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Abstract. Analytical solutions are found for the problem
of instability of a weak geostrophic flow with linear ve-
locity shear accounting for vertical diffusion of buoyancy.
The analysis is based on the potential-vorticity equation in
a long-wave approximation when the horizontal scale of dis-
turbances is considered much larger than the local baroclinic
Rossby radius. It is hypothesized that the solutions found can
be applied to describe stable and unstable disturbances of
the planetary scale with respect, in particular, to the Arctic
Ocean, where weak baroclinic fronts with typical temporal
variability periods on the order of several years or more have
been observed and the S effect is negligible. Stable (decaying
with time) solutions describe disturbances that, in contrast to
the Rossby waves, can propagate to both the west and east,
depending on the sign of the linear shear of geostrophic ve-
locity. The unstable (growing with time) solutions are applied
to explain the formation of large-scale intrusions at baro-
clinic fronts under the stable—stable thermohaline stratifica-
tion observed in the upper layer of the Polar Deep Water in
the Eurasian Basin. The suggested mechanism of formation
of intrusions can be considered a possible alternative to the
mechanism of interleaving at the baroclinic fronts due to the
differential mixing.

1 Introduction

The study of intrusions in oceanic frontal zones is required
to understand the mechanism of ventilation and mixing in the
ocean interior (see, e.g., Zhurbas et al., 1993, 1987; Rudels
et al., 1999, 2009; Kuzmina and Zhurbas, 2000; Walsh and
Ruddick, 2000; Merryfield, 2000; Radko, 2003; Richards
and Edwards, 2003; Kuzmina et al., 2005, 2011; Smyth and

Ruddick, 2010). Intrusive layering, as a rule, results from
the instability of oceanic fronts. One of the major mech-
anisms responsible for the instability of both thermohaline
and baroclinic fronts is related to the double diffusion (Stern,
1967; Ruddick and Turner, 1979; Toole and Georgi, 1981;
McDougall, 1985a, b; Niino, 1986; Yoshida et al., 1989;
Richards, 1991; Kuzmina and Rodionov, 1992; May and Kel-
ley, 1997; Kuzmina, 2000). However, in the Eurasian Basin
of the Arctic Ocean there are baroclinic and thermohaline
fronts within the upper layer of the Polar Deep Water (PDW)
populated with intrusive layers of vertical length scale as
large as 30 m and with horizontal scale reaching up to more
than 100 km (Rudels et al., 1999, 2009; Kuzmina et al., 2011)
observed at the stable—stable stratification (i.e., increasing for
the mean salinity while decreasing for the mean temperature
with depth). It can be suggested that the thermohaline intru-
sions within the upper layer of PDW are driven by differ-
ential mixing. Merryfield (2002) was the first to show sat-
isfactory agreement between calculations of unstable modes
from a three-dimensional (3-D) interleaving model that ac-
counted for the differential mixing at a non-baroclinic front
and observations of intrusive layering at a pure thermohaline
front in the PDW. Findings by Merryfield (2002) were con-
firmed by Kuzmina et al. (2014). However, the 2-D model
of interleaving driven by differential mixing at the baroclinic
front failed to simultaneously fit three modeled parameters,
namely, the vertical scale, the growth time, and the slope of
the fastest growing mode, with observations of intrusions in
a frontal zone with a substantial baroclinicity in the upper
PDW layer (Kuzmina et al., 2014). In particular, it was found
that the vertical scale of the most unstable mode was about
2 to 3 times smaller than the vertical scale of intrusions ob-
served in the baroclinic front. Furthermore, it is worth not-
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ing that the 2-D models of double-diffusive interleaving, as
applied to typical baroclinic fronts in the ocean, are able
to forecast intrusive layers with vertical length scale of no
more than 10 m (Kuzmina and Rodionov, 1992; May and
Kelley, 1997, 2001; Kuzmina and Zhurbas, 2000; Kuzmina
and Lee, 2005; Kuzmina et al., 2005). Therefore, despite the
proven-by-simulation hypothesis of intrusions of small ver-
tical scale merging into larger structures (Radko, 2007), new
approaches to the mathematical description of the formation
of large intrusions in the area of baroclinic fronts become
relevant.

We suggest that the interleaving at a baroclinic front
may be considered as a result of 3-D instability of weak
geostrophic current due to the combined effects of vertical
shear and diffusion of density (buoyancy).

