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Abstract. The effect of vertical shear on the horizontal dis-

persion properties of passive tracer particles on the continen-

tal shelf of the South Mediterranean is investigated by means

of observation and model data. In situ current measurements

reveal that vertical gradients of horizontal velocities in the

upper mixing layer decorrelate quite fast (∼ 1 day), whereas

an eddy-permitting ocean model, such as the Mediterranean

Forecasting System, tends to overestimate such decorrelation

time because of finite resolution effects. Horizontal disper-

sion, simulated by the Mediterranean sea Forecasting Sys-

tem, is mostly affected by: (1) unresolved scale motions, and

mesoscale motions that are largely smoothed out at scales

close to the grid spacing; (2) poorly resolved time variability

in the profiles of the horizontal velocities in the upper layer.

For the case study we have analysed, we show that a suitable

use of deterministic kinematic parametrizations is helpful to

implement realistic statistical features of tracer dispersion in

two and three dimensions. The approach here suggested pro-

vides a functional tool to control the horizontal spreading of

small organisms or substance concentrations, and is thus rel-

evant for marine biology, pollutant dispersion as well as oil

spill applications.

1 Introduction

The role of small-scale motion in geophysical flows is re-

ceiving renewed attention (Kantha and Clayson, 2000), con-

cerning the hydrodynamical modelling, as well as in rela-

tion to the biological consequences of specific phenomena

(see e.g. Durham and et al., 2013). Tracer dispersion in the

ocean (Davis, 1983) has an impact on different environmen-

tal, chemical, biological, and technological problems. Mean

currents mostly contribute to the large-scale transport, while

small-scale motions tend to spread concentration fields or,

equivalently, Lagrangian trajectories of passive or active trac-

ers. Very little is known about the way turbulence and dif-

fusion – in addition to other physical mechanisms – model

marine habitat and promote or impede the life of certain or-

ganisms (Ikawa et al., 1998).

Three-dimensional turbulence is thought to mostly have an

homogenizing effect, smearing sharp gradients and promot-

ing super-diffusive separation in time of initially close trajec-

tories. The relative eddy diffusivity is expected to grow as the

4/3 power of the separation distance R(t), namely D(R)≡

d〈R2(t)〉/dt ∼ R4/3, and the separation distance hence grows

as 〈R2(t)〉 ' t3, as suggested by Richardson in his pioneer-

ing work (Richardson, 1926; Falkovich et al., 2001). Beyond

the case of three-dimensional turbulence, the Richardson 4/3

law is observed also in the case of anisotropic relative disper-

sion, e.g. in the presence of a zonal mean shear and a merid-

ional random walk (Bennett, 1987).

While the mathematical formulation of the problem of

turbulent dispersion can be considered established (Bennett,

2005; Garrett, 2006), observations reported by experimental

studies are much less clear (see e.g. LaCasce, 2010; Okubo,

1971; Morel and Larchevêque, 1974; Er-el and Peskin, 1981;

Berti et al., 2011). This is only partly due to the inherent diffi-

culties of performing float or dye concentration experiments

in the ocean. Much of the uncertainty is due to the complex

nature of the flow, and the relevance of non-ideal features as-

sociated with anisotropies and inhomogeneities, in addition

to temporally or spatially local effects such as wind waves,

and tidal and inertial fluctuations.
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From float trajectories analysis, Ollitrault and collabora-

tors (2005) found that for pairs of particles, initially separated

by a few kilometres, the relative diffusivity followed the 4/3

law for separation distances between 40 and 300 km. The

experiment was conducted in the central part of the North

Atlantic, where the Rossby internal radius of deformation is

about 25 km. Coastal region experiments are puzzling. Some,

such as Ohlmann et al. (2012), tend to support the existence

of an exponential regime, beside or instead of the power-law

one, while others, such as Schroeder and et al. (2012), show

results conflicting with the exponential behaviour.

More recently, Poje et al. (2014) performed a Lagrangian

experiment in the Gulf of Mexico, the GLAD experiment,

deploying an unprecedented number of CODE drifters. In

particular, they quantified pair dispersion rates in agreement

with the Richardson law. Also, they pointed out that the sub-

mesoscale dispersion rates when based on ocean model or

altimetric velocities are largely underestimated with respect

to the observed ones.

