiment. The observational data, comprising more
than 6000 temperature and salinity profiles from a fleet of
underwater gliders and shipborne probes, were assimilated
in the Regional Ocean Modeling System (ROMS), which is
the heart of ROPS, and verified against independent observa-
tions from ScanFish tows by means of the forecast skill score
as defined by Murphy (1993). A simplified objective analy-
sis (OA) method was utilised for assimilation, taking account
of only those profiles which were located within a predeter-
mined time window W . As a result of a sensitivity study,
the highest skill score was obtained for a correlation length
scale C = 12.5 km,W = 24 h, and r = 1, where r is the ratio
between the error of the observations and the background er-
ror, both for temperature and salinity. Additional ROPS runs
showed that (i) the skill score of assimilation runs was mostly
higher than the score of a control run without assimilation, (i)
the skill score increased with increasing forecast range, and
(iii) the skill score for temperature was higher than the score
for salinity in the majority of cases. Further on, it is demon-
strated that the vast number of observations can be managed
by the applied OA method without data reduction, enabling
timely operational forecasts even on a commercially avail-
able personal computer or a laptop.

1 Introduction

A relocatable ocean prediction system (ROPS) is presented
which enables rapid nowcasts and forecasts of ocean envi-
ronmental parameters in limited regions. In this study, ROPS
was implemented for the waters west of Sardinia (western
Mediterranean Sea) within the framework of the REP14-
MED experiment (Onken et al., 2014, 2018).

The major components of ocean operational systems are
observations and ocean circulation models coupled with data
assimilation systems, to combine the observations with dy-
namics and issue nowcasts and forecasts which are deliv-
ered to the customers. While systems on the global scale
are utilised to provide estimates on large-scale circulation
patterns and associated features, regional operational sys-
tems are focused more on societally relevant oceanographic
information for, e.g., search and rescue operations, pollu-
tant dispersal, fishery management (Edwards et al., 2015),
and military applications. Meanwhile, a number of real-time
ocean operational systems are available, spanning the scales
of ocean horizontal circulation patterns from global to coastal
(Dombrowsky, 2011; Zhu, 2011).

ROPS was developed for military use in the context of
rapid environmental assessment but it can easily be adapted
to non-military demands. For maritime forces, there is a spe-
cial need for relocatable operational systems which can be
moved in any (potential) conflict area in the world ocean on
short notice. As in the majority of cases conflict areas are re-
gionally limited, the domains of the operational systems must
be tailored to the corresponding regions which means that
their horizontal extent should be of the order of 100 km. Con-
sequently, the domains share always a wet (open) boundary
with the open ocean. Relocatable operational systems based
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on the Harvard Ocean Prediction System (HOPS; Robinson,
1999) may be considered as the pioneering work in this sub-
ject. They became available since the late 1990s, and have
been applied in various regional studies up to the present
(De Dominics, 2014). Another line of research based on the
Naval Coastal Ocean Model (NCOM; Martin, 2000) can be
traced back to the first decade of the present century (Row-
ley and Mask, 2014), and recently, Trotta et al. (2016) pre-
sented and compared the performance of a relocatable pre-
diction system, using structured and unstructured grids. The
common properties and minimum requirements of any such
system are as follows:

– a tool for setup of the model domain, including the spec-
ification of the numerical grid, the bathymetry, and the
coastline;

– interfaces for definition of initial, lateral, and surface
boundary conditions;

– a numerical model;

– an interface for the provision of observational data;

– a data assimilation module;

– software for post-processing of the model output.

An additional demand for relocatable operational systems is
to provide accurate nowcasts and forecasts of the ocean en-
vironment in a timely manner, i.e. in near-real time. How-
ever, the requirements of accuracy and timeliness are incon-
sistent with one another: accuracy requires the application of
up-to-date assimilation schemes which presently are ensem-
ble or variational methods. As the implementation of these
schemes is rather complex and they are computationally ex-
pensive (Zaron, 2011), timely delivery can only be realised
on powerful computers which are frequently not available.
As a compromise, sequential data assimilation based on ob-
jective analysis (OA; Bretherton et al., 1976; Thomson and
Emery, 2014) is used in ROPS. OA is not as accurate as the
ensemble Kalman filter (Evensen, 2006) or 4D-Var (Moore
et al., 2011a, b), but the computational costs are much less
and the implementation is straightforward.

Meanwhile, ROPS has been implemented for various re-
gions in the world ocean, and has been running automatically
without any major interruptions since early 2015. The con-
cept (Fig. 1) for all realisations is identical: every day, ROPS
is initialised from a restart file of the previous day’s run, and
it provides a 3-day forecast relative to the present. For each
run, data sets for the definition of initial and boundary condi-
tions plus observational data for assimilation are downloaded
from the internet, in which the initial conditions are only re-
quired for re-initialisation of ROPS in the case that it died the
day before.

For this article, ROPS is slightly modified: it is run in hind-
cast mode for a period of time in June 2014. All data for

model initialisation, boundary conditions, and a huge set of
observational data for assimilation are available on the local
computer system and a download from the internet is not re-
quired. The objectives are to demonstrate the following:

– Good forecasts can be obtained from a prediction sys-
tem using OA for assimilation (for the definition of
“goodness”, see Murphy, 1993).

– A vast number of observational data can be managed by
OA without data reduction by averaging, sub-sampling,
or creating “super observations” (Lorenc, 1981; Moore
et al., 2011b; Oke et al., 2015).

– ROPS is able to provide timely operational forecasts
even on a commercially available personal computer or
a laptop.

The area of the ROPS model domain (Fig. 2) is charac-
terised by a 20–50 km wide continental shelf. The shelf ends
at water depths between 150 and 200 m, followed by the con-
tinental slope which features several canyons. The deep-sea
area belongs to the northern Algerian Basin (also referred to
as the Sardo-Balearic Basin) and exhibits water depths of up
to 2800 m. According to Millot (1999), the mean surface cir-
culation is mainly related to the inflow of “new” Modified
Atlantic Water (MAW) from the Strait of Gibraltar by means
of anticyclonic eddies originating from the Algerian Current.
Another branch of “old” MAW, which mixed with the un-
derlying water masses on its large-scale cyclonic circulation
through the Tyrrhenian, Ligurian, and Balearic seas, comes
probably from the west via the Balearic Current (García et
al., 1996). Just below the MAW, Winter Intermediate Water
(WIW) follows the path of the MAW along its whole cy-
clonic path. Levantine Intermediate Water (LIW) originates
from the eastern Mediterranean and the direct path to the
ROPS domain is via the Sardinia Channel and then north-
ward around the southern tip of Sardinia. Below the LIW,
Western Mediterranean Deep Water (WMDW) and Bottom
Water (BW) are found.

From analyses of the REP14-MED observational data set,
it turned out that the distribution of the water masses and the
circulation patterns resembled the classical picture described
above, but there were also significant differences. Accord-
ing to Knoll et al. (2017), the temperature and salinity of
MAW, LIW, and BW had increased compared to the obser-
vations during the last decade. In addition, an anticyclonic
WIW eddy with unusual low temperatures and salinities was
identified which may confirm the existence of a direct route
of WIW from its formation region to the observational site.
In contrast to previous observations, LIW occupied the whole
trial area and the predominant direction of the geostrophic
flow was to the north with the largest transports in the deep
water off the 1000 m depth contour; no LIW vein tied closely
to the Sardinian coast was found south of 40◦ N. The MAW
pattern was different: namely, the major northward transport
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Figure 1. The ROPS concept: web resources are depicted by clouds, blue parallelograms represent data sets on the local host, and processes
are indicated by green rectangles. The processing of ROMS is accomplished within the grey box. T and S denote temperature and salinity,
respectively.

occurred also to the west of the 1000 m contour in a broad
30–50 km wide band but in addition, there was a narrow vein
of near-coastal northward currents, the width of which rarely
exceeded 10 km. Southward transport with a zonal extent
of 20–40 km prevailed between the two northward-directed
regimes. Both the meridional flow bands of MAW and LIW
were connected by alternating 10–30 km wide zonal currents.
The observed geostrophic flow pattern suggests a mean trans-
port to the north with superimposed mesoscale perturbations
of 10–40 km in diameter. This defines another demand to
ROPS to reproduce the horizontal variability of these scales,
i.e. to resolve the Rossby radius. Concerning the temporal
scales, repeated ADCP (acoustic Doppler current profiler)
sections indicated that noticeable changes of the flow field
occurred within 4 days (see Fig. 14 in Knoll et al., 2017).
However, this timescale was stipulated by the minimum in-
terval between the repeated ADCP surveys; in reality, shorter
scales are likely. Hence, an additional objective is to resolve
at least day-to-day changes.