The effect of vertical diffusion of buoyancy on the baro-
clinic instability of geostrophic zonal wind has been studied
theoretically by Miles (1965). Proceeding from the analogy
between the equations describing the dynamics of large-scale
atmospheric perturbations and the Orr—Sommerfeld equation
(Lin, 1955; Stern, 1975), Miles (1965) analyzed the instabil-
ity of the critical layer (a very thin layer in which the phase
velocity of a disturbance equals the velocity of zonal flow).
This resulted in an analytical asymptotic solution accounting
for a very small, though finite, vertical diffusion of buoyancy.
Based on the analysis, Miles (1965) concluded that the ef-
fect of vertical diffusion of buoyancy on the destabilization
of zonal wind is negligible in comparison with the baroclinic
instability (the generation of cyclones and anticyclones) for
typical atmospheric geostrophic winds. One could assume,
however, that other conditions can occur in the deep ocean.
Indeed, in the polar zones, for example, in the Eurasian Basin
of the Arctic, very weak geostrophic currents have been ob-
served in deep layers (Aagaard, 1981). These currents can
have a large horizontal (transverse) scale and large timescale
of variability, the latter being estimated to exceed 1 year (Aa-
gaard, 1981). Taking into account that the influence of the
effect on the dynamics of large-scale disturbances is negligi-
ble in the Polar Ocean for near the pole, it seems reasonable
to suggest that the contribution of diffusion of buoyancy to
the destabilization of weak geostrophic currents can be im-
portant. Therefore, in such circumstances one would expect
the formation of intrusions, rather than vortices.

The present work is devoted to seeking analytical unstable
(increasing with time) and stable (decreasing with time) so-
lutions based on the potential-vorticity equation describing
the 3-D dynamics of a weak baroclinic front, with the ver-
tical diffusion of buoyancy included. Hopefully the results
will provide an opportunity to obtain some new insight into
the causes of the formation of large intrusions, particularly in
the regions of the Arctic Ocean with the stable—stable strati-
fication.
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2 Problem formulation, derivation of basic equation,
and solution search

Let us consider the problem of the 3-D instability of a baro-
clinic front based on the linearized equations of motion in
quasi-geostrophic approximation (see, e.g., Pedlosky, 1992;
Cushman-Roisin, 1994):

v=—212% y_o w=o P __ (1)
- f aya - ) - ) BZ - g,O,
ap 1dp 1dp
=80, U=——77"—, V=—7", (2)
9z fay f ox
3 3 1 dw K 92
—+U—]) (- — f— = ——Ap, 3
(aﬁ ax)(f p)+ﬁv fo: = Faabr O
0 +U 9 + 7 _N K il )
— — vV———w=K—p,
ot Cax )’ Ty T g 022"

where U and V are zonal and meridional components of the
geostrophic velocity; P and p are the mean pressure and
density both divided by the reference density; N, f, and g
are the buoyancy frequency, Coriolis parameter, and gravity
acceleration; u, v, and w are velocity fluctuations along the
x, y, and z axes, respectively; p and p are the pressure and
density fluctuations both divided by the reference density;
B=0f/dy; A=20d>/9x>+9%/dy?; and the x, y, and z axes
are directed eastward, northward and upward, respectively.
The vertical friction with a constant coefficient K is consid-
ered in the vorticity equation Eq. (3). The density balance
equation (Eq. 4) takes into account, apart from the advection
terms, only the vertical diffusion with a constant coefficient
K. The constant coefficients K and K are treated as the av-
erage values over the ocean layer under investigation.

Let us take the distribution of mean density, divided by the
reference density, as follows:

_ N2
ﬁ(z,y)=fsyZ/g+fsy/g—?Oerl, (3)

where Ny = const > 0 is a characteristic value of the buoy-
ancy frequency in the frontal zone, and 5 and s are dimen-
sional constants, either positive or negative, which character-
ize the cross-front gradient of density and the vertical shear
of the basic geostrophic flow.

The first term on the right of Eq. (5) has not been taken
into account in the interleaving models describing both the 2-
D (see, e.g., Kuzmina and Rodionov, 1992; May and Kelley,
1997; Kuzmina and Zhurbas, 2000) and 3-D (Eady, 1949;
Miles, 1965; Smyth, 2008) instabilities of the oceanic baro-
clinic fronts. Meanwhile, the oceanic fronts can be character-
ized by not only the cross-front gradient of density, but also
by the cross-front gradient of the buoyancy frequency. This
is the case described by Eq. (5); the squared buoyancy fre-
quency N2 = —gdp/dz is a linear function of y. This depen-
dence is assumed to be weak; |s| fL < Ng, where L is the
characteristic lateral length scale (width) of the frontal zone
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(0 <y < L). However, even a weak lateral change in the
buoyancy frequency indicates the existence of a quadratic de-
pendence of geostrophic velocity on the vertical co-ordinate
z. Indeed, if the mean density distribution is expressed by
Eqg. (5), the geostrophic current velocity will be

U=U+U,+Us, U5 =sz/2, (6)
U, =5z, Uz = const,

where U; and U, are the constituents of geostrophic velocity
with linear (U;) and constant (U;) vertical shear: dU;/dz =
sz, dU,/dz = and Uj is the barotropic (constant) velocity
addition.