When dealing with ocean diffusion, there is a huge exper-

imental gap between buoyant/surface/two-dimensional pro-

cesses and three-dimensional ones, the former being much

more observed than the latter. Lagrangian diffusion due to

horizontal velocity variations across the three-dimensional

structure of the mixing layer is clearly crucial to the trans-

port and fate of sediments, biological material such as chloro-

phyll, and contaminants suspended in the ocean (Young et al.,

1982; Steinbuck et al., 2011). In particular, the role of sub-

mesoscale and small-scale turbulent motions is at the core

of recent research (see e.g. Lévy et al., 2012; Zhong and

Bracco, 2013). Its full assessment is hampered by the lack

of high-frequency, multiscale measurements of the velocity

field within and below the mixing layer.

To simplify the problem, one might be tempted to use

depth-averaged currents for predicting horizontal dispersion,

so neglecting vertical shear effects. As is discussed in what

follows, this approach can be misleading and can have some

important practical drawbacks when estimating the disper-

sion of 3-D tracers.

The effect of vertical shear on the horizontal dispersion

was first experimentally investigated by Okubo (1968, 1971).

Later, LaCasce and Bower (2000) discussed it in relation to

the dispersion of subsurface floats in the North Atlantic. On

the basis of estimates inferred from the mean flow and not

from the fluctuating velocities, it is argued that vertical shear

is expected to be much less important than horizontal shear

for the oceanic horizontal diffusion (LaCasce and Bower,

2000).

From the numerical modelling point of view, being able to

simulate Lagrangian dispersion in the ocean has great rele-

vance, but it is a delicate task because of the finite resolution

of the circulation models, and more fundamentally because

of the nonlinear character of the dynamics. Indeed, when

dealing with basin-scale models, not only the mixing layer

dynamics is often missing, but also the velocity field features

from sub- to mesoscales are poorly resolved both temporally

and spatially. In this regard, various techniques (Griffa, 1996;

Berloff and McWilliams, 2002; Haza et al., 2007, 2012) have

been developed to model the submesoscale or unresolved ve-

locity components which, nonetheless, play an important role

for tracer dispersion.

In this paper, we focus on the role of vertical shear as an

important mechanism promoting the horizontal diffusion in

the upper ocean. By vertical shear, we mean the vertical gra-

dients of the horizontal velocities. The approach here con-

sidered consists in combining observation and model data

to assess the effect of vertical shear for the tracer horizon-

tal relative dispersion. Observation data come from Acoustic

Doppler Current Profilers (ADCPs) deployed in a narrow re-

gion of the South Mediterranean. Numerical data come from

the Mediterranean Forecasting System (MFS) model, and are

supplemented with the use of deterministic kinematic models

(Palatella et al., 2014; Lacorata et al., 2014), to parametrize

poorly resolved mesoscale motions, or unresolved processes

in General Circulation Models (GCMs).

The Kinematic Lagrangian Model (KLM) here adopted

can be 2-D, to better account for the horizontal disper-

sion due to mescoscale eddies, or 3-D, to simulate vertical

turbulent-like motions in the ocean mixing layer. Both dy-

namics are often underestimated in GCMs. Although our pri-

mary interest is in the former situation, we will discuss both.

The paper is organized as follows. In Sect. 2, we compare

in situ observations of vertical gradients of the horizontal ve-

locities with measures obtained from the MFS. The compar-

ison highlights that velocity gradient correlation times de-

rived from MFS are considerably larger than the observed

ones: such anomalous temporal persistence of the vertical

shear is responsible for an enhanced relative dispersion rate,

which is possibly an artifact of the low temporal resolution

of the model. Since the comparison is performed in one loca-

tion only, its results might not be of general validity. Rather,

they point to differences that can arise between model and

data, which in turn motivate the sensitivity study presented

in Sect. 3, where we discuss the relative dispersion proper-

ties of neutrally buoyant tracers by means of numerical sim-

ulations. We show that, by a suitable implementation of the

kinematic model, the anomalous shear effect can be over-

come. Section 4 contains the final remarks and perspectives.

2 Vertical shear statistics: experimental versus

numerical data

We analyse the profiles of the horizontal velocities recorded

with two ADCPs working at 300 kHz. These have been de-

ployed on the continental shelf of the South Mediterranean:

the first one is located at the following position: 31.91◦ N,

30.58◦ E, the second one at the close position 31.92◦ N,

32.00◦ E (see Fig. 1). Both instruments are bottom-mounted

at the depth of 104 m; currents (U(Z, t),V (Z, t)) are uni-
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Figure 1. (Colour online.) Three instances of the observed instantaneous current profiles of the horizontal velocities, from the ADCP located

at 31.91◦ N, 30.58◦ E; empty red circles: velocity modulus; black filled circles: direction from the north. In the top right panel, the small

purple triangles indicate the ADCP locations.

