
Ocean Sci., 13, 123–144, 2017
www.ocean-sci.net/13/123/2017/
doi:10.5194/os-13-123-2017
© Author(s) 2017. CC Attribution 3.0 License.

Quality assessment of the TOPAZ4 reanalysis in the Arctic
over the period 1991–2013
Jiping Xie1, Laurent Bertino1, François Counillon1, Knut A. Lisæter1, and Pavel Sakov2

1Nansen Environmental and Remote Sensing Center, Bergen 5006, Norway
2Bureau of Meteorology, Melbourne VIC3001, Australia

Correspondence to: Jiping Xie (jiping.xie@nersc.no)

Received: 23 May 2016 – Discussion started: 27 June 2016
Revised: 22 December 2016 – Accepted: 9 January 2017 – Published: 13 February 2017

Abstract. Long dynamical atmospheric reanalyses are
widely used for climate studies, but data-assimilative reanal-
yses of ocean and sea ice in the Arctic are less common.
TOPAZ4 is a coupled ocean and sea ice data assimilation
system for the North Atlantic and the Arctic that is based on
the HYCOM ocean model and the ensemble Kalman filter
data assimilation method using 100 dynamical members. A
23-year reanalysis has been completed for the period 1991–
2013 and is the multi-year physical product in the Copernicus
Marine Environment Monitoring Service (CMEMS) Arctic
Marine Forecasting Center (ARC MFC). This study presents
its quantitative quality assessment, compared to both assim-
ilated and unassimilated observations available in the whole
Arctic region, in order to document the strengths and weak-
nesses of the system for potential users. It is found that
TOPAZ4 performs well with respect to near-surface ocean
variables, but some limitations appear in the interior of the
ocean and for ice thickness, where observations are sparse. In
the course of the reanalysis, the skills of the system are im-
proving as the observation network becomes denser, in par-
ticular during the International Polar Year. The online bias
estimation successfully maintains a low bias in our system.
In addition, statistics of the reduced centered random vari-
ables (RCRVs) confirm the reliability of the ensemble for
most of the assimilated variables. Occasional discontinuities
of these statistics are caused by the changes of the input data
sets or the data assimilation settings, but the statistics remain
otherwise stable throughout the reanalysis, regardless of the
density of observations. Furthermore, no data type is severely
less dispersed than the others, even though the lack of con-
sistently reprocessed observation time series at the beginning
of the reanalysis has proven challenging.

1 Introduction

The Arctic Ocean plays an important role in the global cli-
mate system, where the sea ice at the interface between atmo-
sphere and ocean regulates the fluxes of heat, moisture and
momentum. The recent warming of the Arctic and the change
of its water cycle has been linked to the following manifesta-
tions: a significant reduction and thinning of the sea ice cover
(Johannessen et al., 2004; Shimada et al., 2006; Rothrock
et al., 2008; Kwok and Rothrock, 2009), more freshwater in
the Arctic in the 2000s (Haine et al., 2015) and more mo-
bility and faster deformations of the Arctic sea ice (Rampal
et al., 2009; Spreen et al., 2011). The interpretation of such
changes is severely hampered by the sparseness of the con-
cerned observations, which should not be improved dramat-
ically in the near future. It can be assisted by free-running
model simulations, but those are usually hampered by mislo-
cations of ice edge and certain water masses. One possibility
is to study surrogate locations where similar processes are
assumed to take place. Another solution is to correct the dy-
namical model by assimilating observations available over
relevant timescales.

The latter activities thus necessitate a state-of-the-art re-
analysis system able to accurately honor the observations
in a physically consistent manner. Recent efforts in Arctic
Ocean state estimation have delivered either long-window
optimizations (Nguyen et al., 2009, 2011) or, more often,
short-window estimations (Schweiger et al., 2011; Mathiot
et al., 2012; Sakov et al., 2012; Chevallier et al., 2013).
Long-window optimizations deliver continuous model tra-
jectories, which are physically more consistent than those
using short windows. On the other hand, slicing the opti-
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mization problem into short windows makes the estimation
problem more linear or better conditioned (fewer unknowns
and observations) and delivers more accurate products. Be-
sides the window length, the choice of a background error
covariance matrix is also a critical aspect in a data-scarce area
such as the Arctic. The background error covariance used
in an ocean data assimilation system can be – by increas-
ing order of complexity – based on fixed multivariate spa-
tial statistics (Cummings et al., 2009), an empirical estima-
tion by a time-invariant ensemble (Oke et al., 2008) or a sea-
sonally variable ensemble (Brasseur et al., 2005; Xie et al.,
2011). In the case of ice–ocean systems, sea ice data assimi-
lation often relies on rudimentary ice-only nudging methods
(Schweiger et al., 2011; Tietsche et al., 2013); however, the
possibility to account for flow-dependent coupled ice–ocean
data assimilation updates has already been demonstrated in
Lisæter et al. (2003). The pilot TOPAZ4 reanalysis of Sakov
et al. (2012) has shown that the forecast error covariance
from a dynamical ensemble mitigates the physical inconsis-
tencies that could be expected from a short assimilation win-
dow.

The TOPAZ4 system is a coupled ocean–sea ice data as-
similation system of the physical environment in the North
Atlantic and Arctic oceans (see Fig. 1), which was initially
used for short-term forecasting (Bertino and Lisæter, 2008)
and later on for reanalysis (Sakov et al., 2012). TOPAZ4
represents the Arctic component of the CMEMS system
(marine.copernicus.eu) where it is also used with coupling
to an ecosystem model (Samuelsen et al., 2015; Simon et
al., 2015). The present paper follows the pilot TOPAZ4 re-
analysis by Sakov et al. (2012) in which the performance
of the same system has been demonstrated for the period of
2003–2008. They proposed an implementation of the EnKF
data assimilation method that avoids ensemble collapse, pro-
vides reliable state-dependent error estimates and improves
the match to independent observations compared to a free-
running simulation.

Forced by the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee
et al., 2011), TOPAZ4 assimilates most available measure-
ments including along-track sea level anomalies (SLAs) from
satellite altimeters, sea surface temperatures (SSTs), sea ice
concentrations (SICs) and sea ice drift (SID) from satellites
as well as in situ temperature and salinity profiles. The pro-
posed reanalysis is 4 times longer (1991–2013) than the pilot
reanalysis, and includes data-scarce periods with poor obser-
vational coverage and more intense observing efforts, such
as during the International Polar Year (IPY, 2007–2009). The
focus of this study is to provide a quantitative assessment of
the reanalysis performance in the pan-Arctic region (defined
as north of 63◦ N) in order to guide the user through its skills
and limitations. In particular, we investigate the stability of
the ensemble reliability through changes of the Arctic ob-
servational network, the variability of the system accuracy

in different sub-areas, its seasonal cycle and its trend in the
course of the reanalysis.

The outline of this paper is as follows: in Sect. 2, the re-
analysis system is described including the model, the data as-
similation scheme and their implementation. Section 3 eval-
uates the reliability of the reanalysis ensemble. In Sect. 4, we
compare the ensemble mean against available observations:
altimetry, SST, T –S profiles, ice concentration, ice drift and
ice thickness. For each of these quantities, we assess the vari-
ability of the system performance in space or in time. Sec-
tion 5 summarizes and discusses the potential improvements
of our system for the next version of the reanalysis.