The equation of evolution of potential vorticity, derived
from Egs. (1)-(4) under the assumptions of | fsy/Ng} <
|fSL/N}| < 1and U/fL < 1,is

3 3\ (*p NiAp\ BuN;
(E-FUE)(Q-FT + 7 —vsf @)

34 N2 2
—K
Pl

Note that the differentiation of Eq. (4) with respect to z can-
cels out the terms (U /dz) - (dp/dx) and (dv/dz) - (dp/dy),
since according to Egs. (1) and (2) they are equal in magni-
tude and opposite in sign.

As it can be seen from Eq. (7), the last term on the left can
strengthen or weaken, depending on the sign of s, the impact
of the B effect on the dynamics of disturbances.

We will consider at K ~ K the long-wave distur-
bances (i.e., perturbations of the planetary scale) of weak
geostrophic current that satisfy the following relationship be-
tween the Vertlcal and horizontal length scales (H and L, re-
spectively): L > Lgr, where Lr = NoH /f is the baroclinic
Rossby radius of deformation. If we apply Eqgs. (1)—-(4) to de-
scribe the motion in the Arctic Basin, the B-effect term can
be ignored because B & 0 in the vicinity of the North Pole.

Taking into account the abovementioned conditions,
we may use the method of series expansion at small
parameter §% = N2H2/(L2f2) = Bu, where Bu is the
Burger number (see, e.g., Cushman-Roisin, 1994). For
82 ~1073-1074(L ~ 10*-10°m, 20 < H <100m, Ny~
1073571, f~107%s71), it is reasonable to consider only
the first term of the series. In this case, we can rewrite the
potential-vorticity equation in the simplified form:

B] a\ (9*p 3%
(Bt + 8x) (Bzz) v/ 8Z4p ®

The introduced-by-the-procedure relative error of the solu-
tion is expected to be on the order of 82, and the smaller the
82 the smaller the error.

According to our approximation, Eq. (8) corresponds to
the density balance equation Eq. (4) for w = wy = const:

3 3 o N§ 3?
—+U—)p+v———wy=K—5p. ©)
ot dx y g z

p.
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The correspondence between Egs. (8) and (9) can be checked
by differentiating Eq. (9) with respect to z and taking into
account that dp/dz = —gp.

Thus, the vorticity equation Eq. (3) drops out of con-
sideration. Indeed, given that the diffusivity of mass, K,
in the oceanic interior (particularly in the deep water of
the Arctic Ocean) probably does not exceed the value of
1x107> m? s~ ! and the vertical length scale of the intrusions,
H, which this theory is applied to, is approximately equal
to H ~20-100 m the ratio of U/L ~ K/H? is estimated as
U /L <3x 107851, Based on the latter estimate, one can
suggest that the Vertical circulation caused by the frictional
force and temporal change of vorticity will not significantly
affect the dynamics of large-scale disturbances. This hypoth-
esis will be tested a posteriori by analyzing the solutions ob-
tained. For further discussion it is important to underline that
the geostrophic Richardson number Ri = N(%H 2/U?, where
U is the characteristic scale of geostrophic velocity, is much
larger than unity for very slow currents.

Given that wg = const, we can take wo = 0 in Eq. (9), and
therefore rewrite it as

LTI DAL ekl (10)
— — v— =K—p.
o T ax )P Ty T a2l

Based on the reasoning above, we can conclude that the slow
extra-large-scale disturbances of weak geostrophic flow are
described by the quasi-stationary system of Egs. (2) and (10).

Let us now pay attention to an important issue. Namely, if
we suppose that U(z) =0 in Eq. (10) and consider salt fin-
gering instead of diffusion of buoyancy, in addition to Eq. (2),
it will be necessary to write the following two equations in-
stead of Eq. (10):

9%2s aS  9S 92s

d — Ks>2, 10/
02 ot Vay - NShp 1o

ap

vl Ks(l—y)B—5
where § and S are the salinity disturbance and mean, Ks and
y =aFr/BFs < 1 are the vertical diffusivity of salinity and
the flux ratio for salt finger convection, Fr and F§, are the
vertical fluxes of temperature and salinity, @ and 8 are the
temperature expansion and salinity contraction coefficients,
respectively.

Equation (10") along with Eq. (2) constitute the system of
equations that was used by Stern (1967) to obtain the poly-
nomial dependence between the growth rate of unstable per-
turbations, wave numbers and hydrological parameters (see
Eq. 4 of Stern, 1967). Therefore, the proposed model, which
consists of Egs. (2) and (10), can in a certain sense be re-
garded as an analogue of the model by Stern (1967) for in-
vestigating the interleaving on a large horizontal scale.

From the point of view of the author of this paper, a sim-
ple quasi-stationary (geostrophic) system of equations accu-
rately describes the large-scale movement especially in the
Arctic Ocean, where the influence of the 8 effect is not sig-
nificant, the baroclinic fronts of large width in the ocean in-
terior are often not intense (Kuzmina et al., 2011), and the
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baroclinic radius of deformation, HN/f, at H ~ 100 m does
not exceed 2-5 km (see also Sect. 3).