formly measured between Z =−13 m and Z =−93 m, the

spacing is δZ = 4 m. The vertical component of the veloc-

ity is not directly available. The measurement database cov-

ers the period from 1 February 1999 until 11 February 2000:

for each day we have on average 144 profiles (10 min inter-

val). We analyse data separating them into two time inter-

vals: I1 refers to February–April 1999; I2 refers to Decem-

ber 1999–February 2000. In both periods, the thermocline

is about 80 m deep. Figure 1 shows three examples of the

recorded profiles, together with the ADCP locations. ADCP

results on vertical shear are significant with respect to mea-

surement errors. We note however that the data set can be

considered of good quality, both in terms of the statistical ac-

curacy and of the measurement conditions: only seldom may

low acoustic backscatter and diurnal migration of the scatter-

ing source cause noise in the data. By averaging over a large

number of profiles, we can reduce ADCP velocity uncertain-

ties.

In situ measurements are compared to current data, at the

same locations and for the same period, extracted from MFS

(Tonani et al., 2008). The MFS model uses the primitive

equations with the Boussinesq, hydrostatic, and incompress-

ible approximations written in spherical coordinates. Grid

resolutions are of 1/16◦× 1/16◦ in the horizontal directions

(≈ 6.5 km), with 72 vertical levels. The unevenly spaced lev-

els have a thickness ranging from 3 m near the surface, to

300 m at the bottom. The first level is 1.5 m deep and the last

is about 5000 m deep. If we estimate the first internal Rossby

radius of deformation as of the order of 10 km on average,

then MFS is an eddy-permitting model for the Mediterranean

Sea. Current data outputs are daily.

Our primary interest being the vertical shear, we adopted

the following procedure in the statistical analysis of ADCP

current profiles:

– we remove the mean velocity component from the

current measurements at different levels, obtaining

U ′(Z, t) and V ′(Z, t);

– for each δZ, the time series of the vertical gradients of

the horizontal components are constructed as γx(Z, t)=

[U ′(Z, t)−U ′(Z− δZ, t)], and γy(Z, t)= [V
′(Z, t)−

V ′(Z− δZ, t)];

www.ocean-sci.net/12/207/2016/ Ocean Sci., 12, 207–216, 2016
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Figure 2. Log-lin plot of the velocity gradient autocorrelation func-

tions versus the time lag. All data refer to the γ ′x(t) component. Top

plot is for the ADCP located at 31.91◦ N, 30.58◦ E; bottom plot is

for the ADCP located at 31.92◦ N, 32.00◦ E. Symbols: filled circles

are for ADCP data of the period I1, February–April 1999; empty

circles for ADCP data of the period I2, December 1999–February

2000; squares are for the MFS data averaged over period I1 and I2.

Dotted lines indicate the value 0.1.

– the velocity gradient residual times series, γ ′x(Z, t) and

γ ′y(Z, t), are obtained by removing the mean gradient,

estimated over the whole time series.

We first calculate the auto-correlation function Cx,y(τ ) sep-

arately for each velocity gradient component as

Cx,y(τ )≡
〈[γ ′x,y(t0+ τ)γ

′
x,y(t0)]〉

〈[γ ′x,y(t0)]
2〉

, (1)

where the average is performed over different choices of

the initial record t0, and over a few depths between Z =

−20 m and Z =−50 m, to gain statistical accuracy. Currents

at lower and larger depths have not been considered.

In Fig. 2, we compare the auto-correlation functions ob-

tained from the ADCPs with those of the MFS fields, for

the same days and the same locations. Data exhibit specific

behaviour depending on the location and on the averaging

period. However, general features can also be found. The

ADCP Cx,y(τ ) curves are oscillatory, which makes the de-

termination of the correlation time

Tc =
∞∫

0

C(τ)dτ (2)

quite difficult. In the absence of a well-converged integral,

a possible choice is to estimate the value of Tc from the

time lag at which the curve attains the value 0.1. Clearly

such extrapolation is quite rough and an error of the order

of 10% should be considered. ADCP data show that verti-

cal shear components usually persist over a correlation time

T ADCP
c ' 0.5 day or less.

For MFS curves, the situation is rather different: in one

case, the curve never really attains zero; in the other case, it

does on a time lag T MFS
c ' 5 days, so about 10 times big-

ger. This observation suggests that at least this GCM might

overestimate the temporal persistence of velocity gradients,

unrealistically increasing the effect of the shear on the hori-

zontal dispersion.