2 The reanalysis system

2.1 The HYCOM ice–ocean model

The TOPAZ4 system uses version 2.2 of the Hybrid Coor-
dinate Ocean Model (HYCOM) developed at the University
of Miami (Bleck, 2002; Chassignet et al., 2003). It uses 28
hybrid z-isopycnal layers, and the top layer has a minimum
thickness of 3 m. The model grid has a horizontal resolution
of 12–16 km, which is eddy permitting from the Equator to
the Nordic Seas but is still far from being eddy resolving in
the Arctic. The lateral boundaries of temperature and salin-
ity are relaxed to a combination of the World Atlas of 2005
(WOA05; Locarnini et al., 2006) and version 3.0 of the Polar
Science Center Hydrographic Climatology (PHC; Steele et
al., 2001). HYCOM is coupled to a sea ice model in which
the ice thermodynamics are described in Drange and Simon-
sen (1996) and the elastic–viscous–plastic rheology in Hunke
and Dukowicz (1997). The surface momentum fluxes use a
bulk formula parameterization (Kara et al., 2000), and the
related thermodynamic fluxes are computed as described in
Drange and Simonsen (1996).

The model has been initialized from the same climatology
data as used at the boundaries. The Pacific water inflow is im-
posed by a barotropic inflow through the Bering Strait at the
model boundary and balanced by an outflow at the southern
boundary of the domain. Unlike in Sakov et al. (2012), the
inflow varies seasonally as found in observations (Woodgate
et al., 2005): with a maximum in June (1.3 Sv), a minimum
in January (0.4 Sv), and the mean transport is 0.8 Sv.

2.2 Data assimilation with the EnKF

Given observations, a model forecast and assumptions on
their respective uncertainties and at time ti , the analyzed
model states can be estimated by data assimilation using the
least squares minimization (Evensen, 1994, 2003):

Xa
i = Xf

i +Ki(Yi −HXf
i), (1)

where Yi is the matrix of perturbed observations, Xi is the
ensemble of model state vectors and H is the observation
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Figure 1. Left: bottom topography in the whole TOPAZ4 domain. The red line delimits the pan-Arctic region north of 63◦ N. Right: definition
of sub-basins and marginal seas. The domain is divided into the four subregions delimited by the colored lines: the central Arctic in red (CA),
the Greenland Sea in blue (GS), the Barents Sea in orange (BS) and the Norwegian Sea in magenta (NS).

operator denoting the projection from the model state vari-
ables to the measurements. The superscripts “a” and “f” re-
fer to the analyzed and the forecast states, respectively. We
use the deterministic form of the EnKF (DEnKF; Sakov and
Oke, 2008), which solves the analysis without the requisite
to perturb the observations. The term in the parentheses in
Eq. (1) is the departure from the model simulations to the
observations (named innovations). As opposed to Sakov et
al. (2012), the 1 % multiplicative inflation, which becomes
problematic when used with spatially varying observational
network (Anderson et al., 2001), has been removed near to
the end of the reanalysis (January 2010). Multiplicative infla-
tion leads to an exponential increase of the spread in absence
of observation (such as in the interior of the Arctic Ocean).
When combined with a multivariate update, it will amplify
the biases of the observed variables. For instance, the pas-
sive microwave satellite images of sea ice confuse melt ponds
(not considered in TOPAZ4) with open water (Ivanova et al.,
2015). This results in a bias that in turn leads to a degradation
of the stratification in the Arctic due to the multiplicative in-
flation. The bias estimation procedure has also been modified
as explained below (see Sect. 2.4).

2.3 Assimilated observations

The observations assimilated into the reanalysis are same
types as used in Sakov et al. (2012) except for some updates
in the data sources. They are the satellite SST, SLA, in situ
temperature and salinity profiles, SIC and low-resolution SID
data from satellites. An overview of the observations used in
the reanalysis is given in Table 1. The preprocessing, tempo-
ral averaging and observation errors are mostly following the
procedure described in Sakov et al. (2012).

At the beginning of the time period, the assimilated
SST data are the 1◦ resolution Reynolds SST from NOAA
(Reynolds and Smith, 1994). In June 1998, they are re-

placed by the high-resolution OSTIA data (Stark et al., 2007)
from the UK Met Office. The assimilated SLA data are the
delayed-time product (version vxxc) from Collecte Local-
isation Satellites (CLS) which is validated, unfiltered and
not subsampled by CLS. The SIC from the Ocean & Sea
Ice Satellite Application Facility (OSISAF) are assimilated
into the TOPAZ4 system. Before 19 June 2002, this as-
similated product is derived from the Special Sensor Mi-
crowave/Imager (SSM/I) at 25 km resolution, and later is
derived from the Advanced Microwave Scanning Radiome-
ter for EOS (AMSR-E) 89 GHz brightness temperature at
12.5 km resolution. In the last 3 years, this product has been
upgraded to a 10 km resolution. The temperature and salinity
profiles include Argo floats, ice-tethered profiles (ITPs) from
the Damocles project and a large collection of hydrographic
cruise data. With the exception of the Reynolds SST, all as-
similated data are available through the CMEMS portal.

2.4 Bias estimation in the TOPAZ4 reanalysis

Two bias fields (for SST and mean sea surface height
(MSSH)) are estimated online by model state augmentation,
thus the analysis state of Eq. (1) is modified as(

xa
i

ca
i

)
=

(
xf
i

cf
i

)
+Ki(yi −Hxf

i +Hcf
i), (2)

where xi is the ensemble mean of the model state vector at
the analysis time i, yi is the vector of observations and cf

i

represents the estimated bias correction inherited from the
analyzed bias correction at time i− 1. In order to avoid in-
consistencies between assimilation of SST and temperature
profile, the SST bias is propagated downwards into the model
mixed layer and decays exponentially (into the H operator).

The initial biases for each ensemble member are random
values, homogeneous in space and uniformly distributed. The
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Table 1. Overview of assimilated observations per cycle, with average numbers for the cycles during which the observations are present.

Type Number After SO Spacing Resolution Period Provider

SLA 9× 104 5× 104 Track 7 km 1992–2013 CLS
SST 6× 103 6× 103 Gridded 100 km 1990–1998 Reynolds SST from NCDC

(http://www.nhc.noaa.gov/aboutsst.shtml)
SST 2× 106 2.4× 105 Gridded 5 km 1998–2013 OSTIA from UK Met Office
In situ T/S 3× 104 5× 103 Point – 1990–2013 Ifremer+ other
SIC (SSM/I) 9× 104 5× 104 Gridded 25 km 1990–2002 OSISAF
SIC (AMSR-E) 1.6× 105 5× 104 Gridded 12.5 km∗ 2002–2013 OSISAF
SIC (AMSR-E) 1.6× 105 5× 104 Gridded 12.5 km 2008–2009 AMSR-E

(http://nsidc.org/data/amsre/)
Ice drift (CERSAT) 6× 103 103 Gridded 35 km 2002–2010 Ifremer
Ice drift (OSISAF) 4× 103 103 Gridded 62.5 km 2011–2013 OSISAF
Total 2.3× 106 4× 105

∗ The resolution of ice concentration product increased to 10 km. Unless specified, all observations are from http://marine.copernicus.eu. NCDC is the National Climatic
Data Center.

initial SST biases are sampled in the interval [−4, 4] ◦C, and
within [−0.6, 0.6] m for the MSSH.

The bias fields are updated according to the sample co-
variance from the forecast ensemble, but are not integrated
forward. To avoid a collapse of the bias ensembles, a mul-
tiplicative inflation is used (2 % for SLA and 6 % for SST).
The multiplicative inflation of bias did not handle well the
changes of observation coverage: it has been re-initialized
and capped at 5 ◦C for SST bias in April 2001 (hereafter
called event E1). Later on, in May 2006, it was re-initialized
again and replaced by an additive inflation of identical am-
plitude (event E2), using an auto-regressive temporal process
with one order, which definitively prevented further diver-
gence. After several assimilation steps, the bias fields con-
verge to temporally stable and spatially variable fields. Fig-
ure 2 shows the bias estimates at the end of the reanalysis for
the SSH and the SST. The bias patterns compare well with
those obtained in Sakov et al. (2012)1. There are small dis-
crepancies because the bias is estimated at a different time –
December 2009 in Sakov et al. (2012) instead of December
2013 here – and the bias estimation is the result of a longer
estimation period for which the signal-to-noise ratio is re-
duced. The misfits using the online-bias-corrected values are
slightly lower than the bias estimate of the last analysis step
(not shown). Although the static part of the bias would theo-
retically be better estimated on the last assimilation of the re-
analysis, the online bias approach can follow decadal trends
in the errors, as well as seasonal biases and changes of the
observational network. The online bias estimate is provided
together with the model output. In the following validation
sections, the online bias estimates ca

i are used to offset the
reanalysis state.