To analyze the instability of the geostrophic flow in the
frame of Eqs. (2) and (10), let us take a layer with the vertical
scale of 2 Hy, move the z axis origin to the middle of the layer,
and consider a symmetric relative to the midline geostrophic
flow with quadratic z dependence of velocity:

U=U+Us, U =sz%/2, Us=—sign(s) sH}/2.

A parabolic z dependence of the geostrophic flow veloc-
ity can be observed in the rotary flow of the intra-pycnocline
vortices, as well as in many other ocean flows. In any case,
as mentioned above, in the oceanic frontal zones it is likely
to observe changes of the buoyancy frequency in the cross-
front direction indicating the presence of linear shear of
geostrophic velocity. The consideration of the instability of
geostrophic flow with the velocity profile of U = Uy + Uy +
Us is also possible by analytical methods, but this issue falls
out of the scope of the present study.

Let us discuss the conditions on the boundaries of the layer
in relation to the ocean. Keeping in mind the Eady problem
(Eady, 1949), one has to set the vertical velocity vanishing
at the layer boundaries. Our approximation meets this condi-
tion.

Due to our model accounting for the vertical diffusion, it
appears reasonable to accept the conditions of zero buoyancy
flux (for density perturbations) at the layer boundaries: p,, =
0 at z = £ Hj (the type 1 boundary conditions). It is reason-
able to consider another type of condition too, namely, the
slippery boundary conditions or equivalent of density distur-
bances vanishing at boundaries: dv/dz =du/dz=p =0 at
7z = £ Hj (the type 2 boundary conditions). Under the type 2
boundary conditions, it is necessary to set up the absence of
convergence or divergence of buoyancy flux within the layer:
pzz(z = Hp) = p;.(z = —Hp). This condition is necessary,
because the convergence or divergence of the buoyancy flux
within the layer may increase or, conversely, decrease the sta-

bility of the layer.
Using Eq. (2), we rewrite Eq. (10) as
9 9\ (ap\ op 93
(8t+ ax)<az) ax T N aal b

where U = U + Us.

To analyze the instability of geostrophic flow, we will seek
the solution of Egs. (2) and (11) for the lateral boundary con-
ditions of v|y—o = v|y= = 0, accordingly to Eq. (7), in the
form

»=Re {F(z)e"k<x—”> sin(ry /L)} , (12)
where k is the wave number along the x axis and c is the

growth rate. For the positive imaginary part of ¢, Im(c) > 0,
the solution will be unstable, i.e., increasing with time.
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The substitution of Eq. (12) into Eq. (11) yields the fol-
lowing equation:

ik (U +Us —¢) (dF(Z))

dz (13

d3
— F(2)iksz— K— F(z) =0.
dz3

We are interested in finding an answer to the following
question: is it possible to make certain judgements about the
possibility of instability of geostrophic flow in a finite ver-
tical layer, based on the analytical solutions of Eq. (13), at
some values of parameter c?

It is easy to verify that the following functions are partial
solutions of Eq. (13):

Fi(z) =e /%, Fy(z) =az®+D, (14)

where a® =iks/2K, D= —2a(c—U3)/s, ikc=ik(c) +
icop)=5a-K +ikUs, ¢c1 = Rec, cy =Imc, and Uy +U; —
Rec # 0 at an arbitrary point z = zo in the layer domain.

To test partial solutions Eq. (14), one has to substitute
F1(z) and F>(z) from Eq. (14) into Eq. (13), reduce the latter
to a cubic polynomial P(z) = A3z>+Azz>+A1z' +Apz” and
evaluate coefficients Ag, A1, A, and As3. It is easy to make
sure that this polynomial is identically zero (i.e., Ag =0,
A1 =0,A,=0,and A3 =0).

Proceeding from the theory of ordinary differential equa-
tions (see, e.g., Polyanin and Zaitsev, 2001), due to the lin-
early independent functions F1(z) and F>(z), we can express
the general solution of Eq. (13) for ikc = 5a- K +ikUs in the
form

F(z) = B1 Fi1(2) + B2 F2(2) + B3 F3(2) (15)
F3(z) = (z)~/Fz(z)¢(z)dz—Fz(z)-/F1 (2)¢(2)dz
¢ (2) = (Fi(2) - dF2(2)/dz — Fa(z) - dFy (z)/dz) 2,

where Bj, By, and Bz are arbitrary constants. It is impor-
tant to note two facts. First, the functions Fj(z) and F»(z)
are even functions, while F3(z) is an odd function. Second,
despite the singularity of integrands in Eq. (15) at z =0,
the function F3(z) is differentiable at this point. (The lat-
ter becomes evident from the asymptotic analysis of function
F3(z) for z — 0.)