Beside the characteristic timescales, it is useful to quan-

tify the amplitude of velocity gradient fluctuations. Figure 3

shows the behaviour of the probability distribution functions

(PDFs) of the vertical shear components; PDFs are normal-

ized to have unit variance. The PDFs are extracted from the

ADCP at 31.92◦ N, 32.00◦ E, averaging over the periods I1

and I2; the same is repeated for MFS data interpolated at

the same location. If we directly compare ADCP with MFS

data, it appears that the former has a larger variance, which

is clearly associated with the fact that MFS velocities do

not have small-scale and high-frequency variability. Addi-

tionally, the ADCP PDF has fat tails, the fingerprint of a

turbulent-like dynamics. Taking into account such variability

could be important for the modelling of ocean mixing layer

dynamics (Fox-Kemper and Ferrari, 2008).

However, if we compare daily averaged ADCP with MFS

data, the cores of the unitary variance PDFs are very similar

(not shown): this implies that at least for mean fluctuations,

experimental ADCP and numerical MFS data account for dy-

namical behaviours having the same mean amplitudes.

3 Lagrangian dispersion: the effect of vertical shear

We start by considering a neutrally buoyant tracer parti-

cle whose position is given by the three-dimensional vector

X(t). The trajectory is assumed to evolve according to the

Lagrangian equation

dX

dt
(t)= U(X, t)+u(X, t), (3)

where the velocity field is simply decomposed in a large-

scale term, U(x, t), and a small-scale contribution u(x, t).

We define the former, (U,V,W), as the resolved component

of the GCM, and the latter, (u,v,w), as the unresolved or

poorly resolved component.

Ocean Sci., 12, 207–216, 2016 www.ocean-sci.net/12/207/2016/
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Figure 3. Lin-log plot of PDFs of the vertical shear component γ ′x .

PDFs are normalized to have unit variance. Red boxes are for the

ADCP data at location 31.92◦ N, 32.00◦ E; blue boxes are for the

MFS data interpolated at the same location; the dashed curve is a

normal distribution.

When considering Lagrangian dispersion, the problem is

easily reformulated in terms of the time evolution of the pair

separation vector R(t)≡Xi(t)−Xj (t), where the indices

i,j = 1, . . .,n indicate the tracer particles, and i 6= j :

dR

dt
(t)=1RU(R, t)+ δRu(R, t). (4)

Two particles at mutual distance R0 = |R(t = 0)| start to

separate because of a non-zero velocity fluctuations at that

scale. Depending on the value of R0 and on the local dynam-

ics, such velocity fluctuations can be ascribed to very dif-

ferent flow motions. Let us consider the simple situation of

two particles, P1 and P2, located in the ocean mixing layer

and initially separated along the vertical direction only, i.e.

R0 = (' 0,' 0,R0). In the absence of vertical shear, and

taking into account that vertical velocities are very small,

these particles will keep their initial separation almost un-

changed so that R(t)' R0, or would separate very slowly.

As a result horizontal diffusion will be very weak.

The situation is different when e.g. particles have the

chance to experience for some time a mean vertical shear. If

this is the case, with U(Z1, t) 6= U(Z2, t) and/or V (Z1, t) 6=

V (Z2, t), particles will start separating. This is better illus-

trated in Fig. 4, which shows that vertical shear causes hor-

izontal pair dispersion. It is clear that the vertical shear is

bounded by two opposite situations: on the one hand, a mean

shear, i.e. a shear profile with very long correlation time as

happens for example in the presence of strong background

currents; on the other hand, a fluctuating vertical shear due to

turbulent motions and hence rapidly changing in time. As we

have seen in the previous section, the situation in the mixing

layer of the Mediterranean sea is in between these two ex-

trema, and the typical timescale turns out to be less than or

of the order of 1 day. The MFS estimate is much longer, as a

result of the low temporal resolution of the vertical gradients

of the horizontal velocities in the model.

3.1 Numerical simulations of Lagrangian dispersion

We discuss different sets of numerical simulations based on

the velocity configurations of the MFS model, also supple-

mented by the use of the kinematic model to describe poorly

resolved motions. Kinematic models can be adapted to the

different dispersion regimes, namely exponential separation,

turbulent dispersion, and standard diffusion. Their imple-

mentation hence depends on the specific dynamics and spe-

cific range of scales that one wants to describe. Here, we

compute transport properties by introducing statistical La-

grangian motions for the mixing layer motions (3-D KLM),

and separately for the poorly mesoscale motions (2-D KLM).