1Sakov et al. (2012) present the mean SSH bias of the opposite
sign.

3 Probabilistic reliability analysis

The main selling point of an ensemble data assimilation
system is the probabilistic evaluation of the uncertainties,
which follows the model dynamics and thus varies both in
time and space. This ability comes at a risk of divergence
of the Kalman filter: if the ensemble collapses, the Kalman
gain tends to zero and the assimilation system behaves as
one – expensive – free run. The EnKF is designed to sup-
port a very heterogeneous observational network: when ob-
servations become denser, the ensemble spread is supposed
to shrink, but the forecast accuracy should be improved ac-
cordingly. However, in practice, maintaining the reliability
through the course of the reanalysis requires careful anal-
ysis and handling of ill-specified model or observation er-
ror terms, and verifies that one observational data set is
not “over-assimilated” at the expense of the others. Here, a
simple method is used to assess the system reliability and
whether the uncertainty predicted by the EnKF is commen-
surate with actual deviations from observations. The ensem-
ble resolution, as well as more oceanographic interpretation
of the bias, will be presented in Sect. 4.

The ensemble statistics of the assimilated variables have
been stored at each assimilation time (every week) and in ob-
servational space. This allows the evaluation using the mod-
ified reduced centered random variable (RCRV; Talagrand et
al., 1999; Candille et al., 2007) to measure the reliability of
the TOPAZ4 system. Considering one observation y and the
ensemble mean of model state xf, the scalar variable q can be
defined as the innovation normalized by the observation and
model uncertainties:

q =
y−Hxf√
σ 2

o + σ
2
en
, (3)

where σo is the observation error and σen is the standard de-
viation of the corresponding forecast ensemble, including the
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Figure 2. Estimates of the mean SSH bias (left) and the SST bias (right) obtained at the last analyzed date by online parameter estimation.
In the left panel, the solid (dashed) line indicates the 10 (−10) cm isolines. In the right panel, the solid (dashed) line indicates the 0.3 ◦C
(−0.3 ◦C) isolines. There is no bias estimation for SST in the white area north of 70◦ N.

uncertainty of bias estimation for SLA and SST. In the frame-
work of the Kalman filter, q is assumed to be a reduced cen-
tered Gaussian variable.

In the following, we will assess the time evolution of the
averaged bias:

b = E[q] =
1
M

∑M

j

yj −Hxf√
σ 2

oj + σ
2
enj

, (4)

where M is the total number of observations at the assimila-
tion time. Furthermore, the standard deviation of q,

d =

√
M

M − 1
E
[
(q − b)2

]
, (5)

measures the ensemble dispersion with respect to the normal-
ized misfits.

The first two moments of the RCRV, b and d , provide sim-
ple diagnostics of whether the forecast ensemble obtained
from TOPAZ4 provides a reliable estimate of the uncertainty
of the ensemble mean, which is trusted in view of the ob-
servations with the assumed uncertainties. Assuming that we
can neglect all cross-covariances between innovations, a per-
fectly reliable system would have no bias (i.e., b = 0) and a
dispersion equal to 1 (Candille et al., 2007). A d smaller than
1 is a sign that the assimilation system could be too optimistic
about its uncertainties and vice versa. Both cases indicate that
the EnKF system is not well calibrated, which in turn leads
to suboptimal performance of the reanalysis system.

The two first moments of the reanalysis RCRV are pre-
sented for the different observational types. The time series
of b and d in the 23 years are shown in Figs. 3 and 4.

The dispersion and seasonal bias of SLA increased after
the launch of ENVISAT in 2002, when previously unob-
served areas at high latitude got to be included in the calcu-
lation of the statistics. We can notice that the bias stabilizes

Figure 3. Time series of b (blue line) and d (dashed red line) of
SLA, SST, SIC, in situ temperature and salinity observations, re-
spectively, in the Arctic region. They are filtered by a smoothing
average within 28 days. The average (standard deviation) of b and
d is shown in the panels.

www.ocean-sci.net/13/123/2017/ Ocean Sci., 13, 123–144, 2017
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later on when the multiplicative inflation is replaced by the
auto-regressive bias correction (event E2 in 2006).

The SST panel of Fig. 3 exhibits a cold winter bias and
a slight overdispersion during the time when Reynolds SST
is assimilated (until 1998). The transition to OSTIA initially
improves the reliability statistics with a dispersion close to
1 and a reduced bias fluctuating around 0, which relate to
the changes of observation errors and land mask. The warm
bias is dominant in summer. During the last 3 years of the re-
analysis, the summer warm bias b is reduced but the disper-
sion shrinks dramatically. This coincided with the time when
the observation error was increased and the quality control of
the observations (based on observation uncertainty) was soft-
ened, which resulted in assimilating more observations in the
Gulf Stream and near the ice edge. Although it is somewhat
counterintuitive that increasing the observation error leads to
a degradation of the reliability, this can happen if the misfits
to the observations increase more than the model uncertainty.
Furthermore, the new observation coverage includes regions
close to the ice edge where the spatiotemporal interpolation
of SST may have degraded the reliability (this will be further
discussed in Sect. 4.2).

In the SIC panel of Fig. 3, the dispersion is underestimated
throughout the reanalysis, with d on average at 0.55. The bias
fluctuates around 0 with a standard deviation of 0.15 mostly
related to a summer bias (Lisæter et al., 2003). A bias degra-
dation and a dispersion improvement are jointed with clear
seasonality during the last 3 years, which relates to the afore-
mentioned change of SST assimilation settings.

The RCRVs for in situ temperatures reveal a cold bias in
the reanalysis, especially salient after 1998 following devel-
opments of the observational network. A seasonal cycle in
both b and d is detected during the IPY period, which may
have been present before but insufficiently observed. The
RCRVs for in situ salinities are initially noisy due to lack
of observations. The IPY data also reveal a fresh bias as they
sample regions of the central Arctic that were previously un-
observed. The ensemble dispersion of salinity is good, with a
tendency to be on the low side, and especially after 2002 the
observation samples increase remarkably due to Argo floats.

The RCRVs for SID show initially too little dispersion
(d = 0.56) from 2002 to 2010, shown in Fig. 4 (consistent
with Sakov et al., 2012). Afterward, the dispersions increase
when the drag coefficient is reduced in 2011, leaving more
freedom for the ice to drift following the ocean currents, but
the system becomes overdispersive (∼ d = 1.36) when the
SID data source is switched from 3-day drifts on 35 km res-
olution to 2-day drifts on a 62.5 km resolution grid. The sys-
tem shows no clear bias but the bias variability increases with
the new observation product; its features will be discussed in
Sect. 4.

Overall, the statistics presented are relatively stable
throughout the reanalysis. There is a good balance between
the different data types assimilated: none of the data types
are severely less dispersed than the others. For most of the

Figure 4. Time series of b (blue line) and d (dashed red line) about
the zonal (DX) and meridional (DY) drifts of sea ice in the Arctic.
The average (standard deviation) of b and d is shown in the panels.

assimilated observation data sets, the biases fluctuate around
0 with amplitudes no larger than 0.1 (except for the in situ
temperatures); the dispersions mostly fluctuate around 1 and
the departures from 1 are smaller than 0.15 (except for the as-
similated SIC and SID) without any sign of general ensem-
ble collapse. However, there are some clear discontinuities
caused by the introduction of new data sets with different
spatial coverage (polar orbit, land mask, sea ice mask) or the
related error variance adjustments. Providing a consistent re-
analysis is thus challenging in the absence of continuous re-
processed observations marked with the time period.

