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Abstract. The self-organizing map (SOM) technique is con-

sidered and extended to assess the extremes of a multivariate

sea wave climate at a site. The main purpose is to obtain a

more complete representation of the sea states, including the

most severe states that otherwise would be missed by a SOM.

Indeed, it is commonly recognized, and herein confirmed,

that a SOM is a good regressor of a sample if the frequency

of events is high (e.g., for low/moderate sea states), while a

SOM fails if the frequency is low (e.g., for the most severe

sea states). Therefore, we have considered a trivariate wave

climate (composed by significant wave height, mean wave

period and mean wave direction) collected continuously at

the Acqua Alta oceanographic tower (northern Adriatic Sea,

Italy) during the period 1979–2008. Three different strate-

gies derived by SOM have been tested in order to capture the

most extreme events. The first contemplates a pre-processing

of the input data set aimed at reducing redundancies; the sec-

ond, based on the post-processing of SOM outputs, consists

in a two-step SOM where the first step is applied to the orig-

inal data set, and the second step is applied on the events ex-

ceeding a given threshold. A complete graphical representa-

tion of the outcomes of a two-step SOM is proposed. Results

suggest that the post-processing strategy is more effective

than the pre-processing one in order to represent the wave

climate extremes. An application of the proposed two-step

approach is also provided, showing that a proper represen-

tation of the extreme wave climate leads to enhanced quan-

tification of, for instance, the alongshore component of the

wave energy flux in shallow water. Finally, the third strategy

focuses on the peaks of the storms.

1 Introduction

The assessment of wave conditions at sea is fruitful for

many research fields in marine and atmospheric sciences and

for human activities in the marine environment. In the past

decades, the observational network (mostly relying on buoys,

satellites and other probes) has been integrated with numer-

ical model outputs allowing one to obtain the parameters of

sea states over wider regions. Apart from the collection of

wave parameters, the technique adopted to infer the wave

climate at those sites is a crucial step in order to provide

high-quality data and information to the community. In this

context, several statistical techniques have been proposed to

provide a reliable representation of the probability structure

of wave parameters. While univariate and bivariate probabil-

ity distribution functions (PDFs) are routinely derived, mul-

tivariate PDFs that represent the joint probability structure

of more than two wave parameters are not straightforward.

For individual waves, for instance, the bivariate joint PDF

of wave height and period was derived by Longuet-Higgins

(1983) and the bivariate joint PDF of wave height and direc-

tion was obtained by Isobe (1988). A trivariate joint PDF of

wave height, wave period and direction is due to Kwon and

Deguchi (1994). For sea states, attempts have been made to

model the joint probability structure of the integral wave pa-

rameters. For instance, a joint PDF of the significant wave

height and the average zero-crossing wave period was de-

rived by Ochi (1978) and Mathisen and Bitner-Gregersen

(1990). De Michele et al. (2007) exploited the “copula” sta-

tistical operators to describe the dependence among several

random variables, e.g., significant wave hight, storm dura-

tion, storm direction and storm interarrival time, deriving

their joint probability distributions. The same approach was
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applied by Masina et al. (2015) to the significant wave height

and peak water level in the context of coastal flooding.

Recently, the self-organizing map (SOM) technique has

been successfully applied to represent the multivariate wave

climate around the Iberian Peninsula (Camus et al., 2011a,

b) and the South American continent (Reguero et al., 2013).

SOM (Kohonen, 2001) is an unsupervised neural network

technique that classifies multivariate input data and projects

them onto a uni- or bi-dimensional output space, called

map. The SOM technique was originally developed in the

1980s, and has been largely applied in various fields, includ-

ing oceanography (Liu et al., 2006; Solidoro et al., 2007;

Morioka et al., 2010; Camus et al., 2011a; Falcieri et al.,

2013). Typical applications of SOM are vector quantization,

regression and clustering. SOMs gained credit among other

techniques with same applications due to its visualization ca-

pabilities that allow one to get multi-dimensional informa-

tion from a two-dimensional lattice. The SOM also has the

advantages of unsupervised learning; therefore, vector quan-

tization is performed autonomously. However, the quanti-

zation is strongly driven by the input data density. Indeed,

the SOM is principally forced by the most frequent condi-

tions, while the most rare (i.e., the extreme events) are of-

ten missed. Consequently, it is highly unlike to find extremes

properly represented on a SOM.

In the context of ocean waves, drawing upon the works

of Camus et al. (2011a, b) and Reguero et al. (2013), the

SOM input is generally constituted by a set of wave param-

eters measured or simulated at a given location and evolv-

ing over the time t , e.g., the triplet composed by significant

wave height Hs(t), mean wave period Tm(t) and mean wave

direction θm(t), even if other variables can be added (exam-

ples of five- or six-dimensional inputs can be found in Ca-

mus et al., 2011a). Several activities in the wave field could

benefit from the SOM outcomes, such as selection of typi-

cal deep-water sea states for propagation towards the coast

to study the longshore currents regime and coastal erosion,

identification of typical sea states for wave energy resource

assessment and wave farm optimization. In addition the em-

pirical joint and marginal PDFs can be derived from SOMs.

As accurately shown in Camus et al. (2011b), besides inter-

esting potentials, especially in visualization, some drawbacks

in using the SOM for wave analysis have emerged with re-

spect to other classification techniques. Indeed, the largestHs

are missed by SOMs because such extreme events are both

rare (few comparisons in the “competitive” stage of the SOM

learning) and distant from the others in the multi-dimensional

space of input data (poorly influenced during the “coopera-

tive” stage).