The modified version of ROPS is described in Sect. 2. Sec-
tion 3 provides an overview of the observational data used in
the framework of this article. The results of various ROPS

runs are presented in Sect. 4 and discussed in Sect. 5. The
conclusions are found in Sect. 6. All time specifications refer
to the year 2014, and the time standard UTC (Coordinated
Universal Time).

2 ROPS

2.1 ROMS

The employed numerical ocean circulation model is ROMS,
the Regional Ocean Modeling System. ROMS is a hydro-
static, free-surface, primitive equations ocean model, the al-
gorithms of which are described in detail in Shchepetkin and
McWilliams (2003, 2005). In the vertical, the primitive equa-
tions are discretised over variable topography using stretched
terrain-following coordinates, so-called s coordinates (Song
and Haidvogel, 1994). In the framework of this article, spher-
ical coordinates on a staggered Arakawa C grid are applied
in the horizontal. For the horizontal advection of momen-
tum, a third-order upstream bias advection scheme is used.
A fourth-order, centred differences scheme is applied for the
horizontal and vertical advection of tracers. The horizontal
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Figure 2. The ROPS domain; the colour code indicates the water
depth (m) after smoothing.

mixing of momentum and tracers is accomplished by means
of a Laplacian formulation, and the vertical mixing is param-
eterised by the GLS (generic length-scale) scheme (Umlauf
and Burchard, 2003) using the k–ω setup based on the turbu-
lent closure scheme of Wilcox (1988). The air–sea interac-
tion boundary layer in ROMS is formulated by means of the
bulk parameterisation of Fairall et al. (1996). The processing
of ROMS is accomplished within the grey box depicted in
Fig. 1, including nudging, data assimilation, and the proper
integration.

2.2 The domain

While the processing of ROMS is recurring, the setup of the
ROPS domain is a one-time task (Fig. 1). The domain is situ-
ated to the west of Sardinia (Fig. 2). The west and east bound-
aries are at 6◦ 30.5′ and 8◦ 35.5′ E, while in the south and
north the domain is limited by the 38◦ 36.4′ and 40◦ 59.6′ N
latitude circles, respectively. In the east–west direction, the
domain is separated into 120 grid cells, and in the south–
north direction into 178 cells, which yields an average grid
spacing of 1x ≈1y ≈ 1500 m in the zonal and meridional
direction, respectively.

Bathymetry data from the General Bathymetric Chart of
the Oceans (GEBCO) with a spatial resolution of 1 arc min
were provided by the British Oceanographic Data Centre
(BODC) and mapped on the horizontal grid. Coastline data

from NOAA (National Oceanic and Atmospheric Adminis-
tration) were overlaid on the bathymetry and required some
manual editing of the land mask. In order to avoid crowding
of the s coordinates in shallow water regions, the bathymetry
was clipped at 20 m, which is the minimum allowed water
depth. For the smoothing of the bathymetry, a second-order
Shapiro filter was applied. After smoothing, the so-called rx0
parameter resulted as 0.31, which is about 50 % higher than
the maximum value of 0.2 recommended by Haidvogel et al.
(2000), but rx0 is still less than 0.4 as suggested in the ROMS
forum (https://www.myroms.org/forum).

In the vertical direction, the domain is separated into
K = 70 s layers, with position controlled by three parame-
ters (θs,θb,hc) and two functions, Vtr,Vstr. Here, Vtr is the
transformation equation, Vstr the vertical stretching function,
θs and θb are the surface and bottom control parameters, and
hc is the critical depth controlling the stretching (for more de-
tails, see https://www.myroms.org/wiki/). For all ROMS runs
shown below, Vtr = 2, Vstr = 1, θs = 5, θb = 0.4, hc = 50 m
were selected, enabling high vertical resolution near the sur-
face. This combination of functions and parameters yielded
a grid-dependent parameter rx1 = 22.7, which is a measure
for the pressure gradient error over steep topography. In fact,
according to the ROMS discussion forum, rx1 > 14 is con-
sidered as “insane” because the Haney (1991) condition is
violated. However, various contributions in the forum report
that even with rx1� 14 no problems arose with the corre-
sponding ROMS runs.

2.3 Initialisation and nudging

ROMS was initialised from nowcasts of the MERCATOR
global ocean circulation model (Drévillon et al., 2008) via
CMEMS, the Copernicus Marine Environment Monitoring
Service. The downscaling from MERCATOR (the parent)
to ROMS was accomplished first by linear horizontal in-
terpolation of the prognostic fields on the ROMS grid. As
the maximum horizontal resolution of the parent is 9.25 km
(1/12◦), the nesting ratio (also referred to as grid refine-
ment factor) is around 6.2. In comparison with other stud-
ies applying one-way nested model setups, this ratio is rather
large. For instance, Capet et al. (2008) and Gula et al. (2016)
used a ratio ∼ 3, which is in line with the recommendation
of McWilliams (2016): “Experience shows ... that the grid
refinement factor should not be much larger than 3”. The
choice of the nesting ratio in the present article was driven by
two criteria: on the one hand, the grid spacing should not be
much larger than 1500 m to properly resolve the Rossby ra-
dius (see below); on the other hand, there were only two par-
ent models available at CMEMS – MFS, the Mediterranean
Forecasting System (Dombrowsky et al., 2009; Tonani et al.,
2014) and MERCATOR. The higher-resolution model was
MFS (∼ 7 km), but it was shown by Onken (2017) that ini-
tialising ROMS from MERCATOR instead of MFS provided
a better agreement between the modelled fields and the ob-
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servations. Moreover, precursor tests of ROMS using a grid
size of 3000 km (nesting ratio ∼ 3.1) revealed no significant
differences compared to the actual version, except that small
mesoscale features were not reproduced. This is in agreement
with Pham et al. (2016), who demonstrated that the magni-
tudes of errors were comparable, using nesting rations of 3
or 6, respectively.

After downscaling, all fields were interpolated vertically
from the horizontal depth levels to the s coordinates. A spe-
cial issue was the alignment of the land masks: if any wet
grid cell in ROMS was covered by a dry grid cell of the par-
ent, a smooth transition of all variables was created by taking
the average of the surrounding parent cells. However, as this
may lead to a violation of continuity by non-zero horizontal
velocities normal to the land mask, all horizontal velocities
next to the ROMS land mask were set to zero.

Later, during the course of the ROMS integration, there is
the option to nudge the 3-D temperature and salinity fields
once a day towards the parent. This guarantees that ROMS
will not develop a solution in the interior of the domain which
deviates significantly from the solution provided by the par-
ent. This option is only useful if there are no data for assimi-
lation, but in all model runs described in this article, nudging
is turned off because a rich data set from observations was
available (see below).

2.4 Lateral boundary conditions

The ROMS code includes various methods for the treatment
of open boundaries. After extensive sensitivity studies, it was
found that the following algorithms served best for the posed
problem: for the sea surface elevation, the Chapman condi-
tion was selected (Chapman, 1985), and for all other quanti-
ties (i.e. barotropic and baroclinic momentum, turbulent ki-
netic energy, eddy diffusivity), the mixed radiation-nudging
conditions after Marchesiello et al. (2001) were applied.

The lateral time-dependent boundary conditions were pro-
vided as well by MERCATOR by means of one-way nesting.
However, the information was not instantaneously superim-
posed to the ROMS solution but an additional nudging was
applied to all prognostic variables which allowed these fields
to adjust slowly to the parent values at the boundaries within
an e-folding timescale of 2 days.