4 Quantitative deterministic accuracy

In this section, we investigate whether the accuracy of the re-
analysis ensemble mean (also called resolution in Candille et
al., 2007) varies spatially, seasonally or interannually. Such
information is necessary for potential users of the reanalysis
product. It also pinpoints the model limitations that motivate
further developments of modeling and assimilation approach.
The misfits of the reanalysis are calculated by the daily av-
erages of the ensemble mean and the observations. The bias
and the root mean square differences (RMSDs) of the misfits
are calculated as described in Eqs. (6) and (7):

Bias=
1
N

∑N

i=1
(Hixf

i − yi −Hcf
i) (6)

RMSD=

√
1
N

∑N

i=1
(Hixf

i − yi −Hcf
i)

2, (7)

where xf
i is the forecasted daily average from the ensemble

mean, which is compared to the observations yi on the same
day. N is the number of times sampling was conducted over
the diagnostic period (either 365 or 366 yearly). For SST and
SLA, the bias term of cf

i is the online estimated correction
(cf
i = ca

i−1, as in Eq. 2). Error bars are used to represent the
standard deviations of these quantities – i.e., the variability
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Figure 5. Top: residual bias (left) and RMSD (right) between the daily average SLA from the reanalysis and the assimilated along-track
SLA data averaged over the period 1993–2013 (unit: cm). Bottom: the corresponding residual bias (left) and RMSD (right) between the daily
average SST from the reanalysis and the assimilated observations averaged over the period 1999–2013 (unit: ◦C). Areas with less than 30
observations have been masked in white.

of the RMSD or bias estimate through the calculation period.
For assimilated observations, the bias is the same as the b
term in the RCRV.

4.1 Sea level anomalies

The SLA accuracy in the reanalysis is evaluated in the pan-
Arctic region (defined to the north of 63◦ N; see Fig. 1). The
spatial variability of the bias and RMSD, calculated over the
whole reanalysis period (1993–2013), is shown at the top
of Fig. 5. The residual bias is mainly positive, with much
smaller amplitude than the estimated bias (see Fig. 2). Some
positive biases reach over 4 cm around the Lofoten Basin and
south of the Baffin Bay. Except for the sea ice edge in the
Greenland Sea, the high RMSDs (over 9 cm) match the areas
of large bias shown in Fig. 5. The spatially averaged bias is
1.6 cm, and the RMSD is about 6.2 cm.

The yearly time series of the SLA misfits and the observa-
tion number are shown on the left side of Fig. 6. The number
of assimilated observations evolves with the launch or com-

pletion of satellite missions. The number of observation in-
creases in 2000 with the launch of the GEOSAT Follow On
(GFO) mission. The missions of Topex, Jason 1 and Jason 2
do not contribute directly to the pan-Arctic region as their in-
clination is 66◦, unlike 70◦ for GFO. A low observation pe-
riod is in 2009–2010 with the end of GFO mission (Le Traon
et al., 2015), followed by an increase in 2011 with Cryosat-2,
a decrease in 2012 with the end of Envisat and a last increase
with the Saral/AltiKa mission in 2013. From 1993 to 2013,
the RMSD decreases gradually from over 9 cm to less than
6 cm. After 2000, the residual bias stabilizes around 1 cm but
remains positive. The RMSD gradually reduces with the in-
troduction of new and more accurate observations. The re-
duced altimeter constellation in 2009–2010 does not cause
an increase of the misfits. This demonstrates the advantage
of assimilating multiple types of observations, as improved
SSH may also be the result of improved SST or temperature
and salinity profiles. Meanwhile, the temporal standard devi-
ation of the RMSD during the year (shown as the half-error

www.ocean-sci.net/13/123/2017/ Ocean Sci., 13, 123–144, 2017
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Figure 6. Left: yearly averaged estimates of daily SLA RMSD (upper) and the residual bias (middle) of the TOPAZ reanalysis calculated
against the along-track SLA available in the pan-Arctic region (unit: cm). The error bars denote the standard deviations of the daily statistics
within each year. The bottom panel is the number of available observations in each year. Right: similar plot for monthly averaged estimate
of daily SLA RMSD (upper), and the residual bias (middle). The error bars denote the standard deviations of the daily statistic within each
month. The bottom panel shows the number of observations available for each month in the pan-Arctic during 1993–2013.

bar) also reduces from 1–2 cm to less than 1 cm, indicating
the system is getting more stable with time.

The seasonal cycle of the accuracy is shown on the right
side of Fig. 6. The SLA being masked by sea ice, the number
of observations varies seasonally in opposition to the sea ice
cover. The RMSD ranges from 5 to 7 cm as a consequence
of the seasonal spatial coverage. The residual bias is positive
throughout 1 year but reaches a maximum in April. This may
be explained as well by the seasonal sea ice coverage, but
also by a possible underestimation of the thermal expansion.
The standard deviations of the residual bias and RMSD have
no visible seasonality.

4.2 Sea surface temperatures

The spatial variability of the SST misfits during 1999–2013
is shown at the bottom of Fig. 5. Note that SST is masked
under sea ice, as done during assimilation. There are stripes
of cold residual bias and high RMSD along the ice edge from
north of the Svalbard Island until south of the Greenland Sea.
These are contradictory to the sea ice concentration biases in
the same areas in Sect. 4.4, where a cold bias corresponds
with too little ice. The accuracy of SST observations near
ice edge is poor and relies on strong ad hoc assumptions.
Another salient feature is the warm bias (> 0.3 ◦C) north of
the Denmark Strait where the recirculation of Atlantic water
inflow is excessive in TOPAZ4 (Lien et al., 2016). This pat-
tern was also visible in the estimated bias shown in Fig. 2,
suggesting that the estimated bias accounts for most of the
bias but that it still underestimates the true bias. An addi-

tional stripe of the cold residual bias and higher RMSD is
clear along Mohns Ridge, also pointing to topographic steer-
ing issues. In the Barents Sea, a relative weak bias is notice-
able. Besides these areas, most of the SST RMSD is lower
than 0.6 ◦C. On average, in the whole Arctic region, the SST
RMSD is about 0.44 ◦C during the period 1999–2013.

The evolution of SST accuracy of the TOPAZ4 reanal-
ysis is shown on the left side of Fig. 7, together with the
number of observations. In June 1998, the coarse-resolution
Reynolds SST is swapped to the higher-resolution OSTIA
SST and the number of observations increases drastically.
On average, over the period 1991–2013, the SST RMSD is
about 0.63 ◦C, and the bias −0.08 ◦C. In the first years, the
SST RMSDs are initially about 1 ◦C but decrease gradually
down to 0.8 ◦C before 1998. During this period, the model
has a cold SST bias around −0.3 ◦C with 0.1 ◦C standard
deviation. After the introduction of OSTIA, the SST bias
settles down closer to zero, but a slight positive in summer
is still noticeable before 2011. Meanwhile, the RMSD de-
creases rapidly below 0.6 ◦C as a direct consequence of the
bias reduction and the more abundant observations. In 2010,
the RMSD reaches the minimum below 0.4 ◦C. At that time,
the ensemble spread was getting too small, and the system
performance was too constrained by SST, as can be seen in
the standard deviation of RMSD. It was thus decided to ar-
tificially increase the SST observation errors, which resulted
in a small increase of the misfit up to 0.5 ◦C. It is clear from
the above that the transition to high-resolution SST in our
system has led to a higher SST accuracy.
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Figure 7. Same as the previous figure but for SST over the period 1991–2013 (unit: ◦C).