Moving from this evidence, the scientific question being

asked is how can we employ SOM with its visualization ca-

pabilities to improve representation of the extremes of a mul-

tivariate wave climate at a location. To answer this question

we have followed three different strategies. First, we have

pre-preprocessed the SOM input data using the maximum-

dissimilarity algorithm (MDA) in order to reduce the redun-

dancies of the frequent low and moderate sea states, as done

by Camus et al. (2011a). Indeed, MDA is a technique that

reduces the density of inputs by preserving only the most

representative (i.e., the most distant from each other in a Eu-

clidean sense). Doing so, the most severe sea states are ex-

pected to gain weight in the learning process. We have called

this strategy MDA-SOM. Then, we have focused on the post-

processing of the SOM outputs. In this context, we have ap-

plied a two-step SOM approach (herein called TSOM), by

firstly running the SOM to get a reliable representation of the

low/moderate (i.e., the most frequent) wave climate, and then

by running a second SOM on a reduced input sample. This

new sample has been obtained by taking from first-step SOM

results the events exceeding a prescribed threshold (e.g., 97th

percentile of Hs). To present results of two-step SOMs, we

have proposed a double-sided map, showing on the left the

SOM with the reliable representation of the low/moderate

sea states, and on the right the map with the most severe sea

states (i.e., the extremes). Then, we have applied a SOM to

the peak of the storms individuated by means of a peak-over-

threshold analysis (calling this strategy POT-SOM) and we

have represented results using the double-sided map. An ap-

plication of the proposed TSOM approach is finally reported:

we have exploited the TSOM results to compute the long-

shore component of the wave energy flux, showing that a

more proper representation of the extreme wave climate leads

to an enhanced quantification of the energy approaching the

shore.

2 Data

The data set employed for the SOM analysis consists of wave

time series gathered at the Acqua Alta oceanographic tower,

owned and operated by the Italian National Research Council

– Institute of Marine Sciences (CNR-ISMAR). Acqua Alta is

located in the northern Adriatic Sea (Italy, northern Mediter-

ranean Sea), approximately 15 km off the Venice coast at

17 m depth (Fig. 1) and is a preferential site for marine obser-

vations (wind, wave, tide, physical and biogeochemical water

properties are routinely retrieved), with a multi-parameter-

measuring structure on board (Cavaleri, 2000) upgraded over

the years. For this study, we have relied on a 30-year (1979–

2008) data set of 3-hourly significant wave height Hs, mean

wave period Tm and mean wave direction of propagation θm

(measured clockwise from the geographical north), observed

using pressure transducers. Preliminarily, data have been pre-

processed in order to remove occasional spikes. To this end,

at first the time series have been treated with an ad hoc de-

spiking algorithm (Goring and Nikora, 2002). The complete

data set is therefore constituted of three variables and 50 503

sea states.

Basic statistics of the time series (Table 1) point out

that sea states at Acqua Alta have on average low inten-

sity (〈Hs〉 = 0.62 m, where 〈−〉 denotes mean), though occa-
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Figure 1. Acqua Alta (AA) oceanographic tower location in the northern Adriatic Sea, Italy (left panel). The tower is depicted in the right

panel.

Table 1. Wave climate at Acqua Alta in the period 1979–2008. Mean (〈−〉), standard deviation (SD), minimum (min), nth percentile (nth

perc), and maximum (max) of wave parameters.

〈−〉 SD min 50th perc 95th perc 97th perc 99th perc max

Hs (m) 0.62 0.57 0.05 0.44 1.80 2.12 2.68 5.23

Tm (s) 4.1 1.1 0.5 3.9 6.0 6.35 7.18 10.1

θm (◦ N) 260 72 1 270 336 343 353 360

sionally they can reach severe levels: the most intense event

(Hs = 5.23 m, Tm = 5.36 s, θm = 242◦ N) occurred on 9 De-

cember 1992 during a storm forced by winds coming from

north-east. Such severe events are not frequent, as confirmed

by the 99th percentile of Hs, which is 2.68 m. Nevertheless

they populate the wave time series at Acqua Alta and con-

stitute the most interesting part of the sample, for instance

for extreme analysis. Mean wave period is on average 4.1 s,

while mean wave direction is 260◦ N indeed most of the

waves propagate towards the western quadrants.

This is represented more in detail by the histogram repre-

senting the PDF of θm (Fig. 2, bottom panel), which shows

that the most frequent directions of propagation are indeed in

the range 180 < θm < 360◦ N (western quadrants), with peaks

at 247.5 and 315◦ N. Directions associated with the most in-

tense sea states (Hs>4.5 m) can be obtained from the bivari-

ate histogram (Hs−θm) representing the joint PDF ofHs and

θm (Fig. 2, top panel): 247.5, 270 and 315◦ N. Mild sea states

and calms (Hs<1.5〈Hs〉, following Boccotti, 2000) are the

most frequent conditions at Acqua Alta, with 80 % of occur-

rence during the 30 years of observations. They mainly prop-

agate towards the western quadrants too, though the princi-

pal propagation directions of such seas states is north-west.

In this context, the most frequent sea states at Acqua Alta

are represented by {Hs,θm} = {0.25 m, 315◦ N}. Storms in

the area (denoted as sea states with Hs ≥ 1.5〈Hs〉) are gen-

erated by the dominant winds, i.e., the so-called Bora and

Sirocco winds (Signell et al., 2005; Benetazzo et al., 2012).

Bora is a gusty katabatic and fetch-limited wind that blows

from north-east; it generates intense storms along the Ital-
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Figure 2. Observed bivariate wave climate at Acqua Alta: his-

tograms representing the joint PDF ofHs and θm (top panel) and the

marginal PDF of θm (bottom panel). Resolutions are 1Hs = 0.5 m

and 1θm = 22.5◦.

ian coast of Adriatic Sea characterized by relatively short

and steep waves. Sirocco is a wet wind that blows from

south-east; it is not fetch limited and it generates longer and

less steep waves than Bora, which come from the south-

ern part of the basin. Denoted conventionally as Bora the

events with 180≤ θm ≤ 270◦ N, and as Sirocco the events

with 270<θm ≤ 360◦ N, it follows that Bora storms have an
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occurrence of 12 % and Sirocco storms an occurrence of 8 %.

The most frequent {Hs,Tm}, which occurred in the Bora and

Sirocco quadrants, are shown in the bivariate (Hs− Tm) his-

togram (Fig. 3) are {0.15 m, 3.6 s} and {0.35 m, 3.8 s}, re-

spectively, Sirocco being the most frequent among the two.

The associated marginal histogram (Fig. 3) point out that

Sirocco winds are responsible for most of the calms, in par-

ticular for sea states with Hs<1 m, while Bora for the most

energetic sea states. Nevertheless, the histogram ofHs shows

that Sirocco events with Hs in the range of 4–5 m can oc-

cur as well as Bora events. Bora is also associated with the

shortest period waves observed: indeed, the histograms of Tm

almost coincide for waves shorter than 5.5 s, while for longer

waves the probability level of Bora mean periods abruptly

drops to values much smaller than those of Sirocco (which

remains to non-negligible levels until 9 s). The consequence

of shorter and higher Bora waves, with respect to Sirocco, is

steeper waves (3 % against 2 % on average, respectively).