Let us now consider the unstable and stable solutions
Eq. (15).

2.1 Unstable solutions

According to the expression for parameter ¢ (see Eq. 14),
ikc =ik(c1+ico) = 5a- K +ikUs, the solution for Eq. (15)
can be unstable for both s > 0 and s < 0. The real and imag-
inary parts of kc for the unstable (i.e., growing with time)
solutions are
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key =2.5-/|s|kK +kUs, (16a)
ker =2.5-1/]s|kK fors <0,
kei = —2.5v/skK +kUs, (16b)

kco =2.5-/skK fors > 0.

Equation (16a, b) demonstrate that the condition U +U3z —
Rec # 0 is satisfied for z € (—o0, +00).

According to Eq. (16a, b), the unstable solution is real-
ized for Rea < 0, and hence, for any finite wave number &,
the function F1(z), and all its derivatives increase infinitely
if z = £00. On the other hand, the function F3(z) and all its
derivatives vanish if z — Fo0. (It can be seen from asymp-
totic analysis of the integrals that define F3(z), if z — F00.)
Therefore, to prove the instability in a finite layer, it is nec-
essary to show that F(z) for Rea <0 is an eigenfunction
of the eigenvalue problem with the boundary conditions of
type 1 or 2 introduced above. To construct physically cor-
rect solutions we will consider the following two cases. In
case 1, where the vertical scale of the layer corresponds to
our approximation, 2Hy ~ H < fL/N.In case 2, where the
vertical scale of the layer significantly exceeds the vertical
scales of the disturbances for which our approximation holds
true, H < 2H).

To satisfy the boundary conditions of type 1 and 2 in
case 1, we have to take B3 = 0 because F3(z) is an odd func-
tion. The type 1 boundary conditions are reduced to F,; =0
for z = £ Hy. Thus, the following equality should be met:

a2 (_1 +aHg) +2B,/B; =0. (7

Given that 2B, /B; can have different values, the instability
in the framework of the solution for Eq. (15) does exist, be-
cause in a wide range of typical ocean values of Hy, s, and K,
there is a wave number ko < f(2NgHy) for which Eq. (17)
is satisfied.

The type 2 boundary conditions are reduced to F, =0 at
z = £ Hp. Under such conditions, the requirement of the ab-
sence of the buoyancy flux convergence/divergence within
the layer is met; in case of parity of F(z) for B3 =0 and
for the flow symmetry relative to the midline, the values of
buoyancy flux at the boundaries are of the same magnitude
and direction (sign). Under the type 2 boundary conditions
the following equality should be met:

e=H3/2 _ 2B, /B =0. (18)

Obviously, in this case, as in the case of Eq. (17), there is
a wave number ko < f/(2NoHy) for which Eq. (18) is satis-
fied.

Figure 1 presents graphic images of unstable solutions in
the form of density disturbances Rep = Re(dF/dz) = p for
different boundary conditions for case 1. When building the

www.ocean-sci.net/12/1269/2016/
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Figure 1. Modeled vertical profiles of density disturbances
Re(dF/dz) = Rep = p for case 1. Unstable (growing) solution
for boundary conditions of type 1 (left) and type 2 (right)
for x = Re(—aHZ) =0.5(ks/K)/2H} =15, K =107 m?s~ 1,
Hy=100m, and s = 1077 m s L.

solutions, typical values of hydrological parameters in rela-
tion to the Arctic Basin were used (see Sects. 2.3 and 3).

In the case 2, we have to take By =0, B, =0, and con-
sider F3(z) as the solution of the eigenvalue problem. Indeed,
F3(z) and all its derivatives sharply decrease if z — o0,
and, consequently, on the boundaries of the large vertical-
scale layer, the function F3(z) and all its derivatives should
be infinitesimally small. Therefore, the boundary conditions
of type 1 and 2 are satisfied. Indeed, the characteristic vertical
scale of the decrease of F3(z) at z — =00 can be evaluated
as h ~ (ks/K)~V/4.If Hy is n times as large as h, the value
of |F3(z)| at |z| = Hy will be " times (!) as small as the
maximum value of | F3(z)|. Note that the maximum value of
geostrophic velocity Upax increases with Hy. However, Upax
should satisfy the condition of Upaxk/f < 1, which can be
rewritten as n2 (ks K)'/%/f <« 1.1tis easy to see that this con-
dition is met in a wide range of k, s, and K for n = 5-10.

A plot of the disturbances of density p = Re(dF3/dz) cor-
responding to unstable solutions is presented in Fig. 2. It is
worth noting that the function p = dF3/dz is differentiable
at z = 0 likewise the function F3(z).