2.5 Surface boundary conditions

At the sea surface, boundary conditions for the air–sea ex-
change of fresh water, momentum, and heat were eval-
uated from the output of the COSMO-ME weather pre-
diction model which was made available by the Italian
Weather Service CNMCA (Centro Nazionale di Meteorolo-
gia e Climatologia Aeronautica). COSMO-ME covers the en-
tire Mediterranean Sea with a horizontal resolution of 7 km
and provides 72 h forecasts of the wind field at 10 m height,
air temperature and relative humidity at 2 m, air pressure at

sea level, cloudiness, short wave radiation, and precipitation.
The temporal resolution is 1 h.

2.6 Data assimilation

In the ROPS runs presented below, temperature and salinity
data from shipborne CTD (conductivity–temperature–depth)
probes and gliders were assimilated. During the integration
of ROMS, OA is controlled by six parameters:

– W : this is the width of the time window (in hours) that
determines which data are selected for assimilation. W
is centred around the instant tassim when the assimila-
tion takes place; e.g. if tassim =00:00 UTC (midnight)
and W = 24 h, data between noon of the previous day
and noon of the successive day are selected.

– C: the correlation length scale (in km). C is a two-
element vector enabling a non-isotropic Gaussian cor-
relation for the meridional and zonal directions, respec-
tively.

– δTobs, δSobs: the observational errors of temperature and
salinity.

– δTb, δSb: the background errors of temperature and
salinity.

Provided that all temperature and salinity data are stored as
vertical profiles in daily directories, the data assimilation en-
gine is invoked each day at midnight and proceeds as follows:

– The daily directories are searched for CTD profiles
which fit in the desired time window W .

– The vertical levels are defined where the OA is per-
formed; these levels are given by the depth of the s co-
ordinates at the maximum depth of the domain (Fig. 3).

– The vertical profiles are interpolated vertically on the
OA vertical levels.

– As the correlation length scale C is given in metric
units, the ROMS spherical horizontal coordinates and
the coordinates of the observations are converted to the
metric Gauss–Krüger system.

– For each OA vertical level, the model prediction at the
positions of the observations serves as background field
for any tracer variable9 (here: temperature T and salin-
ity S), and is subtracted from the observed data.

– OA maps the anomalies at each level on the ROMS hor-
izontal grid and computes the normalised mapping error
ε9 at the same time.

– The background field is added to the analysed gridded
fields.

www.ocean-sci.net/13/925/2017/ Ocean Sci., 13, 925–945, 2017
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Figure 3. Depth of the vertical levels where the objective analysis
(OA) is executed.

– The resulting tracer fields are melded with the actual
ROMS fields, using ε9 for weighting. As 0≤ ε9 ≤ 1,
the melding for any tracer is accomplished by the algo-
rithm

9corr = ε99ROMS+ (1− ε9)9obs, (1)

where 9ROMS is the original tracer field predicted by
ROMS, 9obs are the gridded observations, and 9corr
is the final corrected field resulting from the melding.
Hence, if ε9 is big (e.g. ε9 = 1 in the extreme case), no
correction is applied and the ROMS solution remains
unchanged. At the other extreme (ε9 = 0 if the obser-
vations are 100 % trustworthy), the ROMS solution is
rejected and substituted by the observations.

2.7 Integration and output

All ROPS runs presented below were initialised on 1 June at
00:00 UTC and integrated forward for 24 days until 25 June
00:00 UTC. From a precursor run, it was verified that the
spin-up period was about 7 days. Hence, as the majority of
observations are assimilated after 8 June, a statistical equilib-
rium is almost achieved at that time. To satisfy the horizontal
and the vertical CFL (Courant–Friedrichs–Lewy) criterion, a
baroclinic time step of 108 s (800 steps per day) was cho-
sen, and the number of barotropic time steps between each
baroclinic time step was 40. Harmonic mixing along isopyc-
nals with an eddy diffusivity coefficient of 5 m2 s−1 was used
for the horizontal diffusion of T and S, and a viscosity co-

efficient of 10 m2 s−1 was selected for the diffusion of mo-
mentum. In the vertical direction, a diffusivity coefficient of
2× 10−5 m2 s−1 was used and the eddy viscosity coefficient
was 10−5 m2 s−1. All diffusion coefficients were optimised in
Onken (2017). Further on, a quadratic law using a coefficient
of 0.003 was applied for the bottom friction, and the pressure
gradient term was computed using the standard density Jaco-
bian algorithm of Shchepetkin and Williams (2001, unpub-
lished; see http://www.atmos.ucla.edu/~alex/ROMS/pgf1A.
ps). The 3-D volume of all prognostic fields was written to
an output file in 6 h intervals.

3 Observational data

Observational data were selected from the REP14-MED ex-
periment which took place over the period 6–25 June; for
a complete overview of all observations, see Onken et al.
(2018). Some details are as follows:

– 312 CTD casts taken by lowered CTD and underway
CTD probes, of which there were 113 on Leg 1 (6–11
June), 173 on Leg 2 (12–20 June), and 26 at the start
of Leg 3 on 23 June (for the casts on Legs 1 and 2 see
Fig. 4). The positions of the casts taken during Leg 1
were arranged nominally on a 10 km× 10 km grid ex-
cept for two additional casts at 40◦ 15′ N (Fig. 4a). Dur-
ing Leg 2, the sampling pattern of Leg 1 was partly
repeated, but extra casts were taken at the boundaries
of the observational grid. Further CTD profiles close to
the Sardinian coast between about 39◦ 15′ and 39◦ 30′ N
came from an acoustic experiment (Fig. 4b). The sched-
uled vertical extent of all casts was 1000 dbar or bot-
tom depth (whatever was shallower) but 10 casts espe-
cially at the western boundary of the observational do-
main reached greater depth to characterise the deep wa-
ter masses.

– 5731 CTD profiles collected by 11 gliders (Fig. 5). All
gliders were deployed on 8 and 9 June, and operated
until their recovery on 23 June, except for the northern-
most one, which died on 10 June. The nominal glider
tracks were arranged halfway between the zonal CTD
sections (Fig. 4), thus doubling the meridional resolu-
tion of the observations. The scheduled depth of the
gliders was limited by their pressure rating: six glid-
ers were rated at 1000 dbar, one at 650 dbar, and four
at 200 dbar.

– CTD data from ScanFish (EIVA, Skanderborg, Den-
mark) tows between 21 June 12:03 UTC and 23 June
23:38 UTC (Fig. 6). The scheduled maximum depth of
the ScanFish was around 190 m.

The temperature and salinity data from the lowered probes
and from the gliders were assimilated in ROMS while the
ScanFish data served for the verification of the forecasts. In
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Figure 4. Positions of lowered CTD (circles) and underway CTD (triangles) casts collected during (a) Leg 1 (6–11 June) and (b) Leg 2
(12–20 June) of the REP14-MED experiment. The first casts were taken on 7 June. The colour code for the water depth is the same as in
Fig. 2.

Fig. 7 are shown the number of CTD profiles which were
available for assimilation.

4 Results

In the following are presented the results of four series of
ROPS experiments. Series A explores the performance of the
ROPS forecasts in terms of dependence on the correlation
length scale, Series B explores the sensitivity to the back-
ground errors, and Series C the impact of the size of the as-
similation window. Finally, the dependence on the forecast
range is assessed in Series D.