Furthermore, the seasonal performance of SST is shown
in Fig. 7. As for SLA, the number of observations varies sea-
sonally with the sea ice mask and causes the changes of the
bias and RMSD. The RMSD is minimum in September and
October with less than 0.4 ◦C owing to more observations,
and is maximum at 0.6 ◦C in June and July when the bias is
maximum as well. The reason for the larger bias in summer
months is indeterminate but should relate to the inaccuracies
of the mixed layer depths and the atmospheric radiative forc-
ing.

4.3 In situ temperature and salinity profiles

There are 1.1× 105 temperature and salinity profiles assimi-
lated in the pan-Arctic region during the period 1991–2013,
but their distributions and the respective uncertainties are
very uneven both in time and space, with more observations
in ice-free areas and during the IPY. In order to limit vari-
ability of the uncertainty, the bias normalized by the uncer-
tainties of the observation and model error (i.e., b as de-
fined in Eq. 4), is shown in Fig. 8. For temperature, there
is a cold (warm) bias along the west (east) coast of the Sval-
bard archipelago, which indicates a northward Atlantic water
flow that is too weak across the Fram Strait and a southward
flow of Arctic water east of Svalbard that is too weak. There
are biases that are too saline on both coasts of the Svalbard
archipelago and along the Norwegian coast. They likely re-
sult from an underestimation of river discharges.

To investigate the vertical structures of the biases, the av-
eraged temperature and salinity profiles from the reanalysis
and the climatology WOA13 (Locarnini et al., 2013), and
their misfits are shown in Fig. 9. The analysis is separated

into four subregions: the central Arctic, the Barents Sea, the
Greenland Sea and the Norwegian Sea (see Fig. 1).

In the central Arctic, the average profiles depict well
the cold halocline water near the surface and warm saline
water around 400 m associated with Atlantic water (AW).
Near the surface (deeper than 200 m), the salinity misfits
of TOPAZ4 are slightly smaller than the climatology. The
core Atlantic water is clearly too diffuse in TOPAZ4 (not
pronounced enough and vertically too broad), leading to a
cold bias (−0.3 ◦C) and 0.5 ◦C RMSD around that depth. An-
other large RMSD is noticeable around 1000 m (0.6 ◦C and
0.3 psu). Since the bias at that depth is low and since the cli-
matology has lower RMSD, it suggests that TOPAZ4 has too
much variability at depths. That variability is likely due to
the data assimilation setup with the combined effect of mul-
tiplicative inflation and spurious correlations (see Sect. 2.2).

In the Greenland Sea, the temperature RMSDs and biases
are again slightly smaller than the climatology near the sur-
face (upper 200 m), but degrade very near below, reaching
the maxima of RMSD (> 1 ◦C and 0.1 psu) and bias around
800 m.

In the Norwegian Sea, the features are similar: the model
has some skills near the surface but deteriorates at depths
where the AW is present but is too diffuse. It is too broad and
does not capture the maximum at the same depth as in the
observation. It is a well-known limitation of ocean models
nowadays (Ilıcak et al., 2016).

In the Barents Sea, the RMSD for temperature and salinity
can be reduced near the surface, even compared to that of
the climatology. But the AW (temperature > 3 ◦C and salinity
> 35 psu, Blindheim and Østerhus, 2003) of the TOPAZ4 is
too warm and saline, which suggests there is too much AW
inflow or too weak a vertical mixing.
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Figure 8. Spatial distribution of b for in situ temperature (left) and salinity (right) during the period from 1991 to 2013. The observation
number in a grid is required to be more than 30. Note that profiles may end at different depths and cause spottiness.

Furthermore, we investigate the time evolution of the mis-
fits throughout the reanalysis. Figure 10 shows the time se-
ries of the root mean square innovations (RMSIs) of temper-
atures and salinities in the whole Arctic at depths of 300–
800 m, indicative of the Atlantic water layers. As in Sakov et
al. (2012), the total uncertainty is added to assess the time re-
liability of the system. However, in this study, we use the for-
mulation of σtot from Rodwell et al. (2016), which assumes
that for a perfect reliable system RMSI is equal to σtot, with
bias included:

σ 2
tot = BIAS2

+ σ 2
en+ σ

2
o . (8)

Here, the term “BIAS” refers to the innovation mean equiva-
lent to the misfit at assimilation time.

For temperature profiles, the BIAS is negative, especially
during the period of 1994–2005, indicating a warm bias at
300–800 m depths. This bias is persistent in the whole pe-
riod, but reduces during the international Polar Year (IPY)
period. Concurrently, the RMSI (red line in Fig. 10) also de-
creases after 2006. Since the reliability remains constant dur-
ing the IPY (see Sect. 3), the enhanced accuracy can be con-
sidered a performance improvement, directly caused by the
intensive observation efforts. The diagnosed uncertainty σtot
(blue dashed line) and the RMSI are evolving in phase, which
indicates a good potential for probabilistic forecasting. After
the E2 event, the diagnosed σtot slightly underestimates the
RMSI, which may result from the removal of the multiplica-
tive inflation.

For salinity, the model seems too saline until the start of
the IPY. The bias does not reemerge post-IPY when the num-
ber of salinity observations is very much reduced but still
covers the same regions. The RMSI is also reduced during
the IPY. Although there is some similarity in the evolution
of the two curves, the diagnosed σtot is overestimating the

RMSI. This result seems to contradict the underdispersion in
Fig. 3, but the difference relates to the depths at which the
metrics are calculated (300–800 m here against full observa-
tion depth in Fig. 3). The cause of the overestimation stems
from too large an observation error (not shown) and suggests
a revision of the observation error settings for salinity pro-
files.

4.4 Sea ice concentration

Relative to the daily sea ice concentration product from OS-
ISAF (CMEMS OSI TAC product), the spatial variability of
the SIC misfits is shown in Fig. 11. As a large seasonal vari-
ability in the sea ice extent, this is carried out at two charac-
teristic times of one year: the maximum (March) and mini-
mum ice extent (September).

In March, there is a dipole anomaly on either side of the
ice edge in the Greenland Sea. The ice edge in TOPAZ4 is
transiting too sharply from pack ice to open water because
the heat capacity of the ice is neglected. This leads to a
dipole bias (positive inside the ice and negative outside) dur-
ing the melting season. There is also a weak bias over regions
that are usually ice-free. Indeed, OSISAF does not employ
weather filtering and places a thick band of low concentra-
tion (< 10 %) in ice-free regions (Ivanova et al., 2015).

In September, TOPAZ4 shows a negative bias in the
Greenland Sea. At that time of the year, the sea ice flows
southwards and TOPAZ4 tends to underestimate the south-
ern extension of the sea ice tongue along Greenland. This
indicates that the dynamical forcing is biased or that the drag
coefficients are incorrect as the ice is in free drift there.

The RMSD is approximately 5 % in most of Arctic region
except close to the sea ice edge where the RMSD exceeds
25 %, which coincides with regions where the bias is high.
Data assimilation does constrain the sea ice concentrations
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Figure 9. The mean profiles of temperature (left) and salinity (right) and the corresponding bias and RMSD in each of the marginal seas of
the pan-Arctic region. The green circles indicate the observations, the blue lines indicate the TOPAZ reanalysis and the pink lines are from
the WOA13 climatology. The numbers in the first-column sub-panels are the minimal and maximal number of observations available in each
of the 50 m depths; the upper numbers in the other-column sub-panels are the mean estimates in vertical for TOPAZ reanalysis, and the lower
numbers are for WOA13.
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Figure 10. Time series of innovation statistics for temperature (top)
and salinity (bottom) observed at the depth between 300 and 800 m
depths. The bias is plotted with a green line, the RMSD is in red
and the number of assimilated observations is plotted with a grey
line. The blue dashed line indicates σtot as defined in Eq. (8). The
time series are filtered with a 28-day moving window. The vertical
dashed lines indicate the change events tuning the bias correction in
the course of the TOPAZ reanalysis.

but the model biases (lack of resolution of ocean currents,
biases of ice drift or ice thickness) still cause locally high
residual errors of ice concentrations.