Thus, in accordance with Eq. (11), which was obtained
from Egs. (1) to (10) for Bu<« 1, Ri > 1 and Pr= 1, the
large-scale disturbances can be unstable. Such instability
has to be distinguished from the diffusive instability (MclIn-
tyre, 1970; Baker, 1971; Calman, 1977), which occurs when
Ri < (Pr+1)2/4Pr and is absent at Pr = 1. One of the im-
portant distinctions between these two models of baroclinic
front instability is that in the present model the disturbances
are allowed to have a non-zero slope in the along-front direc-
tion, whereas in the model of diffusive instability by Mcln-
tyre (1970) the slope is taken to be zero. Therefore, the McIn-
tyre’s model and other models in which the term dp/dx,
where x is the along-front co-ordinate, in the equations of
motions is ignored (Mclntyre, 1970; Baker, 1971; Calman,
1977; Munro et al., 2010) can be referred to as the 2-D mod-
els.

Ocean Sci., 12, 1269-1277, 2016
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Figure 2. Modeled vertical profile of density disturbances
Re(dF/dz) = Rep = p for case 2. The function Re(dF3/dz) (left)
and its stretched fragment (right) versus the dimensionless co-
ordinate 7 =z - (ks/K)l/4 are presented for k = 109m™ !, s=
107" m s~ and K =109 m2 s 1.

From the mathematical point of view, the models that take
into account the along-front slope of disturbances, are much
more complicated. Indeed, the analysis of instability in the
2-D models ultimately reduces to finding the roots of a poly-
nomial, depending upon the wave numbers and growth rate.
The models, which take into account the along-front slope of
disturbances, are reduced to the differential equations with
variable, z-dependent coefficients, and such problems can be
solved analytically only in rare cases.

Also, it is worth noting that the instability described by
Eq. (11) is not the critical layer instability analyzed by
Miles (1965) for a geostrophic current with constant vertical
shear based on a similarity between the potential-vorticity
and the Orr—Sommerfeld equations. Indeed, the phase ve-
locity of the unstable disturbances in our model satisfies the
inequality U; + Uz — Rec # 0 for any value of the vertical
co-ordinate z. As we can see from Eq. (16), the phase veloc-
ity of unstable disturbances is directed along the geostrophic
current and exceeds the maximum velocity of the current. In
such a case, in the author’s opinion, the most likely is the
conversion of the kinetic energy of the main flow into the
kinetic energy of disturbances.

2.2 Stable solutions

Stable solutions of Eq. (13) are realized for Rea > 0. In this
case F(z) and all its derivatives vanish for 7 — o0, but
F3(z) and all its derivatives increase infinitely for z — £o0.
To construct our own functions of the eigenvalue problem for
case | 2Hy~ H <« fL/N), we have to take B3 = 0.

The solutions describe slow time-decay, long waves that
can move, in contrast to the Rossby waves, not only to the
west but also to the east depending on the sign of s (see
Eq. 7). Moreover, if |s| > ﬁNg / f?* (which is quite possible
especially in polar regions), the long-wave dynamics in the
B-plane approximation is determined by the linear shear of
geostrophic flow rather than the 8 effect. The real and imag-
inary parts of the growth rate of stable perturbations are
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Figure 3. Stable solution for case 1 and boundary condi-
tions of type 2 for x = Re(—aHZ) =0.5(ks/K)"/2H} =2, K =
109 m2s~!, Hy=100m, and s = 10~ m~!s~1,

kcy =—=2.5-/|s|kK +kUs3, (19a)
kco =—-2.5-y/|s|kK fors <O,
kcy = 2.5vskK + kUs, (19b)

kco = —2.5-+/skK fors > 0.

According to Eq. (19), the condition Uy + U3z — Rec # 0 is
satisfied if 2.5/]s[kK /k > |s| H}/2. Comparing Egs. (16)
and (19), we can conclude that the phase velocity has a dif-
ferent sign for the stable and unstable disturbances. That is,
the stable and unstable perturbations described by solutions
for Eq. (15) will move in opposite directions with respect to
the flow and a fixed observer.

For case 1 type 2 boundary conditions, a plot of the den-
sity disturbances Rep = Re(dF/dz) = p corresponding to
the stable solutions is presented in Fig. 3.