4.1 The verification method

The verification of the forecast accuracy is conducted by
means of root-mean-square error (RMSE) analyses which
acts as a metric for the difference between the observations
and the forecasts of any tracer variable 9. If there are N ob-
servations and N corresponding forecasts, then the squared
error of the ith observation is

(19)2 =
[
9OBS(xi,yi,zi, ti)−9FC(xi,yi,zi, ti)

]2
, (2)

where x,y,z are the horizontal (eastward and northward) and
vertical coordinates, respectively, t is time, and the subscripts

OBS and FC refer to the observations and the forecasts, re-
spectively. The RMSE, 19, of all observations is then

19 =

√√√√ 1
N

N∑
i=1

(9OBSi −9FCi)
2. (3)

The forecast quality is determined by the skill score 0, which
is evaluated by means of the improvement of the forecast
against a reference field (Murphy, 1988):

09 = 1−
19(FC,OBS)
19(REF,OBS),

(4)

where 19(FC,OBS) is the RMSE between the forecast
and the observations at the forecast time t = tFC, and
19(REF,OBS) is the RMSE between a reference field and
the observations. Here, the values of T , S, and the poten-
tial density σ at the positions of the observations and at the
instant t = tINI when the forecast was initialised, are serv-
ing as reference (persistence assumption). Hence, a perfect
forecast would yield 09 = 1 because the forecast agrees
exactly with the observations and 19(FC,OBS)= 0. A
successful or good forecast would mean 19(FC,OBS) <
19(REF,OBS) and 0≤ 09 ≤ 1 because the forecast is
closer to the observations than the reference (“forecast beats

www.ocean-sci.net/13/925/2017/ Ocean Sci., 13, 925–945, 2017
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Figure 5. Surfacing positions of gliders, collected between 8 and
23 June. Each glider is marked by a different colour. The glider
tracks are numbered G01–G10. G08 was occupied by two gliders.
The colour code for the bathymetry is the same as in Fig. 2.

persistence”). By contrast, 09 ≤ 0 would be a criterion for
an unsuccessful or bad forecast because 19(FC,OBS) >
19(REF,OBS). In the following, 09 is applied both to sin-
gle s layers and to the mean:

09 =
1

s2− s1+ 1

s2∑
s1

[
1−

19wgt(FC,OBS)
19wgt(REF,OBS)

]
, (5)

which is the average over all s layers from s layer no. s1
to s layer no. s2. The subscript wgt indicates weighting by
the layer thickness in order to take account of the different
masses of each layer.

In all ROPS runs presented below, the data from the Scan-
Fish survey were utilised for verification. As the survey was
completed within about 60 h, it was considered to be syn-
optic and centred at t = tVER =22 June 18:00. 19 and 09
were evaluated at the same instant; hence tVER = tFC and the
time dependence in Eq. (2) was removed. The synopticity
assumption was somewhat risky because the expected scales
of the temporal variability were less than 4 days (see Intro-
duction). However, assuming non-synoptic conditions would
have required us to interpolate the ROMS tracer output in 3-
D space and time for each observation, or vice versa, to inter-
polate each observation in the ROMS grid. Either of these ap-
proaches would have been too expensive. Moreover, neither
of them was necessary because the results shown below are

Figure 6. Tracks of the ScanFish tows (21–23 June) of the REP14-
MED experiment.

consistent and conclusive. In order to make the ScanFish ob-
servations suitable for a comparison with the ROMS model
output, the trajectories were separated into 629 upward and
downward profiles, and a mean time and a mean position
were assigned to each profile. All temperature and salinity
profiles were mapped with OA to constant depth levels on the
ROMS horizontal grid, using a correlation scale C = 1.8 km.
Thus, as the along-track distance between the individual pro-
files was 500–700 m, three to four observations were con-
tributing significantly to the mapping at each horizontal grid
point. Finally, the analysed fields were interpolated from the
horizontal OA levels on the ROMS vertical grid.

The observational errors for temperature and salinity,
δTobs and δSobs respectively, were determined from the stan-
dard deviation of the respective fields at each OA level. A
special problem arose for the determination of the back-
ground errors: usually, one would compute these errors from
the standard deviation of the background field, but in this
special case the background was the mean of the observa-
tions (a single number), and the standard deviation would
be zero. Therefore, they were defined as δTb = 5 · δTobs and
δSb = 5 · δSobs which pushed the analysed fields as close as
possible to the observations. Figure 8 illustrates the result of
this procedure using the example of the ScanFish Sect. A09
(see Fig. 6). The analysed fields in Fig. 8d, e, f resemble al-
most perfectly the observations shown in Fig. 8a, b, c. Later,
for the evaluation of the forecast accuracy and the skill score,
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Figure 7. Number of profiles available for assimilation during the period 7–23 June. Profiles from shipborne CTD probes, underway CTD,
and gliders are included. The dates on the abscissae indicate the start of each day at 00:00 UTC.

Figure 8. Observed (a) temperature (◦C), (b) salinity, and (c) potential density (kg m−3) along the southernmost zonal ScanFish (SF)
Sect. A09 (see Fig. 6). The positions of the ScanFish profiles are indicated by the magenta tick marks along the lower x axis. Gridded
(d) temperature, (e) salinity, and (f) potential density using objective analysis (OA). The tick marks indicate the OA grid. Only T and S
underwent OA while potential density was computed from T , S, and depth.

19 in Eqs. (3) and (4) was multiplied by (1−ε9). As ε9 = 0
at the exact position of the observation and 0< ε9 ≤ 1 else-
where, 19 became significantly different from zero only in
the immediate vicinity of the observation.

4.2 Series A: the impact of the correlation length scale

The natural correlation scale is the internal Rossby radius
which in the western Mediterranean Sea lies between 3 and
13 km for the second and the first mode, respectively, de-
pending on the season (Grilli and Pinardi, 1998; Robinson

et al., 2001). For OA, however, one must not uncritically se-
lect any number within this range for C because this could
have unpleasant side effects: if C were to be significantly
less than the mean horizontal distance between the obser-
vations, then OA would create unrealistic eddy-like features
centred at the sites of the observations. On the other extreme,
realistic mesoscale and sub-mesoscale structures would be
blurred if C were significantly greater than the Rossby ra-
dius. While the horizontal distribution of the shipborne CTD
casts was isotropic (mean distance 10 km), the glider CTD
data were strongly anisotropic: the mean meridional distance
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between the glider tracks was also about 10 km, but the zonal
resolution was O(100 m) in shallow water and O(1000 m)
in deeper water. In this series, eight ROPS runs with differ-
ent assumptions for the correlation length scale C were con-
ducted. C was selected isotropic because a preliminary pro-
cessing of data from shipborne ADCPs had revealed that the
major part of the model domain was characterised by an eddy
field with alternating currents; only along the west coast of
Sardinia were predominantly meridional currents prevailing
in a ≈10 km wide stripe. The selected values for C were 2.5,
5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20 km, respectively.

In Series A, all CTD and glider data which were col-
lected until tINI = 18 June 00:00 UTC were assimilated. The
size of the assimilation window was W = 24 h. The obser-
vational errors were set to fixed values δTobs = 1.3 ◦C and
δSobs = 0.2 in all OA layers; these were the maximum val-
ues of the respective standard deviations found in the upper
thermocline. In precursor tests, δ9obs was set to the standard
deviation of 9 at the respective OA level (as was done for
the OA of the ScanFish observations; see above), but here
this strategy failed because in the deeper layers the standard
deviation was approaching zero due to the horizontal homo-
geneity of the water body, and the OA package generated
unrealistic solutions which caused ROMS to die shortly af-
ter the instant when data were assimilated. For similar rea-
sons, δ9b was not derived from the standard deviation of
the background field because the isotherms and isohalines
in the deep ocean were almost horizontal which originated
from the MERCATOR solution. Therefore, δ9b = δ9obs or
r9 = δ9b/δ9obs = 1 was selected as a first guess. This was
a rather conservative approach but it enabled the OA to find
the optimum solution about halfway between the observa-
tions and the background fields. After the last assimilation
on 18 June, ROMS was integrated forward in a free mode
– i.e. it was no longer constrained by observations. Finally,
the model results were verified against the ScanFish obser-
vations at tFC = 22 June 18:00 UTC. For an overview of the
parameter settings and results, see Table 1.