By doing so, we demonstrate that (i) small-scale motions

(due to the 3-D KLM) enabling tracer pairs to explore the

whole mixing layer do not modify the MFS horizontal dis-

persion properties, due to the anomalous persistence of ver-

tical gradients of the horizontal velocities in the MFS model,

which overrides the small-scale fluctuations; (ii) differently,

the horizontal relative separation resulting from the introduc-

tion of the 2-D KLM is fast enough to become dominant with

respect to the anomalous shear effect produced by the MFS

solution.

Lagrangian numerical simulations are performed using as

large-scale velocities the zonal U(x, t)= UMFS and merid-

ional V (x, t)= VMFS components provided by MFS, and in-

terpolated at particle positions; the velocity vertical compo-

nent W(x, t) is not explicitly available in the MFS data file

considered, and we did not consider it. To take into account

unresolved fluctuations, we adopt a strategy in terms of a La-

grangian deterministic kinematic modelling.

In the following, we first describe the 3-D KLM which is

meant to account for the transport and mixing in the upper

layer of the ocean; then we introduce the 2-D KLM account-

ing for the poor-resolution of mesoscale horizontal motions.

More details on the KLM definition and implementation can

be found in Palatella et al. (2014) and Lacorata et al. (2014).

The 3-D KLM

In compact form, the three-dimensional velocity field of the

KLM, (u,v,w), is defined as the curl of the vector potential

8(x, t):

u(X, t)=
∂81(x, t)

∂z
,

v(X, t)=−
∂82(x, t))

∂z
,

w(X, t)=−
∂81(x, t))

∂x
+
∂82(x, t)

∂y
, (5)

hence u(x, t) is divergence-free by definition. The vector po-

tential itself8= (81(x,z, t),82(y,z, t),0) has two compo-
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Figure 4. An illustration of the effect of vertical shear on the mean

horizontal dispersion of two particles, P1 and P2, initially separated

along the vertical direction.

nents and depends on the three spatial variables and the time

variable, as follows:

81(x,z, t)=
A

k̂
sin[k(x− s sin(ωt))]sin[̂k(z− s sin(ωt))]

82(y,z, t)=
A

k̂
sin[k(y− s sin(ωt))]sin[̂k(z− s sin(ωt))], (6)

in analogy with chaotic cellular flows (Solomon and Gollub,

1988; Crisanti et al., 1991; Lacorata et al., 2008). Further, the

suppression of the vertical dynamics below the mixing layer

is included in terms of a damping term ϒ(z)= exp(−|z|/L),

multiplying the vector potential 8. Such exponential relax-

ation term guarantees that KLM velocities go to zero at

depths much larger than the length scale L, where L is of

the order of the mixing layer depth.

The explicit form of the velocity components of the 3-D

model then results as follows:

u3-D = e
−|z|/L

×[
Asin[k(x− s sin(ωt))]cos[̂k(z− s sin(ωt))]

−
A

Lk̂
sin[k(x− s sin(ωt))]sin[̂k(z− s sin(ωt)) ] ,

v3-D = e
−|z|/L

×[
−Asin[k(y− s sin(ωt))]cos[̂k(z− s sin(ωt))]

+
A

Lk̂
sin[k(y− s sin(ωt))]sin[̂k(z− s sin(ωt))] ] ,

w3-D = e
−|z|/L

×[
−A

k

k̂
cos[k(x− s sin(ωt))]sin[̂k(z− sin(ωt))]

+A
k

k̂
cos[k(y− s sin(ωt))]sin[̂k(z− s sin(ωt))] ]

+ e−|z|/L×[
A
k

Lk̂
sin[k(x− s sin(ωt))]sin[̂k(z− sin(ωt))]

−A
k

Lk̂
sin[k(y− s sin(ωt))]sin[̂k(z− s sin(ωt))] ] (7)

In the expressions above, A is the velocity amplitude, k =

2π/l0 is the horizontal wavenumber associated with the

wavelength l0 of the flow, k̂ = 2k is the vertical wavenumber

assumed to be twice the horizontal wavenumber for isotropy,

tc = l0/A is the convective timescale, and s and ω are ampli-

tude and pulsation of the time-dependent oscillating terms.

