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Abstract. A hybrid variational-ensemble data assimilation
scheme to estimate the vertical and horizontal parts of the
background error covariance matrix for an ocean variational
data assimilation system is presented and tested in a limited-
area ocean model implemented in the western Mediterranean
Sea. An extensive data set collected during the Recognized
Environmental Picture Experiments conducted in June 2014
by the Centre for Maritime Research and Experimentation
has been used for assimilation and validation. The hybrid
scheme is used to both correct the systematic error intro-
duced in the system from the external forcing (initialisation,
lateral and surface open boundary conditions) and model pa-
rameterisation, and improve the representation of small-scale
errors in the background error covariance matrix. An ensem-
ble system is run offline for further use in the hybrid scheme,
generated through perturbation of assimilated observations.
Results of four different experiments have been compared.
The reference experiment uses the classical stationary for-
mulation of the background error covariance matrix and has
no systematic error correction. The other three experiments
account for, or not, systematic error correction and hybrid
background error covariance matrix combining the static and
the ensemble-derived errors of the day. Results show that
the hybrid scheme when used in conjunction with the sys-
tematic error correction reduces the mean absolute error of
temperature and salinity misfit by 55 and 42 % respectively,
versus statistics arising from standard climatological covari-
ances without systematic error correction.

1 Introduction

The study and the characterisation of the ocean is a com-
plex discipline involving different aspects of modern sci-
ence. In order to obtain a coherent and time-evolving three-
dimensional (3-D) picture of the ocean from historical and
present-day observations, as well as be able to predict the
future evolution of the environment, we need to solve theo-
retical and technical issues.

It is not feasible to observe all variables of interest with
adequate spatial and temporal scales. Modern technologies,
like satellite remote sensing and autonomous vehicles, have
significantly increased our capability to observe the environ-
ment in general and the ocean in particular. However, the
huge number of degrees of freedom characterising the ocean
state still prevents sampling at the desired resolution. In or-
der to fill the observational gaps and expand the temporal
horizon covered by the observations (both in the past and in
the future), oceanographers combine direct observations with
theoretical studies by means of models and data assimilation.

A numerical hydrodynamic model is basically the discre-
tised version of the primitive equations, it is an approxima-
tion of nature. Moving from the continuous to the discrete
space, additional approximations are introduced and should
be accounted for when analysing model results. These ap-
proximations affect the model solutions in terms of quality
and accuracy and, more importantly, differences between the
numerical solution and the true state amplify along time, due
to the chaotic component of the ocean dynamic.
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In order to minimise these differences and improve the
quality and accuracy of model results, data assimilation tech-
niques have been developed during the past decades. Data as-
similation is a technique to correct the model solution-based
on statistical and physical constraints derived from observa-
tions and model simulations.

Even if different kinds of data assimilation techniques ex-
ist, most of them rely on the same basic principle, the combi-
nation of physically based and statistical approaches to max-
imise the conditional probability of the model state given the
observation.

Data assimilation schemes developed for oceanographic
studies can be classified in two categories. The first one is
the Kalman filter (KF) type algorithm with background error
covariances (BECs) matrices usually derived from ensemble
statistics (Evensen, 2003). The second type of assimilation
algorithms employ stationary BECs derived from long-term
model integrations (Yin et al., 2011; Weaver and Courtier,
2001; Pannekoucke and Massart, 2008). A key avenue to im-
proving data assimilation is accurate specification of the error
statistics for the background forecast, also known as the prior
or first guess (Schlatter et al., 1999).