In order to assess the interannual variability of the perfor-
mance of TOPAZ4, we have decided to use the standard sea
ice extent (SIE) metric. SIE is calculated as the surface area
in which the ice concentration is larger than 15 %.

As the variability in the decadal trend of SIE in the Arc-
tic is large, we present the interannual evolution in the whole
Arctic and in two subregions: the Greenland Sea and Barents
Sea (Fig. 12). TOPAZ4 shows good agreement with the OS-
ISAF observations in the pan-Arctic region and the mean SIE
in the 23 years is 8.03× 106 instead of 7.96× 106 km2 in the
observations. The decreasing trend of SIE during the period
1991–2013 is -6.16× 104 km2 yr−1, which compares well to
the trend of the observations (−6.34× 104 km2 yr−1).

In the Greenland Sea, the SIE in TOPAZ4 is underesti-
mated, which clearly relates to the bias in the southern extent
of the sea ice tongue along the coast of Greenland. The bias
in TOPAZ4 is on average −3.6× 104 km2 and the decreas-
ing trend in TOPAZ4 is−3.1× 103 km2 yr−1, which is larger
than observed (−2.3× 103 km2 yr−1). In the Barents Sea, the
variability agrees well, although TOPAZ4 underestimates the
SIE slightly. The decreasing trend is comparable.

The seasonality of the SIE in OSISAF and TOPAZ4 is in-
vestigated in Fig. 13. It is clear that the seasonal cycle of the

ice extent is generally well simulated by the reanalysis in the
pan-Arctic area. In the summer months from June to August,
a slight underestimation of the ice extent is apparent, and the
minimal ice extent comes a little too early compared to the
observations. In the Greenland Sea, the underestimation of
sea ice extent is larger. The underestimation of sea ice ex-
tent starts in February and increases during the sea ice melt,
reaching a maximum (of about 1× 105 km2) in July. In the
Barents Sea, the seasonal cycle is well simulated but some
differences are noticeable there in the beginning of the year,
reaching a maximum in April, and returning to zero in Au-
gust and September when there is no ice.

4.5 Sea ice drift

The sea ice drifts from the buoy data of the International
Arctic Buoy Program (IABP) are available at 12 h frequency
from 1991 to 2011. It is an independent data set and is used
here for validation. To avoid the “survival bias” caused by
the retreat of sea ice from the marginal seas and unresolved
coastal effects, the buoy drift vectors are limited to the cen-
tral Arctic, as shown with the red line in the right panel of
Fig. 1. The waters shallower than 30 m and closer than 50 km
to the coastline are excluded. This data set has been grid-
ded to be compared with the model. Each grid cell is filled
(i.e., considered reliable) if the calculation involves at least
30 buoys within a day. A coarser grid than the model reso-
lution is used (four grid cells which correspond to approxi-
mately 60× 60 km2) to avoid having too many empty cells.
The daily average from the measurement is the mean of the
12 h drifting speed. For comparison, the model drifting speed
is calculated from the daily average of eastward and north-
ward velocity. Several approximations are made during this
comparison; we compare Eulerian to Lagrangian drift which
is expected to be faster; the model ice drift is calculated from
daily averages of u and v instead of daily ice drift, which is
faster by approximately 0.5 km per day (not shown).

On average, over the period 1991–2011, the mean drift
fields of sea ice are presented in Fig. 14. As the resulting drift
estimate appeared noisy, a smoothing with the neighboring
grid cells has been applied. Both observations and TOPAZ4
show a similar pattern with a pronounced Beaufort Gyre, al-
though the center of the gyre is slightly shifted. We can also
notice that TOPAZ4 globally overestimates the ice drift with
a bias of 1.7 km d−1. In the Chukchi Sea, TOPAZ4 underes-
timates the drift by approximately −2 km d−1.

Over the period 1991–2011, the monthly time series of the
ice drift speeds are compared in Fig. 15. They are averaged
in the central Arctic from the reanalysis and the buoy data,
respectively. On average, the drift speed is about 7 km d−1

in buoy data, and about 9.4 km d−1 in the TOPAZ4 reanal-
ysis. The fast bias is clear until the end of 2010. From that
time onward, the drag coefficient of the atmosphere on sea
ice has been reduced from 2.14× 10−3 to 1.6× 10−3. We
can see that the bias is much reduced during the last year.
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Figure 11. Spatial bias (upper) and RMSD (lower) of sea ice concentration in the TOPAZ reanalysis for March (left) and September (right),
calculated from the daily averages for the period 1991–2013. The dashed black (green) lines delimit the monthly mean sea ice edges (at
15 %) in the TOPAZ reanalysis (OSISAF).

Figure 12. Yearly time series of the sea ice extent in the pan-Arctic
region, the Greenland Sea and the Barents Sea from TOPAZ reanal-
ysis (dashed) and OSISAF (solid).

Figure 13. Seasonality of the sea ice extents in the TOPAZ reanal-
ysis (blue line) and OSISAF (green line) in the pan-Arctic Ocean,
Greenland Sea and Barents Sea regions.
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Figure 14. Sea ice drift vectors (arrows) and speeds (color shading) averaged over the period 1991–2011 for (left) TOPAZ reanalysis and
(right) IABP buoys. The center of the anticyclonic Beaufort Gyre is marked with a magenta circle in the TOPAZ reanalysis (155◦W, 78.1◦ N)
and in the observations (145◦W, 77◦ N), respectively.

Figure 15. Monthly time series of the daily averaged sea ice drift
speeds in the central Arctic from the TOPAZ reanalysis (blue line)
and the IABP buoys (green line) during 1991–2011. The error bars
represent the standard deviations of the daily estimates for each
month.

The RMSD is on average 5.1 km d−1, of which 2.5 km d−1

can be attributed to the bias. The correlation between the two
curves is about 0.6.

In addition, the monthly seasonality cycle of the ice drift
over the period 1991–2011 is plotted in Fig. 16. While the
buoys show a clear seasonality in the ice drift, being slow-
est in March and fastest in September, the seasonality in
the TOPAZ4 reanalysis is weaker and reaches a minimum
in May (delayed by 2 months).

4.6 Sea ice thickness

The sea ice thickness in Arctic has attracted much atten-
tion in recent years because it has been found to be sensi-
tive to global warming (Kwok et al., 2009; Zygmuntowska
et al., 2014). In this study, sea ice thickness is an indepen-
dent data set, as it has not been assimilated. The observa-
tions of ice thickness with basin scale are still very few. A
satellite-derived product for the Arctic Ocean ice provides
the estimations of sea ice thickness for February–March and

Figure 16. Seasonality of the sea ice drift velocities from the re-
analysis and the buoy during 1991–2011.

October–November between 2003 and 2008 (ICESat, Kwok
et al., 2009). Figure 17 shows the spatial distributions of the
mean sea ice thicknesses and their differences. The spatial
correlations are 0.74 and 0.87 for spring and fall, respec-
tively. On average, TOPAZ4 is too thin compared to ICESat
with a bias of −0.79 and −0.64 m in spring and in fall. In
spring, TOPAZ4 is too thin, in particular north of Ellesmere
Island by approximately 2 m. There is a positive bias cen-
tered in the Beaufort Gyre in spring. In fall, this bias is wider
and displaced slightly to the east.