3 Self-organizing maps

3.1 Theoretical background

In this section, we recall SOM features that are functional

to the study. For more comprehensive readings we refer to

Kohonen (2001) and other references cited in the following.

The SOM is an unsupervised neural network technique

that classifies multivariate input data and projects them onto a

uni- or bi-dimensional output space, called map. Typically a

bi-dimensional lattice is produced as output map. The global

structure of the lattice is defined by the map shape that can

be sheet, cylindrical or toroidal. The local structure of the

lattice is defined by the shape of the elements, called units,

that are typically either rectangular or hexagonal. The out-

put map produced by a SOM on wave input data (e.g., as in

Camus et al., 2011a) furnishes an immediate picture of the

multivariate wave climate and allows one to identify, among

others, the most frequent sea states along with their signif-

icant wave height, mean direction of propagation and mean

period.

The core of SOM is represented by the learning stage.

Therefore, the choice of functions and parameters that con-

trol learning is crucial to obtain reliable maps. In SOM,

the classification of input data is performed by means of

competitive–cooperative learning: at each iteration, the ele-

ments of the output units compete among themselves to be

the winning or best-matching units (BMUs), i.e., the closest

to the input data according to a prescribed metric (compet-

itive stage), and they organize themselves due to lateral in-

hibition connections (cooperative stage). Usually, given that

the chosen metric is a Euclidean distance, inputs have to be

normalized before learning (e.g., by imposing unit variance

or [0,1] range for all the input variables) and de-normalized

once finished. The lateral inhibition among the map units is

based upon the map topology and upon a neighboring func-
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Figure 3. Observed bivariate wave climate at Acqua Alta: his-

tograms representing the joint PDFs of Hs and Tm for Bora (top-

left panel) and Sirocco (top-right panel) sea states and the corre-

sponding marginal PDFs of Hs (bottom-left panel; blue for Bora,

red for Sirocco) and Tm (bottom-right panels; blue for Bora, red for

Sirocco). Black solid lines in the top panels denote average wave

steepness 2πHs/g/T
2
m (3 % for Bora, 2 % for Sirocco, g being grav-

itational acceleration), red solid lines denote wave breaking limit

(7 %). Resolutions are 1Hs = 0.2 m and 1Tm = 0.2 s.

tion that expresses how much a BMU affects the neighboring

ones at each step of the learning process. During the learning

process, the neighboring function reduces its domain of influ-

ence according to the decrease of a radius, from an initial to a

final user-defined value. Learning can be performed sequen-

tially, i.e., presenting the input data one at a time to the map,

as done by the original incremental SOM algorithm. A more

recent algorithm performs a batchwise learning, presenting

the input data set all at once to the map (Kohonen et al.,

2009). While the sequential algorithm requires the accurate

choice of a learning rate function, which decreases during the

process, the batch algorithm does not. At the beginning of

the learning stage, the map has to be initialized: randomly or

preferably as an ordered two-dimensional sequence of vec-

tors obtained from the eigenvalues and eigenvectors of the

covariance matrix of the data. In both SOM algorithms the

learning process is performed over a prescribed number of it-

erations that should lead to an asymptotic equilibrium. Even

if Kohonen (2001) argued that convergence is not a problem

in practice, the convergence of the learning process to an op-

timal solution is however an unsolved issue (convergence has

been formally proved only for the univariate case, Yin, 2008).

The reason is that, unlike other neural network techniques, a

SOM does not perform a gradient descent along a cost func-

tion that has to be minimized (Yin, 2008). Hence, in order

to achieve reliable maps, the degree of optimality has to be

assessed in other ways, e.g., by means of specific error met-

Ocean Sci., 12, 403–415, 2016 www.ocean-sci.net/12/403/2016/
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rics. The most common ones are the mean quantization error

and the topographic error (Kohonen, 2001). The former is the

average of the Euclidean distances between each input data

and its BMUs, and is a measure of the goodness of the map

in representing the input. The latter is the percentage of input

data that have first and second best matching units adjacent

in the map and is a measure of the topological preservation

of the map.

3.2 SOM setup

In this paper, the SOM technique has been applied by means

of the SOM toolbox for MATLAB (Vesanto et al., 2000) that

allows for most of the standard SOM capabilities, includ-

ing pre- and post-processing tools. Among the techniques

available, we have chosen the batch algorithm because to-

gether with a linear initialization it permits repeatable analy-

ses; i.e., several SOM runs with the same parameters produce

the same result (Kohonen et al., 2009). This is not a general

feature of SOM, as the non-univoque character of both ran-

dom initialization and selection of the data in the sequential

algorithm lead to always different, though consistent, SOMs

(Kohonen, 2001).

Parameters controlling the SOM topology and batch-

learning have been accurately examined and their values have

been chosen as the result of a sensitivity analysis aimed

at attaining the lowest mean quantization and topographic

errors. Therefore, we have chosen bi-dimensional squared

SOM outputs that are sheet shaped and with hexagonal cells.

This kind of topology has been preferred to others (e.g., rect-

angular lattice, toroidal shape, rectangular cells) because the

maps produced this way had the best topological preservation

(low topographic error) and visual appearance. The map’s

size is 13× 13 (169 cells); hence, each cell represents ap-

proximately 300 sea states on average, if the complete data

set is considered. The lateral inhibition among the map units

is provided by a cut-Gaussian neighborhood function that

ensures a certain stiffness to the map (Kohonen, 2001) dur-

ing the batch learning process (1000 iterations). At the same

time, to allow the map to widely span the data set, the neigh-

borhood radius has been set to 7 at the beginning, i.e., more

than half the size of the map, and then it linearly decreased

to 1 during a single phase learning process.

Input data have been normalized so that the minimum and

maximum distance between two realizations of a variable are

0 and 1, respectively. To this end, according to Camus et al.