Figure 9 shows the vertical distributions of 1T , 1S, and
1σ for ROPS runs A1–A3 and A5–A8 (Run A4 is missing;
it died on 14 June shortly after midnight, apparently because
ROMS could not cope with the density field created by the
assimilation). These quantities are evaluated in the ROMS
vertical layers and plotted vs. the layer number, starting with
layer 1 at the seabed. The graphs are empty for layers 1–9
and 69–70 next to the sea surface because the corresponding
depth ranges were never reached by the ScanFish. In order to
have an objective measure which correlation scale provided
the best forecast, 19 was averaged over all layers. The re-
sulting layer thickness-weighted mean values 1T , 1S, and
1σ are written in the rightmost column of the legend of the
graph and in Table 1 as well. Generally, 19 is decreasing
from the surface to greater depth. However, rather low val-
ues are found in layer 68, which covers the vertical range
between about 7 m at the maximum depth of the domain

(see Fig. 3) and 0.6 m in the shallowest regions. This layer
is characteristic for the mixed layer, the properties of which
are controlled by the larger-scale uniform weather patterns.
The maxima below in layer 49 are caused by the higher spa-
tial variability in the thermocline as this layer ranges from
about 10 to 220 m depth. 1T lies between 2.74× 10−3 ◦C
in A7 and 3.11× 10−3 ◦C in A2 but the variance among all
runs is rather small. For 1S, the minimum of 6.20× 10−4 is
found in A3 and the maximum of 8.80× 10−4 in A1. 1σ is
minimum in A8 (5.59× 10−4 kg m−3) and the maximum of
8.68×10−4 kg m−3 is attained in A1. Hence, for1σ , there is
a clear tendency that an increase in the OA correlation length
scale appears to improve the accuracy of the forecast. Similar
tendencies may be seen for 1T and 1S.

The vertical distributions of the skill scores 09 and the
corresponding layer weighted means are displayed in Fig. 10.
Positive scores indicating a successful forecast of tempera-
ture were obtained in all runs (except for A4, which died),
and the maximum of 0T = 27.0 % was attained in A5. For
salinity, only the A3 and A5 forecasts beat persistence but
with a rather low score of only 4.3 and 0.2 %, respectively.
0σ was positive for runs A1 and A3–A8, and the highest
score of 26.4 % was achieved in A5 for C = 12.5 km. This is
remarkably in line with Grilli and Pinardi (1998), who found
the first-mode Rossby radius between about 11 and 13 km in
the waters to the west of Sardinia.

Compared to the RMSE analysis above, the mean skill
scores do not exhibit any correlation-scale-dependent trend.
Instead, there are maxima of 0T in A5, 0S in A3, and 0σ
in A5, and the scores decrease both for smaller and larger
correlation scales. This potentially contradictory behaviour
needs an explanation: 19 is a measure for the accuracy of
the forecast which is evaluated from the forecast and the ob-
servations on 22 June 18:00 UTC at the locations of the ob-
servations; see Eq. (3). The decrease in 19 with increas-
ing C means that the forecasts using larger correlation scales
for the generation of the initial conditions at t = tINI are
closer to the observations than those forecasts using smaller
scales, irrespective of the initial conditions themselves. Pre-
sumably, the larger correlation scales already create initial
conditions which are rather close to the observations. This is
illustrated by Fig. 11, which shows 1σ(REF,OBS) for A1
and A8, where the potential density fields at t = tINI served
as reference. Clearly, everywhere above layer 30, 1σ in A8
(C = 20 km) is much closer to the observations than 1σ in
A1 using C = 2.5 km. By contrast, 09 is a measure of the
improvement of the forecast with respect to the reference,
and it simply states that the highest forecast quality is ob-
tained if the horizontal wavenumber spectrum of the initial
conditions is peaked at the Rossby radius. Therefore, the A5
forecast using C = 12.5 km was considered as the best of Se-
ries A because of the high skill score for potential density and
it served as control run in the following Series B. In addition,
in all ROPS runs discussed below,19 was no longer utilised
as a criterion for the forecast skill score.
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Table 1. Parameter settings and results of ROPS runs in Series A, B, and C. Bold numbers indicate those parameters which are varied within
the respective series. The best run of each series is marked by an asterisk and serves as the control run for the successive series. Runs which
died are marked by the ∗ symbol.

Run C r9 W 1T 1S 1σ 0T 0S 0σ

(km) (h) (10−3 ◦C) (10−4) (10−4) (%) (%) (%)

Series A

A1 2.5 1.0 24 3.04 8.80 8.68 2.4 −10.0 2.5
A2 5.0 1.0 24 3.11 7.45 7.94 3.0 −18.9 −1.0
A3 7.5 1.0 24 2.99 6.20 8.08 15.6 4.3 20.5
A4∗ 10.0 1.0 24 – – – – – –
A5∗ 12.5 1.0 24 2.96 6.43 6.98 27.0 0.2 26.4
A6 15.0 1.0 24 3.04 7.06 6.18 12.8 −12.9 22.1
A7 17.5 1.0 24 2.74 6.63 6.01 11.8 −9.1 14.9
A8 20.0 1.0 24 2.83 7.21 5.59 4.5 −17.7 22.9

Series B

B1 12.5 0.1 24 – – – 5.8 −7.5 5.4
B2 12.5 0.5 24 – – – 28.2 −1.1 11.9
B3∗ 12.5 1.0 24 – – – 27.0 0.2 26.4
B4 12.5 2.0 24 – – – 18.6 −5.3 14.0
B5 12.5 3.0 24 – – – 22.2 −2.0 13.0
B6 12.5 4.0 24 – – – 14.1 −25.3 −11.2
B7∗ 12.5 5.0 24 – – – – – –
B8 12.5 6.0 24 – – – 14.2 1.4 19.8

Series C

C1∗ 12.5 1.0 24 – – – 27.0 0.2 26.4
C2 12.5 1.0 30 – – – 17.7 2.0 21.7
C3 12.5 1.0 36 – – – 14.7 1.5 22.3
C4∗ 12.5 1.0 42 – – – – – –
C5∗ 12.5 1.0 48 – – – – – –

4.3 Series B: the impact of background errors

In Series B, the dependency of 09 on δ9b was investi-
gated while δ9obs was kept constant. Eight different con-
figurations B1–B8 were tested using r9 = δ9b/δ9obs ∈

{.1, .5,1,2,3,4,5,6}. As r9 was continuously increasing
with increasing sequence number, the weighting of the back-
ground field decreased at the same time and the objectively
analysed temperature and salinity were forced closer to the
observations. Note that B3 was the control run identical to
A5.

As can be seen from Fig. 12, the mean forecast skill for
temperature was positive for all runs and the maximum of
0T = 28.2 % was attained in B2 using a ratio r9 = 0.5. Thus,
a background error of half the observational error produced
the best forecast. For r9 = 0.1, 0T dropped suddenly to
5.8 % in B1 but increasing r9 from 0.5 to 6.0 in B8 caused a
smooth decrease from the maximum in B2 to 14.2 % in B8.
For salinity, 0S was mostly negative or close to zero, and the
best skill score of 1.4 % was obtained in B8 for r9 = 6.0. De-
spite the negative score for salinity, 0σ was always positive
except for Run B6; the highest score of 26.4 % was recorded

in B3 using r9 = 1. Therefore, B3 served as control run in
the subsequent Series C.