Another source of validation is the Unified Sea Ice Thick-
ness Climate Data Record (Lindsay, 2013) resulting from a
concerted effort to collect as many observations as possi-
ble of Arctic sea ice draft, freeboard and thickness. The sea
ice draft is measured by the sonar of US Navy Submarines
from National Snow and Ice Data Center (USSUB-DG and
USSUB-AN; Wadhams and Horne, 1980; Wensnahan and
Rothrock, 2005; Rothrock and Wensnahan, 2007), and the
sea ice thickness by flight campaigns from NASA Oper-
ation IceBridge (IceBridge; Kurtz et al., 2013), as shown
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Figure 17. Mean sea ice thicknesses from TOPAZ (upper) and ICESat (middle), and their difference (bottom) for February–March (left
column) and October–November (right column) averaged over the period 2003–2008.
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in Fig. 18a. The sea ice draft data have been diagnosed in
TOPAZ4 as proposed by Eq. (4) of Alexandrov et al. (2010):

Di =Hi ·
ρi

ρw
+Hsn ·

ρsn

ρw
, (9)

where Di is ice draft, Hi is ice thickness and Hsn is the snow
thickness. The ρi, ρw and ρsn are the densities for sea ice,
water and snow (respectively, 900, 1000 and 300 kg m−3).

The IceBridge ice thickness covers the period of 2009–
2011. TOPAZ4 reanalysis is too thin with a bias of 1.1 m, a
RMSD of 1.4 m and a correlation of 0.5. The bias against the
sea ice draft is smaller with 0.3–0.4 m, and a RMSD about
0.6–0.7 m. The correlation coefficients are relatively good
with 0.86 and 0.69, which is higher than for the IceBridge
data. These discrepancies are likely to be related to the spa-
tial distribution of the different data sets. Hence, IceBridge
data are concentrated around the northern coast of Greenland
where TOPAZ4 showed largest bias in the comparison with
ICESat.

As another diagnostic of interest, the daily time series of
sea ice volume from TOPAZ4 in the Arctic in 1991–2013 is
shown by the blue curve in the left panel of Fig. 19. Before
2001, the sea ice volume varies stably around 1.4× 104 km3,
with a significant seasonal variability between 8× 103 km3

and 1.9× 104 km3. Afterwards, in the period 2001–2010, the
sea ice volume decreases dramatically. This reduction of sea
ice volume is qualitatively consistent with the limited satel-
lite records. First, the estimate from Kwok et al. (2009), de-
rived from the ICESat record from 2003 to 2008, shows a
similar trend. After revising the uncertainties of input data
(snow depth, sea ice density and ice concentrations), Zyg-
muntowska et al. (2014) corrected the estimates of the mean
sea ice volume, shown as the starred line in Fig. 18. With
respect to these sea ice volume estimates, TOPAZ4 still has
too little ice. In the right panel of Fig. 19, the seasonal cycles
of sea ice volume from TOPAZ4 and the standard deviation
in the 23 years are shown by the blue curve and the cyan
error bars, respectively. In May, the maximum sea ice vol-
ume is about 1.5× 104 km3, and in September is less than
5× 103 km3. The sea ice volumes from Zygmuntowska et
al. (2014) are plotted on top of the averaged TOPAZ4 sea-
sonal cycle in the period 1991–2013. These correspond well
to the model climatology, but still betray an underestimation
because the measurements are representative of a period of
lower ice volume.

The TOPAZ4 seasonal cycle of ice volume seems to
change in amplitude during different time eras, although the
reasons lie in two successive changes of the settings of the
EnKF. In December 2001, the variance of precipitation er-
rors is increased from 1.10−17 to 1.10−12 m2 s−2, as an ad-
justment for a slow decrease of ensemble spread. These per-
turbations being truncated Gaussian, the truncation resulted
in excessive snow precipitations. The excessive snow depths
have then isolated the ice from the atmosphere and reduced
the amplitude of the yearly cycle from 1.08 to 0.74 m (see

Fig. 20); this also delayed the phase of the cycle. In January
2011, an unbiased log-normal law replaced the truncated
Gaussian perturbations with an amplitude of 30 %. The am-
plitude and phase of the seasonal cycle returned to more cor-
rect values. The sensitivity experiments in Finck et al. (2013)
verified the above-mentioned issue.

5 Summary and discussions

This study is conducted to present and validate the official
physical multi-year CMEMS product for the Arctic region.
The proposed reanalysis is unique compared to other reanal-
ysis products (see Table 1 of Chevallier et al., 2016). It pro-
poses a long high-resolution dynamical reconstruction of the
ocean and sea ice, and assimilates a complete set of observa-
tions available in the Arctic region with an advanced ensem-
ble data assimilation method and with strongly coupled data
assimilation between ocean and sea ice. The above results
present a concise account of the strengths and weaknesses of
the resulting data set. The above findings can be summarized
variable by variable:

SLA In the period 1993–2013, the RMSD of daily SLA in
the reanalysis is gradually decreased from over 9 cm to
less than 6 cm in the pan-Arctic region. The introduc-
tion of a bias estimation scheme proves very efficient in
constraining the bias. The largest RMSDs over 9 cm are
found around the Lofoten Basin. There is also a patch of
larger misfit near the ice edge, but observations are also
less accurate there. There is a weak seasonality in the
performance of the system with the best results in the
summer. The system is slightly overdispersive mostly
due to bias estimation.

SST The SST RMSD is about 0.63 ◦C over the period 1991–
2013, and after 1999 it is reduced to about 0.44 ◦C
with a smaller bias around −0.02 ◦C. The transition to
high-resolution OSTIA SST is highly beneficial for con-
straining the bias and the RMSD, but an overestimation
of the observation error from the provider was needed
to avoid a collapse of the ensemble spread. The perfor-
mance of the system varies seasonally following the ob-
servational amounts and a larger bias during summer
months. The system dispersion is close to 1 in most of
the years but can be over- or underdispersive depending
on the settings of observation errors and bias estimation.

Temperature and salinity profiles The misfits of the re-
analysis are small near the surface (in the top 100 to
200 m), even compared to those of the WOA13 clima-
tology. Below this depth, the model shows large biases
and performs poorer (RMSD > 1 ◦C and about 0.1 psu).
Some of the biases relate to the limitations of the model
to maintain the Atlantic water (as expected from Ilıcak
et al., 2016) and others relate to a degradation intro-
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Figure 18. Validation the sea ice thickness in the TOPAZ reanalysis versus available in situ observations. (a) Locations of in situ observations
available from IceBridge, USSUB-AN and USSUB-DG in the central Arctic. Regression analysis of TOPAZ reanalysis (b) vs. IceBridge;
(c) vs. USSUB-AN; (d) vs. USSUB-DG.

Figure 19. Left: time series of the daily averaged sea ice volume in the Arctic from the TOPAZ4 (blue line) and the observations from Kwok
et al. (2009) and from Zygmuntowska et al. (2014). Right: daily time series of the averaged sea ice volume in the Arctic from the TOPAZ4 for
the period 1991–2013 (blue line) and the standard deviation shown as the cyan error bar. The grey lines represent the extreme volumes in the
23 years. The triangle and start markers are the observations estimated by Kwok et al. (2009) and Zygmuntowska et al. (2014), respectively.

duced by data assimilation (a flat multiplicative infla-
tion). A large improvement occurred at the times when
the inflation method was upgraded and when there were
more available observations during the IPY. The system
reliability is overall stable in time, in spite of the very
inhomogeneous data sampling over the past 23 years.