(2011a), the following normalizations have been used:

H =
Hs−min(Hs)

max(Hs)−min(Hs)
,

T =
Tm−min(Tm)

max(Tm)−min(Tm)
,

θ = θm/180. (1)

Therefore, H and T range in [0,1], while θ ranges in [0,2].

To take into account the circular character of θm in distance

Figure 4. Single-step SOM output map. Hs: inner hexagons’ color,

Tm: vectors’ length, θm: vectors’ direction, F : outer hexagons’

color. Mean quantization error: 0.06; topographic error: 22 %.

evaluation, following Camus et al. (2011a) we have consid-

ered the Euclidean-circular distance as the metric for SOM

learning. In this context, the distance dij between input data

{Hi,Ti,θi} and SOM unit {H j ,T j ,θ j } is defined as

dij =
{(
Hi −H j

)2
+
(
Ti − T j

)2
+
[
min

(
|θi − θ j |, 2− |θi − θ j |

)]2}
. (2)

The Euclidean-circular distance has been therefore imple-

mented in the scripts of SOM toolbox for MATLAB where

distance is calculated.

4 SOM strategies to characterize wave extremes

In this section, results of the standard SOM approach (ap-

plied one time, hence called single-step SOM) and results of

the different strategies proposed to improve extremes repre-

sentation are presented. The performances of a single-step

SOM, MDA-SOM and TSOM are assessed by comparing

the wave parameters time series and their empirical marginal

PDFs to the time series reconstructed from the results of

the different strategies and relative PDFs, respectively. POT-

SOM is treated separately because a direct comparison with

the other strategies using the described methods is not possi-

ble.

4.1 Single-step SOM

A single-step SOM has been applied using the setup illus-

trated in Sect. 3.2. The SOM output in Fig. 4 merges all the

information about the trivariate wave climate at Acqua Alta

(Hs: inner hexagons’ color, Tm: vectors’ length, θm: vectors’

direction) including the frequency of occurrence (F : outer

hexagons’ color) of each {Hs, Tm, θm} triplet. Hence, one can

have an immediate sight on the wave climate features and

on the empirical joint PDF thanks to visual capabilities of

www.ocean-sci.net/12/403/2016/ Ocean Sci., 12, 403–415, 2016
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SOM’s output. Gradual and continuous change in wave pa-

rameters over the cells points out that the topological preser-

vation is quite good, as confirmed by the 22 % topographic

error.

According to the map, the most frequent sea states are

represented by the triplet {0.17 m, 3.5 s, 323◦ N}, which

substantially resembles the information that one could have

gather from the bivariate (Hs−Tm) and (Hs−θm) histograms

(Fig. 3), though these are not formally related to one an-

other. Most cells show wave propagation directions point-

ing towards the western quadrants, as also displayed in the

joint and marginal histograms of θm (Fig. 2). The cells de-

noting sea states forced by land winds (pointing toward east)

are clustered in the top-left corner of the map and have

low frequencies of occurrence (individual and cumulated).

The frequency of occurrence of calms is 80 %, while that of

Bora storms is 12 % and that of Sirocco storms is 8 % (us-

ing definition of calms, Bora and Sirocco storm events given

in Sect. 2). Hence, the integral distribution of the observed

events over Hs and θm is retained by SOMs. Sea states with

the longest wave periods are clustered in the top-right corner

of the map.

The most severe sea states of the map are clustered in the

top-right part of the map, but are limited toHs values smaller

than 2.75 m. Indeed, the triplet with the highest Hs produced

by the SOM is {2.75 m, 5.9 s, 270◦ N}. However, Tables and

histograms in Sect. 2 have shown thatHs can exceed 5.0 m at

Acqua Alta. Therefore, sea states with Hs>2.75 m are repre-

sented by cells with lowerHs. This is clear in Fig. 5, where a

sequence of observed events, including one with Hs>4.0 m,

has been compared to the sequence reconstructed after SOM;

i.e., for each sea state of the sequence the triplet assumes the

values of the corresponding BMUs. In Fig. 5 sea states with

Hs>2.75 m are represented by the cell with the highest Hs,

i.e., cell no. 118 (first row, 10th column, assuming the cells

numbering starts at the top-left cell and proceeds from top to

bottom over map rows and then from left to right over map

columns); hence,Hs is limited to 2.75 m, whereas the peak of

the most severe storm in Fig. 5 has {4.46 m, 6.7 s, 275◦ N}.

Quantitatively, for this particular event, single-step SOM un-

derestimates the peak of 32 % Hs, 12 % Tm and 2 % θm. Al-

though Hs appears to be the most affected (Tm and θm after a

SOM are in better agreement with the original data), all the

variables processed by SOM experience a tightening of the

original ranges of variation as it is shown in Fig. 6 displaying

the marginal empirical PDFs of Hs, Tm and θm after SOM.

Generally, PDFs provided by SOMs are in good agreement

with the original ones. However, the range of variation of Hs

is reduced from [0.05,5.23] to [0.17,2.75]m, the range of

Tm from [0.5,10.1] to [2.4,7.4] s, and the range of θm from

[0,360] to [41,323]◦ N. The maximum Hs value given by

SOM (2.75 m) is pretty close to the 99th percentile value

(2.68 m), pointing out that SOM provides a good represen-

tation of the wave climate up to the 99th percentile approxi-

mately. Nevertheless, the remaining 1 % of events not prop-

50

100

150

N
o.

 c
el

l

0

5

H
s
(m

)

0

5

10

T
m
(s
)

331 333 335 337 339 341 343 345 347 349
0

200

Day of yea r 1983

θ
m
(◦
N

)

Figure 5. Single-step SOM: BMU cells (top panel) and comparison

between original (blue solid lines) and reconstructed (red dashed

lines) time series of Hs (central-top panel), Tm (central-bottom

panel) and θm (bottom panel), for a chosen sequence of events.
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Figure 6. Single-step SOM: comparison of original (black solid

line) and resulting (blue dashed dots histograms representing the

PDFs of Hs (top panel), Tm (central panel) and θm (bottom panel),

for the whole data set.

erly described (extending up to 5.23 m) is for some applica-

tions the most interesting part of the sample. This confirms

that a single-step SOM provides an incomplete representa-

tion of the wave climate.