2.3 Obtained solutions: discussion

Our model does not allow one to determine the maxi-
mum growth rate. Here again we can see an analogy with
the work by Stern (1967). Indeed, in a well-known paper
by Stern (1967), which was the first study of the double-
diffusion instability of the infinite thermohaline front, the
magnitude of the fastest growing mode was not found. The
reason is that the growth rate in Stern’s model could indefi-
nitely increase with the horizontal wave number due to the
neglected vertical friction. A similar feature is typical for
our model. The growth rate increases with the increase in
the wave number k up to the limit k for which the con-
straint of k < f/(2HyNy) is still valid. Nevertheless, for a
rough estimate of the time of formation of unstable perturba-
tions, it is reasonable to use Eq. (16). It is also worth eval-
uating the relationship between the growth rate of unstable
disturbances and the layer thickness (case 1) or the charac-
teristic vertical scale of disturbances (case 2). Let us address
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Eq. (17), which follows from the boundary conditions for one
of the problems of instability in a finite layer. The param-
eter x = Re(—aHg) = O.S(ks/K)l/zHg governs Eq. (17).
The higher the value of y, the larger the wave number of
the unstable mode for the given values of the problem pa-
rameters K, s, and Hp, and therefore, the larger the growth
rate. However, the applicability of our model imposes a con-
straint on the space of wave numbers, k < f/(2NoHp). In
order to satisfy these two conditions simultaneously in the
wide range of variability of hydrological parameters in the
ocean, it is reasonable to put 1 < y <2. For y = 2, taking
into account Eq. (16), we obtain the following formula relat-
ing the growth rate of disturbances and the vertical scale of
the layer: kco = 1/T = 10- K /H.

It is easy to understand the physical meaning of the pa-
rameter x. This parameter characterizes the ratio of advec-
tion and vertical diffusion terms depending on the wave num-
ber k. Indeed, recalling that in our model U = Uy 4 U3 and
the geostrophic velocity on the boundaries of the layer is
zero, the maximum velocity at the midline of the layer shall
be Unax = |s|H§ /2. This allows the squared parameter x to
be presented as x2 = 0.25(ks/K)H} = 0.5 - Rqk Hy, where
Rq = 0.55H03/K = Umax Ho/ K is a diffusion analogue of the
Reynolds number called the Peclet number.

To conclude this section, we note the following. The insta-
bility of the weak geostrophic flow in the frame of the solu-
tions Eq. (15) is an oscillatory instability (the growth rate has
real and imaginary components). Generally, using interleav-
ing models (Stern, 1967; Toole and Georgy, 1981; McDou-
gal, 1985a, b; Niino, 1986; Yoshida et al., 1989; Kuzmina
and Rodionov, 1992; May and Kelley, 1997; Kuzmina and
Zhurbas, 2000; Walsh and Ruddick, 2000; Merryfield, 2002),
it is possible to obtain the monotonous unstable modes only
(the phase velocity of the disturbances is equal to zero:
Rec =0). The exceptions to this rule are the interleaving
models related to equatorial fronts. In accordance with the
modeling efforts (Richards, 1991; Edwards and Richards,
1999; Kuzmina et al., 2004; Kuzmina and Lee, 2005), the
instability of the equatorial fronts in the scale of intrusive
layering is regarded as an oscillatory instability.

General solution Eq. (15) is one of the classes of solutions
of Eq. (13). Thus, for example, atikc = 9a-K +ikUjs itis also
possible to find an analytical general solution of Eq. (13).
This solution would have a more complex structure than the
solution Eq. (15). The detailed analytical consideration of un-
stable modes based on the analysis of different classes of so-
lutions of Eq. (13) taking into account the friction may be
a subject for further research. In order to clearly define the
range of applicability of our model, it would be worth solv-
ing the eigenvalue problem for Eq. (7) for small values of
parameter 8% by means of numerical methods. This problem
also may be a subject for further research. The analytical so-
lutions found can be used to validate numerical solutions of
the eigenvalue problems. Moreover, the analytical solutions
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obtained provide analytical expressions for eigenfunctions,
phase velocities and growth/decay rates of disturbances that
cannot, as a rule, be found exactly from numerical solutions.

3 Application to thermohaline intrusions in the
Eurasian Basin of the Arctic Ocean

It is worth evaluating the time of formation of large-scale
intrusions based on the results of the presented model. Ac-
cording to Kuzmina et al. (2011), in the upper layer of the
PDW where the large-scale intrusions are observed in the
Eurasian Basin at stable—stable stratification, the following
estimates of N, f, and B are typical: N ~2x 1073571,
f=14x10"%s"! and 8 < 0.3x 107" m~!s~! (at latitude
of 83° N and higher). Therefore, for disturbances, for exam-
ple, with the vertical scale of H = 100 m, the Rossby radius
of deformation is only HN/f ~1km.

According to the derivation of Eq. (7), the value of the lin-
ear shear s is limited by the inequality of |s| f L < Ng. Given
that the horizontal scale of the baroclinic fronts (along the
cross-front axis y) in the upper layer of the PDW is approx-
imately L ~ 50-100km (see examples of transection across
the fronts of different types observed in the PDW; Kuzmina
et al., 2011), the maximal linear shear can be estimated as
Is| &~ (1 —2) x 107" m~!s~!. Such value of the linear shear
is large enough to neglect the B-effect term relative to the lin-
ear shear term in Eq. (7): BNZ/f%s < 0.6 x 1072 < 1. The
vertical diffusivity K can be estimated in the range of K =
(1-3)x 1070 m2 s~! (Merryfield, 2002; Walsh and Carmack,
2003). We suggest a weak turbulence regime in the layer un-
der consideration: Pr > 1, Pr-Bu <« 1. The typical vertical
scale of intrusive layering in the fronts of PDW is approx-
imately 30-40 m (Merryfield, 2002; Kuzmina et al., 2014).
Let us evaluate the time of formation of intrusions with the
vertical scale of ~ 40 m. Using formula kgc = 10-K / HO2 (see
Sect. 2.3), we can estimate the time of formation of the un-
stable mode as 1/(kgc,) for ~ 5 years for K = 10 0m?s!
and ~ 2 years for K =3 x 1079m?s~!.