4.4 Series C: the impact of the assimilation window

In all previous runs, the data assimilation engine was in-
voked each day at 00:00 UTC. As the size of the assim-
ilation window was W = 24 h, observational data between
noon of the previous day and noon of the actual day were
assimilated. This setting for W was the minimum because
smaller values would lead to non-consideration of data. In
this section, the impact of larger windows W on the skill
score is investigated in the five ROPS runs C1–C5, applying
W ∈ {24,30,36,42,48} h, where C1 is the control run iden-
tical to B3. However, C4 and C5 using a window size of 42
and 48 h, respectively, died on 15 June. Obviously, very large
windows were not suitable because the actual ROMS fore-
cast was blended with too old observational data and with
data which lay too far in the future. This is in line with the
Introduction, where it was stated that the expected timescales
of the temporal variability were less than 4 days. One might
argue that a few additional CTD profiles cannot have led to
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Figure 9. The vertical distributions of (a) 1T , (b) 1S, and (c) 1σ , for ROPS runs A1–A8. The first column in the legend boxes refers to
the number of the ROPS run, the second column is the selected correlation scale C (km), and the third column features the layer thickness-
weighted mean 19, where 9 stands for either tracer T , S, or σ . For better readability, 1T was multiplied by 103, and 1S, 1σ by 104. The
bold graphs indicate the runs where 19 were minimal.

a model crash, but one has to consider that the gliders pro-
vided up to more than 400 profiles every day (see Fig. 7),
and an extension of W by just 6 h would mean that about
100 additional profiles, which were too decorrelated in time
with the actual forecast, would contribute to the assimilation
fields. The skill scores of the remaining runs C1–C3 are dis-
played in Table 1. The best score for 0σ was again reached
in the control Run C1; but also in C2 and C3, the scores
were higher than 20 %. Worthy of mention are the positive
but rather small scores for 0S in C2 and C3. In any case, be-
cause of the maximum scores for 0t and 0σ , C1 was selected
as control run in the following Series D.

4.5 Series D: the impact of the forecast range

In this series, 12 ROPS runs D1–D12 with different forecast
ranges were conducted and verified as before. In all runs,
the parameter settings of C1 were utilised but the initialisa-
tion time tINI, i.e. the time when the last data assimilation
took place, was varied between 11 and 22 June. In D1, CTD
data were assimilated until 11 June 00:00 UTC. Thereafter,
ROMS was integrated forward in a free mode, i.e. it was
no more constrained by observations. The forecast range τ
was the time span between the instant when the last assim-
ilation took place and the verification time tFC = 22 June

Table 2. Parameter settings and results of ROPS runs in Series D.
Bold numbers indicate those parameters which are varied within
this series.

Run tINI τ 0T 0S 0σ 0σ (D0)
(days) (%) (%) (%) (%)

D1 11 June 11.75 28.1 12.0 31.9 25.4
D2 12 June 10.75 32.9 11.1 29.7 24.8
D3 13 June 9.75 34.0 6.1 31.7 24.7
D4 14 June 8.75 23.5 0.7 24.4 15.5
D5 15 June 7.75 4.0 −5.0 11.3 10.2
D6 16 June 6.75 9.8 −16.4 12.6 12.9
D7 17 June 5.75 7.9 −4.2 18.2 1.0
D8 18 June 4.75 25.9 −4.3 25.5 1.3
D9 19 June 3.75 7.5 −3.9 10.0 −3.0
D10 20 June 2.75 −6.7 −6.1 4.1 4.8
D11 21 June 1.75 −17.5 −13.5 −22.4 −1.9
D12 22 June 0.75 5.8 −1.9 0.8 3.1

18:00 UTC, thus 11.75 days. In D2, the last data were as-
similated on 12 June, in D3 on 13 June and so on. Hence,
in runs D2–D12, tINI was advanced by 24 h in each case un-
til tINI = 22 June 00:00 UTC in D12, and correspondingly
the forecast range shrunk progressively in 1-day steps from
τ =11.75 days in D1 to τ =0.75 days in D12.
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Figure 10. The vertical distributions of (a) 0T , (b) 0S , and (c) 0σ , for ROPS runs A1–A8. The first column in the legend boxes refers to the
number of the ROPS run, the second column is the selected correlation scale C (km), and the third column is the layer thickness-weighted
mean 09 , where 9 stands for either tracer T , S, or σ . The bold graphs indicate the runs where 19 were maximal.

The skill scores of all runs in dependence on tINI and τ are
summarised in Table 2, and in Fig. 13 are shown the graphs
of 0T , 0S , and 0σ . For D1 (tINI = 11 June, τ =11.75 days),
0σ attained the absolute maximum of 31.9 % within this se-
ries (Fig. 13c). Skill scores around 30 % were also reached in
D2 and D3. In D4–D12 towards smaller forecast ranges, the
score exhibited an overall decreasing trend but it remained
positive except for D11 where 0σ =−22.4 %. The charac-
teristics of the 0T curve closely resemble those of 0σ . In
terms of qualitative arguments, the high scores are in D1–
D3, and they decrease afterwards. Quantitatively, these are
the scores around or even above 30 % in D1–D3, the moder-
ate values around and below 10 % in D5 and D6, the scores
above 25 % at the relative maximum in D8, the minima in
D11, and the recovery to positive values in D12. The 0S
curve is correlated with the graphs of 0σ and 0T , concerning
the overall decreasing trend and the locations of the relative
minima and maxima. However, the skill scores for salinity
are always lower than those for density and temperature in
D1–D9 and D12, frequently even being negative. The high-
est values above 10 % are attained in D1 and D2 – a rather
modest score compared to the ≈ 30 % scores of T and σ at
the same time.

In order to assess the impact of the data assimilation as a
whole, another ROPS run was conducted – referred to as D0.
This run was identical to all other runs of Series D but no

data were assimilated at any time. For D0, the skill scores
were computed in the same way as for D1–D12 for each
initialisation time day between 11 and 22 June, and in ad-
dition for “virtual” initialisations on 1–10 June. The corre-
sponding curves (the thin lines) are overlain to the graphs of
09 in Fig. 13a, b, c. The skill scores of D0 are positive for
the majority of the initialisation times tINI. Negative values
for 0T are only obtained for tINI ∈ {1,2,3} June, for 0S and
tINI ∈ {15,17,18,19,21} June, and for 0σ and tINI ∈ {19,21}
June. Thus, although no data were assimilated in D0, the
forecasts beat persistence in most cases for forecast ranges
of at least 3 weeks. Other particular features of the D0 fore-
casts are the maximum skill score for tINI = 8 June and the
decreasing trend thereafter. Except for D6 (tINI = 16 June)
and 20 June ≤ tINI ≤ 22 June, the skill scores 0σ of D0
are always lower than the corresponding scores of D1–D12.
Hence, the assimilation of observational data has definitely
improved the forecast quality for potential density. A simi-
lar proposition is valid for 0T but not for 0S . Here, except
for tINI ∈ {17,18,19} June, the skill score of D0 is always
higher than in D7–D9. This strange behaviour – as well as
some other possibly weird findings in this section – needs
explanations which will be given in what follows.
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Figure 11. The vertical distributions of 1σ(REF, OBS) for ROPS
runs A1 and A8 at t = tINI = 18 June 00:00 UTC. The first column
in the legend boxes refers to the number of the ROPS run, the sec-
ond column is the selected correlation scale C (km), and the third
column is the layer thickness-weighted mean 1σ . For better read-
ability, 1σ was multiplied by 104.

5 Discussion

The first objective of this article was to demonstrate that
ROPS produces good forecasts. Murphy (1993) defines three
types of “goodness”: consistency, quality, and value. Con-
cerning the latter, it is rather difficult to rate the value for
the “end users” because REP14-MED was planned solely for
scientific purposes – see the objectives defined in Onken et
al. (2018). Amongst others, a special aim was the compari-
son of different methods for data assimilation. This article is
the third in a series of five, of which Oddo et al. (2016) and
Onken (2017) have been published. Two further articles us-
ing the same observational data are in preparation, applying
the ensemble Kalman filter and 4D-Var assimilation meth-
ods. Hence, the value of the ROPS forecasts may be best
judged when all papers have been published. The consistency
of the ROPS forecasts has been assessed by comparison with
the observations described by Knoll et al. (2017), using the
output of ROPS run C1 on 20 June. In detail, the large-

scale horizontal distributions of T and S at 50 and 400 m
depth (these are the depths of the MAW and LIW cores,
respectively) resembled the observed patterns, but the con-
tours were shifted against each other by several miles. This
was plausible because the observed fields were averaged over
the observational period 8–18 June while the forecast was a
snapshot. The same applied to the predicted currents which
were checked against the observed geostrophic transports. It
was also verified that the data assimilation did not create any
unrealistic water masses in those regions where nearby ob-
servations were available. In order to assess the impact of
the large nesting ratio, the vertical velocity along the lateral
boundaries was frequently checked for strange patterns, but
no abnormal behaviour was detected at any time. This was
not surprising, because to minimise false advection effects,
the distance between the open boundaries and the observa-
tions was 30 miles in the west and 45 miles in the south and
the north (see Figs. 4, 5).