4.2 Maximum-dissimilarity algorithm and SOM

(MDA-SOM)

In order to reduce redundancy in the input data and to enable

a wider variety of represented sea states, in previous studies

(e.g., Camus et al., 2011a) authors applied the MDA before

the SOM process. In doing so, a new set of input data for a
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Table 2. MDA-SOM: absolute errors of average and 99th percentile of Hs after MDA-SOM relative to the original data set (%).

Hs 100 % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 %

Average 2 4 7 13 15 22 25 32 45 57

99th percentile 9 8 4 5 3 3 5 5 18 27

SOM is constituted by sampling the original data in a way

that the chosen sea states have the maximum dissimilarity

(herein assumed as the Euclidean-circular distance) one from

each other. As a result of MDA, a reduction of the number of

sea states with low/moderate Hs, i.e., the most frequent at

Acqua Alta, is observed. Hence, MDA-SOM is expected to

provide a better description of the extreme sea states. Never-

theless, as pointed out by Camus et al. (2011a) the reduction

of the sample numerosity leads to lower errors in the 99th

percentile of Hs (chosen to represent extremes) but also to

higher errors in the average ofHs. Therefore, in terms of per-

centage reduction of the original input data set, an optimum

balance has to be found in order to get good descriptions of

the average and of the extreme wave climate.

In the MDA-SOM application, we have pre-processed the

input data set by applying MDA, as described in detail in

Camus et al. (2011a). Looking for the best reduction co-

efficient, the original data set has been reduced by means

of MDA from the initial 50 503 sea states (100 %) to 5050

(10 %), with step 10 %. The absolute errors on 〈Hs〉 and on

the 99th percentile of Hs after MDA-SOM, relative to the

original data set, are summarized in Table 2. The error on

〈Hs〉, initially 2 %, monotonically increases up to 57 %, while

the error on the 99th percentile ofHs, initially 9 %, decreases

down to 3 % at 50–60 % and then increase up to 27 %. With

the widening of the variables’ range as principal target (hence

a better description of extremes) but without losing the qual-

ity on the average climate description, we chose to consider

80 % reduction (7 % error on 〈Hs〉, 4 % error on 99th per-

centileHs). The corresponding MDA-SOM output displayed

in Fig. 7 is topologically equivalent to that produced by the

single-step SOM (Fig. 4), except for minor differences on

the location of some sea states. However, the most frequent

sea state has {Hs, Tm, θm} = {0.28 m, 2.8 s, 328◦ N}, which

still resembles what has emerged from histograms of Sect. 2,

even if Tm is less in agreement with respect to the single-

step SOM. Also, the sea state with highest Hs has the triplet

equal to {2.8 m, 6.0 s, 275◦ N}; hence, even if the input data

set has been reduced, the representation of extremes is still

unsatisfactory.

This is confirmed by the comparison of the original and

the reconstructed (after MDA-SOM) time series. In Fig. 8,

the comparison has been extended to the results of 60 %

MDA-SOM (smaller error on 99th percentileHs, see Table 2)

and 10 % MDA-SOM (maximum input data set reduction),

in order to investigate if MDA-SOM can enhance extreme

wave climate representation even accepting a worsening of

Figure 7. MDA-SOM output map, 80 % reduction of the original

data set. Hs: inner hexagons’ color, Tm: vectors’ length, θm: vec-

tors’ direction, F : outer hexagons’ color. Mean quantization error:

0.06; topographic error: 15 %.
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Figure 8. MDA-SOM: comparison between original (black solid

lines) and reconstructed time series of Hs (top panel), Tm (central

panel) and θm (bottom panel), for a chosen sequence of events. Data

set reduction: 80 % (blue dashed line), 60 % (red dashed line) and

10 % (green dashed line).

the average one. Actually, 60 % MDA-SOM performs only

slightly better than 80 % MDA-SOM in describing the cho-

sen events; indeed the highestHs triplet, which represents the

sea states at the peak of the most severe storm, is {2.93 m,

5.8 s, 258◦ N}. A better reproduction of Hs at this peak is
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provided by 10 % MDA-SOM, though the maximum is how-

ever missed and in its proximity the original data are overes-

timated. Indeed, 60 % and 10 % MDA-SOMs locally overes-

timate Hs in the low/moderate sea states.

The marginal empirical PDFs after MDA-SOM are com-

pared in Fig. 9 to the PDFs of the original data set. The distri-

butions are in good agreement and the representation is more

complete with respect to the single-step SOM, especially

concerning Hs. Nevertheless, 10 % MDA-SOM distribution

for Hs exhibits a larger departure from the original distribu-

tion at 1.7 m with respect to the single-step SOM. Also 10 %

MDA-SOM distributions, which provides the widest ranges,

locally depart from the reference distributions, in particular

for Tm and θm. The frequency of occurrence of calms is 81 %,

while that of Bora storms is 12 % and that of Sirocco storms

is 7 %. Hence, except for a minor change in the frequency of

calms and Sirocco events, the overall statistics resembles that

one directly derived from the Acqua Alta data set.

4.3 Two-step SOM (TSOM)

A TSOM has been then applied to provide a more complete

description of the wave climate at Acqua Alta. To this end,

the SOM algorithm has been run a first time on the original

data set, without reductions (first step). Then, outputs have

been post-processed: a threshold H ∗s has been fixed, and the

cells having Hs>H
∗
s have been considered to constitute a

new input data set that is composed of the sea states repre-

sented by the cells exceeding the threshold. Hence, a second

SOM has been run on the new data set (second step). Using

the same SOM setup as in the first step, we have obtained a

two-sided map (Fig. 10): the first map (left panel) provides

a good representation of the low/moderate wave climate but

fails in the description of the most severe sea states, which

are described in the second map (right panel), focusing on

the climate over H ∗s . Three thresholds have been tested that

correspond to the 95th, 97th and 99th percentile of Hs: 1.80,

2.12 and 2.68 m, respectively. In the following, we have fo-

cused on the results with 97th percentile threshold, since they

have turned out to be more representative of the extreme

wave climate than the others.

Figure 10 depicts TSOM results with H ∗s = 2.12 m (97th

percentile). The first map, on the left, is the map shown in

Fig. 4, representing the whole wave climate at Acqua Alta.