To verify the applicability of our model, it is worth to es-
timate the wave number k¢ using the following formula (see
Sect. 2.3):

ko =16- K /(H{s). (20)

Substituting Hy =40m, s =2 x 107"m s, and K =
107°m?s~! in Eq. (20), we find kg =3 x 109 m~". The
value of ko~ 10"*m~' may be obtained at s =2 x
107"m's™ !, and K =3 x 1079 m2 s~!. These values of kg
lie in the wave number range of applicability of our model,
since 82 = NZHZK3/ f* ~ 1074-1073.

The above-presented estimates of the time of formation
of intrusions in PDW are evidently better than the evalua-
tions from 2-D modeling of baroclinic front instability (see
Sect. 1).
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In the closing of this section, let us justify the assump-
tion that the circulations associated with changes in vortic-
ity Ap are not essential in the description of the formation
of intrusions in all considered cases. According to Egs. (2)
and (10), the characteristic scale of vertical velocity in such
circulations can be written as wy ~ U -u - Hy - ké /f. In all
the considered above cases of application of the model to
the Arctic intrusions, the relation of U - kg < 1078571 is sat-
isfied. Given that small disturbances of horizontal velocity
cannot exceed the value of geostrophic velocity U, we find
w; <4 x 107" ms™!. A liquid particle with such vertical
velocity travels less than 0.004 m over the period of forma-
tion of intrusion (¢, = 1/(koc2) & 3 years), while due to the
vertical diffusion, the particle displacement is estimated as
VK -ty 40 m (i.e., 4 orders of magnitude larger). Note also
that the decreasing with |z| solution F3(z) can be used for the
description of generation of intrusions, even if the vertical
velocity is not negligibly small.

4 Conclusions

In this paper, we analytically investigated the instability of a
baroclinic front in the quasi-geostrophic, long-wave approx-
imation taking into account the vertical diffusion of buoy-
ancy. Such instability has to be distinguished from the 2-D
Mclntyre instability (McIntyre, 1970), the instability due to
flow-dependent fluctuations in turbulent diffusivities (Smyth
and Ruddick, 2010), and the 2-D baroclinic instability due
to the double diffusion (Kuzmina and Rodionov, 1992; May
and Kelley, 1997; Kuzmina and Zhurbas, 2000; Kuzmina and
Lee, 2005).

In contrast to the paper by Miles (1965), who showed that
the vertical diffusion of buoyancy is not essential in compar-
ison with the vorticity change in the destabilization of zonal
flow, we considered the opposite case, where the vertical dif-
fusion of buoyancy can play an important role as a destabi-
lizer of a very weak geostrophic current with linear shear and
large cross-frontal scale.

The model we developed can be considered as a modifi-
cation of Stern’s model (Stern, 1967). However, instead of
analyzing the instability of a purely thermohaline front due
to the double diffusion (Stern, 1967), in our case the insta-
bility of a weak baroclinic front is analyzed taking into ac-
count the vertical diffusion of density. This model can be
useful for describing stable and unstable disturbances of the
planetary scale in the polar regions of the ocean under the
stable—stable stratification, particularly in the deep water of
the Arctic Ocean, where weak baroclinic fronts with a large
horizontal (cross-frontal) scale and typical temporal variabil-
ity period on the order of several years or more have been
observed, and the g effect is negligible.

The stable solutions are shown to describe long-wave dis-
turbances, which, unlike Rossby waves, can move not only to
the west but also to the east, depending on the magnitude and
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sign of the linear shear of geostrophic velocity. It is important
to underline that the linear shear of the mean flow (parabolic
z dependence of the mean velocity) affects the dynamics of
disturbances as well as the 8 effect.

The unstable solutions can contribute to better understand-
ing of the formation of large-scale intrusions at baroclinic
fronts of the Arctic Ocean in the layers characterized by ab-
solutely stable thermohaline stratification, for example, in the
upper layer of the PDW in the Eurasian Basin. It is important
that the vertical scale of the new modes of instability can
reach tens of meters of magnitude, just in accordance with
the observations. However, the model is so complex that ob-
taining the comprehensive results of modeling that can be
fully comparable with the empirical data would still remain
a future task.
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