With respect to the forecast quality, a major result found
above was that the mean skill scores 0T , 0S , and 0σ de-
creased concurrently with a decreasing forecast range τ . As
this feature was observed both for the assimilation runs D1–
D12 and for the free run D0, it can be excluded that it
was somehow caused by the assimilation of observational
data. Therefore, the components of the equation which deter-
mine the skill score were investigated. In particular, a closer
look was taken at 19wgt(FC, OBS) and 19wgt(REF, OBS)
in Eq. (5). However, as these expressions represent the
weighted RMSE of each individual s layer, it is not possible
to relate them to the mean skill score 09 . Therefore, for the
purpose of discussion, the mean skill score was re-defined as

0∗9 = 1−
19wgt(FC,OBS)

19wgt(REF,OBS)
. (6)

Here, 0∗9 is the mean skill score computed from the mean
layer RMSEs while 09 as defined in Eq. (5) is the mean
score computed from the individual layer RMSEs. In Fig. 14
are shown1σwgt(FC,OBS), 1σwgt(REF,OBS), and 0∗σ for
D1–D12 and for D0, in dependence on the forecast range τ
(bottom axis) and simultaneously on the initialisation time
tINI (top axis). First of all, 0∗σ and 0σ in D1–D12 (compare
Figs. 14b, 13c) are almost identical, which legitimatises the
re-definition in Eq. (6). By contrast, the shape of the corre-
sponding graphs for the no-assimilation run D0 differ from
each other: the 0∗σ curve is smoother than that of 0σ , but
the increasing trend for 1 June < tINI < 8 June and the de-
creasing trend thereafter are reproduced, which is important
for this discussion. According to Fig. 14a, 1σwgt(FC,OBS)
(thin red line) is constant for all initialisation times tINI.
This is trivial because the RMSE between the forecasted
fields and the observations on 22 June never changes, re-
gardless of the virtual initialisation time. This facilitates the
discussion because the skill score depends now solely on
1σwgt(INI,OBS) (thin blue line). The shape of the graph
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Figure 12. The vertical distributions of (a) 0T , (b) 0S , and (c) 0σ , for ROPS runs B1–B8. The first column in the legend boxes refers to
the number of the ROPS run, the second column is the selected ratio δ9b/δ9obs (for 9 ∈ T ,S), and the third column is the layer thickness-
weighted mean 09 , where 9 stands for either tracer T , S, or σ . The bold graphs indicate the runs where 19 were maximal.

of the latter is identical to the shape of the 0∗σ curve which
means that for all initialisation times tINI > 8 June, the
ROMS initial fields are progressively approaching the verifi-
cation fields with increasing tINI. Apparently, some unknown
process or combination of different processes is already driv-
ing the model towards the future observations without data
assimilation. Potential candidates could be the downscaling
of the MERCATOR fields on 1 June (see above, Sect. 2.3)
enabling a more realistic circulation pattern, the MERCA-
TOR forcing at the lateral boundaries, or the daily updated
COSMO-ME forecasts which would not be available in real
operational conditions. The opposite is the case for tINI <

8 June: here, the ROMS initial fields deviate progressively
from the verification fields with increasing tINI. Probably,
ROMS needs a certain spin-up time to equilibrate all fields,
which would be about 8 days in the present situation.

For the assimilation runs D1–D12, 1σwgt(FC,OBS)
(Fig. 14a, bold red line with dots) is decreasing continu-
ously with increasing tINI. Hence, the later ROMS switches
to the free mode without data assimilation, the closer is
the forecast to the observations. This is not trivial because
each assimilation cycle could create “assimilation shocks”
and mess up the model dynamics (Evensen, 2003; Counil-
lon et al., 2016). Probably, this happened in D1–D5, where
1σwgt(FC,OBS) is at about the same level as the corre-
sponding quantity in D0, but in D6–D12 (16 June ≤ tINI ≤

22 June), 1σwgt(FC,OBS) is below the horizontal line,
which indicates that the predicted density pattern is closer
to the observations than in the no-assimilation run. This does
not necessarily mean that the skill score is higher, because 0∗σ
depends on the ratio 1σwgt(FC,OBS)/1σwgt(REF,OBS)
according to Eq. (6). As shown by the bold blue line with
dots, the denominator is mostly greater than the numerator
(except for D11), and also its overall slope is larger. Con-
sequently, the ratio is mostly < 1, leading to a positive skill
score. Moreover, in D1–D4 and D7–D8, the ratio is small and
correspondingly, the skill score is large. By contrast, in D5,
D6, D9, D10, and D12 the ratio is close to 1 and the skill
score is approaching zero. This effect also controls the over-
all negative trend of the skill score because the numerator and
the denominator are approaching each other with decreasing
forecast range τ . In other words, if the forecast range is small,
then the reference fields are already very close to the verifica-
tion fields, and no significant improvement can be achieved
by further forward integration of the numerical model.

In all runs shown above, except for D10 and D11 (see Ta-
bles 1 and 2), 0T was greater than 0S , frequently even much
greater. It can be excluded that this was due to an error in the
OA or in the melding procedure (Eq. 1), as the same sub-
routines were used for T and S. Additional evidence was
found from D0: Fig. 13a, b clearly show that 0S was always
less than 0T , at least for 14 June ≤ tINI ≤ 22 June. As the
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Figure 13. The skill scores (a) 0T , (b) 0S , and (c) 0σ vs. the forecast range τ for ROPS runs D0 and D1–D12. The June dates on the top
abscissae indicate the start of each day at 00:00 UTC; the dates are identical to the assimilation time tINI. Note that the time axis at the top is
offset by 6 h with respect to the time axis at the bottom in order to synchronise tINI and τ .

OA or Eq. (1) was never applied in D0, neither could be the
cause for this weird behaviour. Likewise, errors during the
processing of the data for assimilation can be precluded. An-
other possible source of error could be the computation of
the forecast skills. However, the coding of Eqs. (2)–(5) was
checked several times and no error was detected. Hence, it is
concluded that some physical process is not properly param-
eterised in ROMS, which induces the different skill scores of
T and S. A possible process is double diffusion which effec-
tuates higher vertical diffusivities for salinity than for tem-
perature (Schmitt, 1981). As shown by Zhang et al. (1998),
the consideration of double-diffusive mixing in a general cir-
culation model can have a significant impact on the hori-
zontal transport of heat and salt, even if a conservative ap-
proach is applied to the parameterisation. The stratification
in the Mediterranean Sea is especially favourable for dou-
ble diffusion because of the high-salinity core of LIW be-
low the main thermocline (Millot, 1999). Onken and Bram-
billa (2003) have shown that in the Algerian Basin and be-
low about 300 m depth, the vertical diffusivity of salt may be

up to twice as high as the diffusivity of heat. This leads to
an enhanced diffusion of buoyancy and similarly may affect
the entire circulation pattern and the different skill scores for
temperature and salinity.

During the last two decades, the forecast skill of op-
erational models has been verified against observations in
an increasing number of articles, the majority of which
aimed at global models. In an early paper, Smedstad et al.
(2003) showed that the skill score of the NLOM (Naval Re-
search Laboratory Layered Ocean Model) forecast model de-
creased with increasing forecast range. However, the skill
score was not evaluated against persistence but against cli-
matology, both for the global domain and for a subdomain
in the Gulf Stream region. In the latter, the skill score de-
creased at a faster rate than in the global domain which in-
dicated the reduced predictability in the more energetic re-
gions. Ten years later in the framework of GODAE (Global
Ocean Data Assimilation Experiment; Bell et al., 2009), Lel-
louche et al. (2013) computed the skill score of the sea
level anomaly forecast for different setups of the MERCA-
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Figure 14. (a) 1σwgt(FC, OBS), 1σwgt(REF, OBS) and (b) 0∗9 (see Eq. 6) vs. the forecast range τ for ROPS runs D0 and D1–D12. The
June dates on the top abscissae indicate the start of each day at 00:00 UTC; the dates are identical to the assimilation time tINI. Note that the
time axis at the top is offset by 6 h with respect to the time axis at the bottom in order to synchronise tINI and τ .