In order to simulate the mixing-layer dynamical effect of

a multiscale velocity field with a turbulent-like behaviour, as

is customary we superimpose n different modes. For the 3-D

KLM, we use n= 5 and the velocity field of Eq. (7) becomes

the sum of different terms with A= Ai;k = ki;ω = ωi;s =

si for i = 1, . . .,5. The small spatial scales li and their associ-

ated fast timescales ti ' li/A are chosen to reproduce, on av-

erage, the dynamical properties within the mixing layer. Pul-

sations of the perturbations, responsible for the Lagrangian

chaotic behaviour, are dimensionally chosen, ∝ 1/ti . In par-

ticular for the 3-D KLM, we use these values for the model

parameters:
ln = {25.0,33,4,50.0,70.7,100} m

kn = 2π/ln;An = (εln)
1/3 m/s

ωn = 2πAn/ln;

L= 100 m, ε = 10−5m2s−3.

(8)

Finally, ε is the kinetic energy dissipation rate and it is

used as the main parameter through the dimensional relation

|u|3 ' Lε, valid for the turbulent-like regime (Frisch, 1995).

The 2-D KLM

The KLM for the unresolved mesoscale motions is built up,

in analogy with the 3-D model, in terms of an ensemble of

horizontal cells forming a 2-D regular lattice (Palatella et al.,

2014).

The explicit form of the 2-D sub-grid velocity is

u2-D =

6∑
j=1

Aj sin[kjx− kj sj sin(ωj t))]

cos[kjy− kj sj sin(ωj t + θ)],

v2-D =−

6∑
j=1

Aj cos[kjx− kj sj sin(ωj t))]

Ocean Sci., 12, 207–216, 2016 www.ocean-sci.net/12/207/2016/
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Figure 5. (Colour online.) Log-log plot of the finite-scale Lyapunov

exponent λ(δ) versus the separation scale δ; black filled circles: sur-

face drifters; red filled circles: MFS surface particles (both after La-

corata et al., 2014); blue filled squares: Series I, that is the MFS

model for particle pairs at fixed depths; purple empty squares: Se-

ries II, that is the MFS model plus the 3-D KLM; black empty cir-

cles with solid line: Series III, as Series II plus the 2-D KLM. Error

bars, often smaller than the symbols themselves, are estimated from

the standard deviation of the FSLE.

sin[kjy− kj ss sin(ωj t + θ))], (9)

where the subscript is meant to stress that the 2-D KLM is not

equal to the 3-D KLM in the absence of the vertical velocity.

The choice of parameters for the 2-D model is the following:
lj = {10.0,14.120.0,28.0,40.0,56.5} km

sj = lj/10, θ = π/4

ε = 10−9m2s−3 ,

(10)

and Aj ∝ (εlj )
1/3, ωj = 2πAj/lj , and kj = 2π/lj . As in

Lacorata et al. (2014), these parameters have been tuned

in order to numerically obtain a horizontal dispersion with

the same statistical properties (more precisely the same

finite-scale Lyapunov exponent, FSLE) as the actual surface

drifters (see above the points labelled as “Surface floats” in

Fig. 5). It is important to note the difference between the

choice of parameters of the 2-D and 3-D models: they act on

a well-separated range of scales, and mimic different effects,

as mentioned above.

Numerical experiment set-up

We performed three series of numerical simulations releas-

ing Npair ' 50 000 pairs of neutrally buoyant particles. In all

series, pairs are initially homogeneously distributed in the

whole Mediterranean Sea, 10 km offshore from the coast.

An elastic collision takes place when particles meet the

domain boundaries. Within each pair, particles start at the

same latitude and longitude position, but they are vertically

separated: one particle starts at z=−3 m below the surface,

the other at z=−43 m, hence R0 = (0,0,40). Simulations

are carried out for 1 year (from 1 January to 31 December

2009), and the integration time step is dt = 120 s.

The three series of simulations are characterized as fol-

lows:

– Series I: the KLM velocity is absent and particles keep

their initial depth unchanged throughout the entire sim-

ulation. This is quite far from realistic conditions; how-

ever, this numerical experiment is useful to quantify the

effect of the vertical shear solely due to the mesoscale

MFS model dynamics.

– Series II: the 3-D KLM term is switched on, with the

parameters shown in Eq. (8). As a result of the presence

of the sub-grid-scale turbulent dynamics, particles can

also move vertically (between the surface and a depth

scale of the order of L).

– Series III: this differs from the Series II due to the fact

that in addition to the 3-D KLM, the 2-D KLM model

is also implemented: u= u3-D+u2-D. The 2-D KLM is

essential in simulating the mesoscale structures that are

not completely resolved by the MFS model.