On that map, the six cells with Hs>2.12 m have been en-

compassed by a black line. Without such cells, the map on

the left represents the low/moderate sea states, i.e., the 97 %

of the whole original data set constituted by events with Hs

below or equal to the 2.12 m threshold. The remaining 3 % of

events, represented by the encompassed cells, are the most

severe events at Acqua Alta. The first step SOM associates

to such events 2.12≤Hs ≤ 2.75 m, 5.0≤ Tm ≤ 6.5 s and

249≤ θm ≤ 299◦ N. Hence, according to SOMs, the most

severe sea states pertain to a rather narrow directional sec-

tor (50◦) hardly allowing one to discriminate between Bora
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Figure 9. MDA-SOM: comparison between original (black solid

lines) and resulting histograms representing the PDFs of Hs (top

panel), Tm (central panel) and θm (bottom panel), for the whole pe-

riod of observations. Data set reduction: 80 % (blue dashed-squares

line), 60 % (red dashed-circles line) and 10 % (green dashed line).

and Sirocco conditions. A more detailed representation of

such extremes is provided by the second map in Fig. 10, on

the right, where extreme Bora and Sirocco events are more

widely described by cells. Indeed, a sort of diagonal (from

the top-right corner to the bottom-left corner of the map) di-

vides the cells. Bora events are clustered on the left of this

diagonal (top-left part of the map), while Sirocco ones on

the right of that (bottom-right part of the map). On the diag-

onal, cells represent sea states that travel towards the west.

This configuration somehow resembles the one observed in

the left map, except for the land sea states, in the top-left

corner. The most severe sea states are clustered in the top-

right corner of the map and also, though to a smaller ex-

tent, in the bottom-left part of it. The resulting ranges of

Hs, Tm and θm are 1.94≤Hs ≤ 4.26 m, 4.4≤ Tm ≤ 8.3 s and

224≤ θm ≤ 316◦ N, respectively.

The widened ranges of wave parameters provided by a

TSOM allow for a more complete description of the sea

states at Acqua Alta, including the most severe as it is shown

in Fig. 11. There, for the sequence of events presented in pre-

vious sections, the reconstructed TSOM time series is com-

pared to the original one. Also results with 95th and 99th

percentile TSOMs are plotted, and it clearly appears that

the differences among the three tests (i.e., TSOMs with Hs

threshold on 95th, 97th and 99th percentiles) are very small,

in particular for what concerns θm. Nevertheless, the 95th

percentile TSOM yields a smaller estimate of the highest

Hs peak with respect to the others, and the 99th percentile

TSOM deviates more than the others from the original Tm.

Such differences are also found in the marginal empiri-

cal PDFs of the wave parameters, shown in Fig. 12. Indeed,

p(Hs) and p(Tm) locally differ among the three thresholds
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Figure 10. TSOM output map with threshold H∗s = 2.12 m (97th percentile of Hs). Hs: inner hexagons’ color, Tm: vectors’ length, θm:

vectors’ direction, F : outer hexagons’ color. Wave climate after a single-step SOM (left panel) and TSOM extreme wave climate (i.e.,

over the threshold, right panel and cells within black solid line in the left panel). For the right panel map, mean quantization error: 0.04;

topographic error: 6 %.
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Figure 11. TSOM: comparison between original (black solid lines)

and reconstructed time series of Hs (top panel), Tm (central panel)

and θm (bottom panel), for a chosen sequence of events. Thresh-

olds: 95th (blue dashed line), 97th (red dashed line) and 99th (green

dashed line) percentile of Hs.

and also from the original PDF, in particular in the largest

values of Hs and Tm. As expected, the more the threshold is

high, the more Hs range widens, extending to higher values.

Hence, the 99th percentile TSOM provides the more com-

plete representation of the wave climate, at least concerning

Hs. Indeed, the widest Tm range is obtained with 97th per-

centile and the narrowest with a 99th percentile TSOM. In-

stead, p(θm) is equally represented by the three thresholds

and is in excellent agreement with the original PDF, though

the θm range is limited with the respect to the complete circle.

In addition, local departure from the original PDFs are still

observed, especially for Hs and Tm. The frequency of occur-

rence of calms is 81 %, while that of Bora storms is 11 %
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Figure 12. TSOM: comparison of original (black solid line) and

resulting histograms representing the PDFs of Hs (top panel), Tm

(central panel) and θm (bottom panel), for the whole data set.

Thresholds: 95th (blue dashed-squares line), 97th (red dashed-

circles line) and 99th (green dashed line) percentile of Hs.

and that of Sirocco storms is 8 %. Hence, except for a minor

change in the frequency of calms and Bora events, the overall

statistics resembles that one observed at Acqua Alta.

4.4 Peak-over-threshold SOM (POT-SOM)

As an additional strategy to provide a more complete rep-

resentation of the wave climate through SOMs, we tested a

third different approach. A SOM was applied initially on the

whole data set, and then on the peaks of the storms defined by

means of peak-over-threshold technique. Storms were iden-

tified according to the definition of Boccotti (2000): a storm

is the sequence of Hs that remains at least 12 h over a given

threshold H ∗s corresponding to 1.5 times the mean Hs. We
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Figure 13. POT-SOM output map. Hs: inner hexagons’ color, Tm: vectors’ length, θm: vectors’ direction, F : outer hexagons’ color. Wave

climate after single-step SOM (left panel) and stormy wave climate (right panel). For the right panel map, mean quantization error: 0.06;

topographic error: 12 %.

Table 3. Performance summary of different SOM approaches, through the comparisons of reconstructed to original time series, and resulting

to original PDFs. rav: ratio of time series averages, rSD: ratio of time series standard deviations, CC: time series cross-correlation coefficient,

RMSE: time series root mean square error, CCPDF: PDFs cross-correlation coefficient, RMSEPDF: PDFs root mean square error).