Sea ice concentration and extent TOPAZ4 agrees well
with the OSI-SAF sea ice concentrations. On average,
the RMSDs are lower than 5 % and the biases close
to zero. The misfits are larger close to the ice edge,
and poorest in the Greenland Sea. The errors are
related to biases in the thermodynamics and dynamics
of the sea ice model. The bias is largest during the
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Figure 20. Top: yearly time series of the seasonal amplitudes of
the mean sea ice thickness in the central Arctic, shown with the
solid black line. The dashed lines represent the averaged estimate
for 1991–2000, 2001–2010 and 2011–2013 (1.08, 0.74 and 1.18 m,
respectively). Bottom: daily time series of the mean sea ice thick-
ness in the central Arctic for three different time periods. The black
dashed lines denote the standard deviation for the 23 yearly esti-
mates.

summer season. The performance is stable throughout
the reanalysis but the dispersion is consistently too
low (d = 0.55), probably due to a too rudimentary
thermodynamical sea ice model.

Sea ice drift The averaged drift in TOPAZ4 shows compa-
rable patterns to independent observation from IABP
buoys with the classical Beaufort Sea gyre and trans-
polar drift. However, the center of the gyre is slightly
misplaced. The RMSD of drift speed in the reanaly-
sis is about 5.1 km d−1, and has a fast bias by about
2.5 km d−1. The monthly time variability compares
well, but TOPAZ4 has too weak a seasonal cycle and
shifted by 2 months. From 2011 onwards, the atmo-
spheric drag coefficient was adjusted and the ice drift
speed agrees better with observations after the change.
Still, with RMSDs of 5 km d−1 close to the signal itself,
improving the performance of ice drift appears a prior-
ity for future operational use. The dispersion is also low
but becomes too large after switching to a different ob-
servational product.

Sea ice thickness TOPAZ4 shows some large biases (ap-
proximately −1.1 m) compared to ice thickness from
ICESat and IceBridge as well as compared to ice draft
data, although the thick ICESat ice draft may have been
overestimated (Khvorostovsky and Rampal, 2016). The
thickness bias is largest north of Ellesmere Island with
bias up to 2 m. The spatial pattern and regression com-
pare reasonably well. The ice is too thin in the period

2001–2010 due to excessive snow depths and the sea-
sonal cycle is too small during that time.

RCRV diagnostics have shown a good balance between the
different data types assimilated: none of the data types are
severely less dispersed than the others. The results from the
23-year reanalysis show overall a reasonable stability over
time and good agreements with observations. However, some
clear discontinuities are caused by transitions from one data
set to other new observations in areas that were completely
unobserved, and also by changes in the data assimilation set-
tings. Assessing the system for such a long period also re-
veals some limitations that are either inherent to the data as-
similation implementation or due to model flaws. In the fol-
lowing, we list the possible reasons and the means to tackle
these in the future version of the ARC MFC system.

– The Atlantic waters have a signature that is too diffused.
In order to improve their advection, we will double the
horizontal and vertical resolution (50 hybrid layers and
5 km horizontal resolution). The parameterization of di-
apycnal mixing will be reduced under sea ice as pro-
posed in Morison et al. (1985). We also foresee that in-
creasing the resolution will be well useful for resolving
the circulation in the Nordic Seas and reduce the sea-
sonal biases of SST and SSH.

– The system has too sharp an ice edge. The current ther-
modynamic model does not account for the heat capac-
ity of the sea ice. TOPAZ will be upgraded to the com-
munity sea ice mode CICE (Hunke et al., 2010), which
uses a complex thermodynamic parameterization.

– Observations detect melt ponds as open water, whereas
melt ponds are not simulated in the current TOPAZ4.
This creates bias in sea ice during summer months that
is transferred to the interior of the ocean via coupled
data assimilation. In the future, we will choose the best
alternative between using an existing melt pond model
or detect and remove the signature of the melt ponds
from the observations.

– Comparisons against sea ice drift and ice thickness
highlighted more severe limitations: ice that is too thin ,
a thickness gradient that is too smooth from Greenland
into the Beaufort Gyre; the center of the Beaufort Gyre
being slightly misplaced, the sea ice drift being too fast.
These biases can be reduced by optimizing the sea ice
strength (P ∗) and the drag parameters both in ocean and
atmospheric (Massonnet et al., 2014). However, optimal
values of these parameters are moving targets in view
of their limited physical realism. The methodology pro-
posed by Barth et al. (2015), to estimate biases in at-
mospheric wind from ice drift will also be considered.
But the RMSDs of ice drift are relatively high (5 km d−1

for an ice drift generally inferior to 10 km d−1) although
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comparable to short-term forecasts in Schweiger and
Zhang (2015). These fluctuating misfits are less likely
to be reduced by model tuning.

– There are further indications that the viscous-plastic and
the related elastic–viscous–plastic rheologies have in-
herent limitations for simulating long-term properties
of the ice drift – e.g., the acceleration of sea ice drift,
the phase of its seasonal cycle (Rampal et al., 2011). A
high-priority objective is therefore to couple TOPAZ to
the neXtSIM sea ice model that is based on an elasto-
brittle rheology. Recent studies with a forced version of
neXtSIM (Bouillon and Rampal, 2015; Rampal et al.,
2016) suggest that the model is capable of reproducing
the sea ice deformations over a wide range of spatial and
temporal scales and reduces the error of the sea ice drift.
It is of interest to understand to which extent the cou-
pling feedback will respond to this improved dynamical
model.

– The online bias estimation appeared quite successful
to limit bias in our model, but its implementation in
the EnKF was very sensitive to the choice of inflation
method used. The latest configuration that combined
r factor inflation and autoregressive additive inflation
for parameters is our recommendation in a realistic sys-
tem with a strongly variable observation network.

– The EnKF has proven capable to assimilate a large va-
riety of observations, but more observations should be
assimilated, like the sea ice thickness of thin ice from
the European Space Agency’s (ESA) Soil Moisture
and Ocean Salinity (SMOS) in Kaleschke et al. (2012)
and Tian-Kunze et al. (2014). Also the complemen-
tary thickness of thick ice from ICESat (Kwok et al.,
2009; Khvorostovsky and Rampal, 2016) and CryoSat-
2 (Wingham et al., 2006; Laxon et al., 2013), and SMOS
sea surface salinity (Reul et al., 2012) will be tested in
order to determine how to better assimilate into the sys-
tem in the near future.

– Although efforts were made to freeze as much of the as-
similation setting as possible, some change have been
necessary: e.g., replacing the multiplicative inflation by
additive inflation or changes of observation product.
These have caused discontinuities in the accuracy and
in the reliability of the system. These discontinuities
may become problematic for the interpretation of mech-
anisms of variability in the Arctic. For optimizing its
consistency, a reanalysis should limit its observation
network to that available through the whole reanalysis
period, as done in Counillon et al. (2016) with assimila-
tion of SST only. However, such a type of reanalysis pri-
oritizes consistency at the expense of accuracy, which is
not the purpose of the TOPAZ system. In a future re-
analysis production, consistently reprocessed data sets

from the ESA climate change initiatives (ESA CCIs)
will be assimilated over the whole period (these were
not available at the start of this reanalysis). The mon-
itoring of reliability metrics can be automated and the
results presented here indicate that the reliability should
then remain stable.

– The next physical ARC MFC reanalysis will provide a
stochastic product, in order to provide a natural frame-
work for estimating the system accuracy in space and
time, and to provide input data for probabilistic weather
or stand-alone sea ice models.

6 Data availability

The reanalysis data used in this paper are freely available
from CMEMS (http://marine.copernicus.eu) under the prod-
uct named ARCTIC_REANALYSIS_PHYS_002_003. The
ensemble statistics are estimated by the diagnosing files,
which can be obtained from the authors. Assimilated obser-
vations are listed in the text; additional in situ ocean temper-
ature and salinity profiles are from IOPAS, ICES, MMBI and
AARI and quality-checked by Alexander Korablev.
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