In addition, we also compare results from these runs

with results obtained in Lacorata et al. (2014), con-

sidering MFS surface tracked particle and drifter tra-

jectories. Drifter data belong the Mediterranean Sea-

In-Situ Near Real Time Observations (database IN-

SITU_MED_NRT_OBSERVATIONS_013_035 available on

http://marine.copernicus.eu/). These are surface buoys,

drogued at a nominal depth of 15 m (Poulain et al., 2012).

The comparison with surface drifters is here used as a bench-

mark for the 2-D kinematic model.

3.2 Lagrangian dispersion diagnostic: the FSLE

The most natural way to quantify Lagrangian dispersion

statistics is in terms of the moments 〈Rp(t)〉 of the pair sep-

aration PDF P(R, t) (LaCasce, 2010; Biferale et al., 2014),

measuring the probability to observe a pair separated by the

distance vectorR at time t . Standard observables are the mo-

ment of order 2, the mean square particle separation 〈R2(t)〉,

and its time derivative, i.e. the relative diffusivity D(R, t).

Alternatively one can use the FSLE (Boffetta et al., 2000).

The advantage of this choice, often exploited in ocean dis-

persion applications (LaCasce, 2008), is that different dis-

persion regimes are disentangled and crossover effects are

minimized. Furthermore, the finite-time Lyapunov exponent

(FTLE) is also used to detect Lagrangian coherent structures

in ocean dynamics applications (Haller, 2000; Sulman et al.,

2013). A discussion of the use of scale-dependent indica-

tors in Lagrangian dispersion problems can be found in Berti

et al. (2011), while a direct comparison of FSLE and FTLE

for the identification of transport barriers can be found in

Boffetta et al. (2001).
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The measure of FSLE consists of fixing a set of threshold

scales, δn = ρ
nδ0, where ρ > 1, n= 1,2,3, . . . and δ0 can be

chosen of the order of the initial pair separation. We then

need to calculate the time, T (δ), it takes for the pair separa-

tion distance R(t) to change from δn to δn+1. By averaging

over the particle pair ensemble, we obtain the mean exit time,

〈Tρ(δn)〉, or mean doubling time if ρ = 2. Formally we are

calculating the first passage time. The FSLE has the dimen-

sion of an inverse of time and is defined as

λ(δ)≡
1

〈T (δ)〉
lnρ. (11)

If δ→ 0, the FSLE no longer depends on the scale and co-

incides with the maximum Lyapunov exponent on the flow:

this happens when particles separate exponentially in time.

For finite separations, if relative dispersion is governed by a

〈R2
〉 ' tν regime, then by dimensional analysis the FSLE is

expected to scale as λ(δ)' δ−2/ν . Most relevant regimes are

the case of standard diffusion, for which we expect λ(δ)'

δ−2; Richardson’s diffusion, λ(δ)' δ−2/3; and ballistic or

shear dispersion, with λ(δ)' δ−1.

Here, since we want to compare how the horizontal dif-

fusion is influenced by the different flow realizations, in the

FSLE we consider horizontal separations only.

In Fig. 5, we compare FSLE results from the three series

and results from Lacorata et al. (2014) at the surface. First,

we observe that surface drifter and MFS surface tracer data

show a striking difference: while at large scale they have the

same behaviour, at a scale δ ' 40 km they depart. In par-

ticular, for Lagrangian particles moving in the MFS veloc-

ity field, numerical simulations unrealistically suggest that it

would take approximately the same time to reach a separa-

tion scale of the order of a few kilometres and a separation

scale 10 times bigger. As has been previously observed, this

discrepancy is due to both the coarse spatial resolution and

the time averaging of any mesoscale model – see e.g. Haza

et al. (2012) and references therein.

Note that the scale at which MFS surface tracers deviate

from drifters is larger that the model resolution: this suggests

that scale resolution is crucial for Lagrangian statistics.

How does vertical shear affect these results? Can the verti-

cal shear substantially modify horizontal dispersion? We ad-

dress these questions using numerical data from Series I, II,

and III.

In Series I, the effect of the vertical shear onto the horizon-

tal dispersion comes from the MFS model only. The associ-

ated FSLE curves clearly indicate that vertical shear is able

to promote horizontal dispersion. Neutrally buoyant tracers

moving at different depths experience velocity differences:

as a result they start to separate already at very small scales.