Hs rav rSD CC RMSE (m) range (m) CCPDF RMSEPDF

Single-step SOM 0.98 0.91 0.95 0.18 [0.17,2.75] 1.00 0.04

MDA-SOM (80 %) 1.00 0.90 0.95 0.19 [0.21.2.82] 0.99 0.04

TSOM (97th perc) 0.99 0.95 0.96 0.16 [0.17,4.26] 1.00 0.04

Tm rav rSD CC RMSE (s) range (s) CCPDF RMSEPDF

Single-step SOM 1.00 0.89 0.95 0.34 [2.4,7.4] 0.99 0.02

MDA-SOM (80 %) 1.00 0.90 0.95 0.37 [2.4,7.4] 0.95 0.05

TSOM (97th perc) 1.00 0.90 0.95 0.32 [2.4,8.3] 0.99 0.02

θm rav rSD CC RMSE (◦ N) range (◦ N) CCPDF RMSEPDF

Single-step SOM 1.00 0.92 0.95 23 [41,323] 0.97 0.00

MDA-SOM (80 %) 0.99 0.95 0.96 20 [30,328] 0.98 0.00

TSOM (97th perc) 1.00 0.92 0.95 23 [41,323] 0.97 0.00

considered the 〈Hs〉 at Acqua Alta (Table 1) and then, with

H ∗s = 0.93 m, we individuated 710 storms. The peaks of the

storms constitute a new data set that has been analyzed by

means of a SOM. At the end, we have obtained a double-

sided map that represent at the same time the whole wave

climate (on the left) and the “stormy” part of it (on the right).

POT-SOM output map is shown in Fig. 13. As expected,

stormy events are Bora and Sirocco events: the former are

clustered on the upper and middle part of the map, the lat-

ter in the lower part of it. The most severe storms, concen-

trated on the right side of the map, are both Bora and Sirocco

events. The triplet with the highest Hs is {4.27 m, 6.32 s,

265◦ N} and the maximum Hs value is very close to the

99th percentile of Hs of the new data set, i.e., 4.28 m. Hence,

99 % of the stormy events are included within the represented

range, resembling what was observed for the original data set

analyzed with a single-step SOM.

5 Discussion

A summary of the performances of the different SOM strate-

gies is given in Table 3. There the single-step SOM, MDA-

SOM with 80 % reduction and the TSOM with Hs threshold

at 97th percentile are compared in their capabilities of repre-

senting the wave climate at Acqua Alta by means of the cells.

The POT-SOM is not directly comparable to the other strate-

gies since the data set used for the second map is composed

of the storm peaks only. As done in the previous sections, the

performances are assessed by comparing the reconstructed

time series from each strategy with the original ones, and

the resulting marginal PDFs with PDFs of the original data.

However, here the performances are quantified by statistical

parameters (see caption of Table 3 for nomenclature). Gener-

ally, the reconstructed time series are in agreement with the

original ones, as shown by the high rav (over 0.98) and rSD

(over 0.89), as well as high CC (over 0.95) and low RMSE
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(below 0.19 m for Hs, 0.37 s for Tm and 23◦ for θm). Nev-

ertheless, the highest ratios and correlation coefficients, and

the lowest RMSE pertain to TSOMs. Similar conclusions can

be drawn for the PDFs, which are reproduced with very high

CC (over 0.95) and RMSEPDF (below 0.04) by all the ap-

proaches, but to a greater extent by TSOMs. As expected,

the most wide range variability among the different strategies

concerns Hs. With the only exception of θm, whose widest

range is provided by MDA-SOM, TSOM turned out to be the

most efficient in providing the most complete representation

among the tested strategies.

We verified that a higher size single-step SOM (e.g.,

25× 25, not shown here) can produce a wider range of ex-

tremes with respect to that used in the study (i.e., 13× 13):

the units’ maximum Hs is 3.56 m instead of 2.75 m. In the

same map configuration (i.e., 25× 25), MDA preselection

can further widen this range towards extremes: 3.63 m, the

units’ maximum Hs obtained with an 80 % reduction of the

sample (using MDA); 3.66 m, the units’ maximum Hs with a

40 % reduction. This has the effect of reducing the absolute

error on 99th percentile of Hs (1 % with 80 % reduction and

11 % with 40 % reduction). However, the most extreme sea

states are still far from being properly represented (we recall

that the most extreme sea state observed had Hs = 5.23 m).

In addition and most importantly, if a larger number of ele-

ments in the map can improve the SOM performance shown

in the paper, it will certainly worsen the readability of the

map and the possibility of extracting quantitative information

from the map. Indeed, considering, for instance, the 25× 25

map, sea states at a site would be represented by 625 typi-

cal sea states: a huge number that is hardly manageable for a

practical classification of the wave conditions.

6 Application of TSOM

An application of the TSOM is proposed to show that a more

detailed representation of the extreme wave climate can en-

hance the quantification of the longshore component of the

shallow-water wave energy flux P (per unit shore length),

expressed as (Komar and Inman, 1970)

P = Ecg sinα cosα, (3)

whereE = ρgH 2
s /16 is the wave energy per unit crest length

(being ρ the water density), cg is the group celerity and α

is the mean wave propagation direction measured counter-

clockwise from the normal to the shoreline. P is a driving

factor for the potential longshore transport, and its depen-

dence upon the wave energy E (which in turn depends on

the square of Hs) suggests that an accurate representation of

Hs is crucial. As the shoreline in front of Acqua Alta tower

is almost parallel to the 20◦ N direction (i.e., orthogonal to

the 290◦ N direction), the longshore transport is directed to-

wards southwest when P is positive, and directed towards

northeast when P is negative. Given the wave energy flux

Ecg, P is maximized when α =±45◦ N, which correspond

to θm = 245◦ N and θm = 335◦ N, respectively.

In order to obtain the shallow-water values of wave pa-

rameters, following Reguero et al. (2013), we propagated the

Acqua Alta sea state resulting from the TSOM (see maps

in Fig. 10) from 17 to 5 m depth (a typical closure depth

in the region), approximately accounting for the wave trans-

formations, i.e., shoaling, refraction and wave breaking. In

doing so, we assumed straight and parallel bottom contour

lines, we neglected wave energy dissipation prior to wave

breaking, and we allowed Hs to reach the 80 % of the wa-

ter depth at most (depth-induced wave breaking criterion).

Roughly, shoaling mostly affects the Sirocco sea states that

are typically associated with longer wavelengths with respect

to Bora sea states. In shallow water, refraction tends to reduce

the difference between Bora and Sirocco directions with re-

spect to Acqua Alta, as the normal direction to the shoreline,

which waves tend to align to, is very close to the boundary

(i.e., 270◦ N), which we assumed in order to discriminate be-

tween the two conditions. Sea states forced by land winds

(20◦ N < θm<200◦ N) were excluded from the analysis.