TOR global model against persistence. They demonstrated
that for most regions the skill score was positive, except for
the North Atlantic, the Mediterranean Sea, and Antarctica.
Also in the framework of GODAE, Ryan et al. (2015) ver-
ified six different forecasting systems against climatology
and persistence. Their main results were that the climatol-
ogy skill score of all systems was positive for all tested pa-
rameters, while the persistence skill score (PSS) was close
to zero or even negative for short forecast ranges, both for
temperature and salinity. Afterwards, however, the PSS in-
creased with longer forecast ranges of up to 5 days. More-
over, the PSS of salinity was mostly lower than the PSS
of temperature. Forecast skill assessments of regional mod-
els have been conducted by various authors. Tonani et al.
(2009) evaluated the forecast skill score of the Mediterranean
Forecasting System (MFS; Pinardi (2003), horizontal resolu-
tion ≈ 7 km) by means of comparisons with observational
data from moorings, ARGO floats, and XBT (expendable
bathythermograph) casts at three different vertical levels. It
has been demonstrated that the skill scores of temperature
and salinity increased with increasing forecast range, reach-
ing a maximum of about 45 % for temperature around the
sixth day of the forecast. This is about 30 % higher than the
maximum skill score 0T determined above (see Sect. 4.5)
which was 34 % for tINI = 13 June, corresponding to a fore-
cast range of about 10 days. For the very short forecast range
of 2 days, the skill scores were negative, and right at the sur-
face and in the upper thermocline, the skill score for salinity
was mostly lower than for temperature. A generally lower

skill score for salinity, which is in agreement with the results
of this article, was also found by Chiggiato and Oddo (2008)
for two higher-resolution operational models of the Adriatic
Sea. Tonani et al. (2009) also evaluated the components of
the skill score. They demonstrated that 19(FC,OBS) and
19(REF,OBS) both for 9 ≡ T and 9 ≡ S were approach-
ing each other with increasing forecast range; this is compa-
rable to the findings of Fig. 14. On the whole, the sometimes
surprising results of this article are in line with other publi-
cations.

It has been demonstrated that good forecasts can be ob-
tained from a prediction system using OA for assimilation.
The ROPS runs of Series D have shown that the assimila-
tion of CTD data leads to an increase in the skill score for
temperature and density, except for those runs with a rather
short forecast range of less than 3 days, e.g. D10–D12. Here,
the forecast quality of the no-assimilation run D0 is supe-
rior. Most likely, it is the massive amount of assimilation data
which disequilibrates the terms in the governing equations of
ROMS, and a few days are required to restore the equilib-
rium. However, this does not imply that the accuracy of the
forecast is becoming worse at the same time. This is impres-
sively demonstrated by Fig. 14a, which shows that the RMSE
between the forecast and the verification (i.e. the bold red
curve with dots) is monotonically decreasing with a decreas-
ing forecast range. Furthermore, it has been shown that a vast
number of observational data can be managed by OA without
data reduction. In the framework of this article, 6034 CTD
profiles were available for assimilation between 7 and 23
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June; hence, 377 profiles were assimilated every day at mid-
night on average. It would be worth exploring whether this
potential oversampling leads to an improvement or even a
deterioration of the forecast quality, compared to ROPS runs
where fewer data would be assimilated, although this would
first require the development of a meaningful methodology
for data reduction. Different approaches for the reduction of
observational data could be utilised to address a number of
interesting questions:

– Are deep CTD casts needed to improve the forecast
skill scores? Several deep casts extending to more than
2500 m depth were taken at the western boundary of the
observational domain to assess the hydrography of the
deep water masses.

– What is the impact of “deep” gliders on the skill score?
During REP14-MED, four gliders had a pressure rating
of 200 dbar, one was rated to 650 dbar, and six gliders
took samples down to 1000 dbar. The impact of the deep
gliders could easily be assessed if their profiles were
clipped at 200 m.

– What is the cost / benefit ratio of adding more gliders?
Eleven gliders were operating on 10 zonal tracks (see
Fig. 5). Although the northernmost one died early, there
were still nine tracks G02–G10 occupied continuously
for more than 2 weeks. In the first run of a cost–benefit
analysis, only the data of the glider on the central track
G06 would be assimilated, in the second run data from
tracks G02 and G10 would be added, the third run would
assimilate data from tracks G02, G04, G06, G08, and
G10, and in the final run, data from all tracks would be
used. Thus, the meridional resolution would be doubled
during consecutive runs, and the skill score versus the
resolution could be assessed.

Answering these questions is beyond the scope of this paper,
but might be addressed in a follow-up paper.

Finally, it was demonstrated that ROPS is able to provide
timely forecasts on a commercially available personal com-
puter. All ROPS runs were conducted on a DELL Precision
Tower 7910 using four processors. The CPU time of D12,
which performed the maximum of 16 assimilation cycles,
was 4.8 h, while it was only 2.7 h for D0 without any assimi-
lation. Hence, as ROPS was integrated over 24 days, the CPU
time for solving the primitive equations was just 6.8 min per
day. In the case that on average 377 CTD profiles were assim-
ilated, the CPU time nearly triplicated to 18 min. This rather
modest increase was effectuated by the pre-selection of ob-
servational data in daily directories which considered only
those data for assimilation which fitted in the time window
W . The triplicating of CPU time is still a reasonable figure
compared to operational models employing 4D-VAR where
the CPU time may increase by at least 1 order of magnitude.

6 Conclusions

The relocatable ocean prediction system (ROPS) was em-
ployed in hindcast mode on a huge data set which was col-
lected in June 2014. Using objective analysis (OA), the ob-
servational data were assimilated, and the ROPS forecasts
were verified against independent data.

The OA is controlled by four parameters: C, the correla-
tion length scale; r9 , the ratio of background and observa-
tional errors for temperature and salinity, respectively; and
W , the width of the time window where data are assimilated.
Sensitivity tests to variations of these parameters were con-
ducted by means of various ROPS runs encompassing the pe-
riod 1–24 June. Observational data were assimilated for the
period 7–18 June, and the forecasts were verified against the
verification data set on 22 June. The highest skill scores were
obtained for C = 12.5 km, r9 = 1, and W = 24 h.

Additional runs revealed a decreasing tendency of the
skill score with decreasing forecast range, where the forecast
range was the time span between the verification time and
the instant when the last assimilation took place. The same
tendency was exhibited by a control run without assimila-
tion which excludes the OA from being responsible for this
behaviour. A thorough analysis of the terms in the equation,
which determines the skill score, revealed that persistence
is approached steadily for continuously decreasing forecast
ranges, and the late assimilation of observational data can no
longer effectuate a significant improvement of the forecast
skill. For extremely small forecast ranges, the skill score even
became negative, because the assimilation disequilibrated the
balance of forces in the dynamical model.

In all ROPS runs, including the run without assimilation,
the skill score for temperature was mostly higher than the
corresponding score for salinity. This is in agreement with
other research papers, and it is speculated that this mismatch
is due to double-diffusive processes which were not ade-
quately parameterised.

ROPS is able to provide timely forecasts even on commer-
cially available personal computers.

Code availability. All work related to this article was done on a
Linux workstation under Kubuntu 16.04. ROMS/TOMS version 3.6
was used for the model runs, the pre- and postprocessing was done
with MATLAB R2016b, and the article was written in LATEX. The
model code and all scripts are available from the author on request.

Data availability. All data of the REP14-MED experiment are
available on the CMRE data server at http://geos3.cmre.nato.int/
REP14, last accessed on 10 March 2017 (Centre for Maritime Re-
search and Experimentation, 2014). The data are NATO UNCLAS-
SIFIED and available only for the partners of the experiment. How-
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