In Series II, the 3-D KLM terms are switched on, and par-

ticles vertically explore the whole mixing layer. The obtained

FSLE curve is very similar to that of Series I, and in partic-

ular it turns out to be slightly below the latter. This finding

is somehow surprising since, thanks to the introduction of

small-scale turbulent-like motions, tracer pairs can explore

the whole mixing layer. However, the fluctuations of the 3-D

KLM do not substantially modify the horizontal pair disper-

sion, and actually they make it slightly slower in the present

case. This suggests that the dominant effect is the one asso-

ciated with the MFS vertical shear.

In Series III, both the 3-D and the 2-D KLM are switched

on. The resulting FSLE is larger than that of Series II at any

scale. This means that the most important dynamical correc-

tion to the MFS model is that associated with the 2-D KLM.

Indeed, the dispersion effect induced by the mesoscale ed-

dies inserted in the 2-D KLM overrides any other horizon-

tal dispersion effects, including the one associated with the

anomalous persistence of vertical gradients of the horizontal

velocities in the MFS model.

We can summarize the results of the numerical simula-

tions as follows. By comparing the horizontal dispersion of

the bare MFS model with Mediterranean surface data, one

sees that actual drifter pair dispersion follows a turbulent-

like behaviour, whereas modelled surface trajectories sepa-

rate more slowly and at a nearly constant rate. A way to solve

this mismatch is to add a 3-D kinematic model, enabling ver-

tical shear mixing and promoting surface horizontal disper-

sion also. However, the adoption of the 3-D KLM only does

not seem an appropriate choice, since vertical gradients of

the horizontal velocities have an anomalous temporal persis-

tence, resulting in a spurious shear dispersion. Indeed, such

persistence does not seem to have a counterpart in observa-

tional data, and we interpret this as an artifact of the poor

temporal resolution of MFS model.

On the other hand, adding a two -dimensional kinematic

model, one finds that the anomalous shear dispersion effects

become practically negligible, being hidden by the more

energetic dispersion processes occurring at the mesoscale.

Clearly, mesoscale eddies are not pure 2-D structures, but

they have a certain vertical development in the mixing layer.

This implies that mesoscale turbulent dispersion is not a

property of the surface layer only, but belongs to a whole

vertical range of ocean layers. By adding the 2-D KLM for

mesoscale eddies, one realizes that the effect is to have an

efficient dispersion that covers the one due to mean vertical

shear.

Finally, it is worth recalling that, as shown in Lacorata

et al. (2014), the FSLE measured for the Mediterranean sur-

face drifters previously discussed follows the Richardson dif-

fusion behaviour λ(r)∝ r−2/3 for r ∈ [10 : 100] km. This is

consistent with the observed dispersion rates in the GLAD

experiment, which spans however a much wider range of

scales (Poje, 2014).

4 Conclusions

In this paper, we have discussed the effect of vertical shear

onto the horizontal pair dispersion of tracer particles in a
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Mediterranean Sea model. Numerical simulations with the

MFS model show that, differently from drifters, pairs re-

leased at the same depth tend to exponentially separate with

a dispersion rate nearly constant over a wide range of scales,

up to the mesoscale. At larger scales (> 100 km), as soon

as spatial correlation of the MFS velocity decay, the relative

dispersion tends to a diffusive regime. However, if two tra-

jectories having the same initial position are shifted in the

vertical direction, then the horizontal dispersion rate grows

as the separation tends to zero: this is the effect of the persis-

tence of the vertical gradient of the horizontal velocities. This

observation implies that, at spatial scales smaller or compa-

rable with the mixing layer size, shear dispersion can be quite

important. Its relevance might be under- or overestimated in

the model, depending on whether vertical gradients of the

current field change too fast or are anomalously persistent in

time, respectively.

Now, the question arises, whether the proper small-scale

ocean model velocity field is able to simulate the horizontal

dispersion of a tracer having a 3-D structure in the mixing

layer and below. The solution to this problem is very diffi-

cult, mainly because experimental data of 3-D tracer disper-

sion are not easily available. Different modelling solutions

can be adopted to account for different problems, depending

on whether the mesoscale, submesoscale or small scale is the

relevant range of scales in the dispersion problem, none of

which is straightforward.

For the specific problem of the effect of vertical shear, a

different possibility, yet to be explored, is to build up an ad

hoc Lagrangian small-scale kinematic model accounting for

the locally homogeneous shear-dominated dynamics. In the

context of large-eddy simulations, this has been done with

the shear-improved sub-grid-scale models in the Eulerian

framework (Lévêque et al., 2007). Future ocean experiments

focusing on the dispersion properties of tracers having ver-

tical structures, such as the chlorophyll field, are needed to

reveal more about the dynamics and statistics at those spatial

scales where shear might dominate.
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