The longshore component of the wave energy flux P at 5 m

depth is shown in Fig. 14. It is worth noting that the left map

represents the longshore component of the wave energy flux

resulting from the single-step SOM technique (e.g., the left

panel of Fig. 10). Here, P ranges between−2 and 8 kW m−1,

and the highest values are mainly due to Bora events that are

responsible for potential longshore transport towards south-

west (even if few Sirocco events with θm close to 270◦ N have

the same effect). According to the left map, the transport to-

wards northeast is due to Sirocco events that, however, cause

less intense potential transport. The highest P values are as-

sociated with the highest Hs events, clustered on the cells at

the top of the Fig. 10 left map. The right map of Fig. 14

describes the longshore flux component due to the Acqua

Alta sea states represented by the SOM cells exceeding the

97th percentile Hs threshold (i.e., the six cells bounded by

the black line in the left map). The range of P variation

widens considerably when the extreme sea states are con-

sidered, with values ranging from−20 to 20 kW m−1. As ob-

served in the right map of Fig. 10, the sea states exceeding the

97th percentile threshold on Hs are Bora and Sirocco events.

The Bora events in the top-left part of the map (except for

two cells in the bottom-right corner) contribute to positive,

i.e., south-westward, transport, while Sirocco events in the

bottom-right part contribute to negative, i.e., north-eastward,

transport. The most intense transport is associated with the

highestHs cells at the bottom-left, bottom-right and top-right

corners of the Fig. 10 right map. The major difference with

respect to a single-step SOM estimate concerns the Sirocco

sea states, associated with negative P , that had the most in-

tense value extended from −2 to −20 kW m−1.

The mean longshore wave energy flux in shallow-water P ,

i.e., the average of P weighted on the frequencies of occur-

rence F over the 30 years of observations, was obtained by
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Figure 14. Application of TSOM: assessment of the longshore flux of wave energy P in shallow water, after single-step SOM (left panel) and

resulting from the TSOM extreme wave climate (right panel and cells within black solid line in the left panel). Mean wave directions at Acqua

Alta tower (blue arrows) indicate contributions of different meteorological conditions: positive mainly due to Bora (180≤ θm ≤ 270◦ N),

negative to Sirocco (270<θm ≤ 360◦ N). Land wind events (white cells) have been excluded, and the direction of the shoreline (270◦ N) is

shown as gray dashed lines.

Table 4. Application of TSOM: assessment of the longshore flux of

wave energy in shallow-water P . P is the mean over the 1979–2008

period accounting for the absolute value of P , P+ is the mean of the

positive P , and P− is the mean of the negative P , 1TSOM−SOM is

the relative difference of values computed after TSOM with respect

to values computed after SOM.

SOM (kW m−1) TSOM (kW m−1) 1TSOM−SOM (%)

P 0.52 0.57 9.0

P+ 0.41 0.45 7.5

P− −0.11 −0.13 16.5

taking the absolute value of P from the maps of Fig. 14 and

is 0.57 kW m−1 (Table 4). In order to support this estimate,

we compared the 1.71 kW m−1 estimate of the mean wave

energy flux Ecg at Acqua Alta against the 1.5 kW m−1 value

obtained at the same site over 1996–2011 by Barbariol et al.

(2013). The contributions to P from Bora (P+) and Sirocco

(P−) are 0.45 and −0.12 kW m−1, respectively, pointing out

the predominant effect of Bora on the longshore transport

over the western side of the Gulf of Venice. For comparison,

P was also computed using single-step SOM results (see Ta-

ble 4): in this case, P is 0.52 kW m−1, P+ is 0.41 kW m−1

and P− is−0.11 kW m−1. Hence, with respect to the TSOM,

the estimate of the mean longshore energy flux is 9.0 % lower

for P , 7.5 % lower for P+ and 16.5 % lower for P−.

7 Conclusions

In this paper, we have tested different strategies aimed at im-

proving the characterization of multivariate wave climate us-

ing SOM. Indeed, we have verified that besides a satisfac-

tory description of the low/moderate wave climate (in agree-

ment with usual uni- and bivariate histograms), the single-

step SOM approach misses the most severe sea states, which

are hidden in SOM cells with Hs even considerably smaller

than the extreme ones.

For our purpose, we used the 1979–2008 trivariate wave

climate {Hs, Tm, and θm} recorded at Acqua Alta tower, and

we showed that, for instance, the single-step SOM assigned

most of the sea states with Hs>2.75 m to the {2.75 m, 5.9 s,

270◦ N} class. Hence, the most interesting part of the wave

climate was condensed within a few cells of the map, also

hindering the distinction between Bora and Sirocco events,

i.e., the prevailing meteorological conditions in the northern

Adriatic Sea. To increase the weight of the most severe and

rare events in SOM classification, we tested a strategy based

on the pre-processing of the input data set (i.e., MDA-SOM)

and a strategy based on the post-processing of the SOM out-

puts (i.e., TSOM). Results presented in the study showed that

the post-processing technique is more effective than the pre-

processing one. Indeed, a TSOM allowed a more accurate

and complete representation of the sea states with respect to

the one furnished by MDA-SOM, because it provided a wider

range of the wave parameters (particularly Hs), and more re-

liable a posteriori reconstructions of time series and empiri-

cal marginal PDFs. Nevertheless, some deviations from orig-

inal PDFs were observed and the range of θm was not com-

plete, such that sea states traveling towards the north were

not properly described. This requires further studies to im-

prove SOM applications to wave analysis, which are rather

promising, thanks to the well recognized visualization capa-

bilities of SOMs. In this context, we proposed a double-sided

map representation, which provides (on the left) a descrip-

tion of the whole wave climate that is particularly reliable

for the low/moderate events and is completed (on the right)

by the description of the extreme wave climate. This novel

representation was also employed to provide a SOM classifi-
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cation of the storms peaks, based on the peak-over-threshold

approach, on the right (POT-SOM).

Finally, a TSOM was applied for the assessment of the

potential longshore wave energy flux to show how practical

oceanographic and engineering applications can benefit from

this novel SOM strategy. Indeed, the mean flux in front of the

Venice coast was found to be 9 % higher if evaluated after a

TSOM instead of a SOM.
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