The ensemble Kalman filter (EnKF) (Evensen, 1994) con-
sists of a set of short-term forecasts and data assimilation
cycles. In the EnKF, the BECs are estimated from an ensem-
ble of model simulations. The presumed benefit of utilising
these ensemble-based techniques is their ability to provide a
flow-dependent estimate of the BECs. The traditional EnKF
incorporates probabilistic information on analysis errors in
the generation of the ensemble by imposing a set of pertur-
bations for each ensemble member, generating the individual
numerical forecasts from different sets of initial conditions
implied by the different sets of observations and/or different
numerical model configurations. The EnKF is related to the
classic Kalman filter, which provides the optimal analysis in
the case that the forecast dynamics are linear and both back-
ground and observation errors have normal distributions. The
main difference is that the KF explicitly forecasts the evolu-
tion of the complete forecast error covariance matrix using
linear dynamics, while the EnKF estimates this matrix from
a sample ensemble of fully non-linear forecasts. The EnKF
also addresses the computational difficulty of propagating or
even storing the forecast error covariance matrix. Using en-
semble simulations also implies that the EnKF does not as-
sume the covariances to propagate linearly.

On the other hand, many current and past operational data
assimilation methods use long time series of previous fore-
casts to develop stationary and often also spatially homoge-
neous approximations to BECs. Schemes that use such statis-
tics include optimum interpolation and three-dimensional
variational data assimilation (3DVAR), and have the advan-
tage of being less computationally demanding, namely al-
lowing for higher resolution. In reality, BECs may vary sub-
stantially depending on the flow and error of the day. A
four-dimensional variational data assimilation (4DVAR) sys-

tem implicitly includes a time-evolving covariance model
through the evolution of initial errors under tangent-linear
dynamics (Lorenc, 2003) within the assimilation time win-
dow. However, the time-evolving covariance model may still
be limited by usage of a stationary covariance model at
the beginning of each 4DVAR cycle. Furthermore, like the
EnKF, 4DVAR is computationally intensive, requiring multi-
ple integrations of tangent-linear and adjoint versions of the
forecast model. The specification of flow-dependent statistics
is per se a demanding task, due to the difficulty of retrieving
information on errors in model space.

The ensemble EnKF provides an alternative to variational
data assimilation systems. Under assumptions of linearity
of error growth and normality of observation and forecast
errors, it has been proved that the EnKF scheme produces
the correct BECs as the ensemble size increases (Burgers et
al., 1998). However, for smaller ensembles, the EnKF is rank
deficient and its BEC estimates suffer from a variety of sam-
pling errors, including spurious correlations between widely
separated locations that need to be removed by means of spe-
cific techniques (e.g. covariance filtering or localisation).

Assimilation methods using a static type of the BEC have
recently gained considerable attention because of their flex-
ibility (Lorenc, 2003). Furthermore, present computational
resources limit the number of ensemble members accounted
on operational EnKF. Thus, it is appealing to have an algo-
rithm that could work with smaller-sized ensembles and that
could benefit from whatever flow-dependent information this
smaller ensemble provides.

Recent encouraging results suggest that if ensemble in-
formation is used in the variational data assimilation frame-
work to augment the static BEC, analyses can be improved.
Hereinafter, we call this method a “hybrid” scheme. Devel-
opment of hybrid schemes has been an area of active research
in atmospheric data assimilation (Hamill and Snyder, 2000;
Etherton and Bishop, 2004; Wang et al., 2007). Several stud-
ies have been conducted on the hybrid schemes. Studies by
Hamill and Snyder (2000), Etherton and Bishop (2004) and
Wang et al. (2007) used simple models and simulated ob-
servations to suggest the effectiveness of incorporating en-
sembles in the 3DVAR to improve the analyses. Although
the recourse to hybrid covariances and the choice of the rel-
ative weights given to them remains empirical in practice, it
has been shown in particular that hybrid models tend to be
more robust than conventional ensemble-based data assimi-
lation schemes, especially when the model errors are larger
than observational ones (Wang et al., 2007, 2008, 2009). This
feature is attractive for the regional assimilation problems in
oceanography, where information on the background state is
often scant and incomplete. Promising application of the hy-
brid scheme in global oceanographic exercise has been re-
cently provided by Penny et al. (2015). They compared hy-
brid, classical 3DVAR and EnKF schemes in an observing
system simulation experiment and also using real data, show-
ing that the hybrid scheme reduces errors for all prognostic
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model variables eliminating growth in biases present in the
EnKF and 3DVAR.

Recent work has also started addressing the issue of multi-
scale data assimilation, where the analyses are a combina-
tion of corrections with different spatial-scale signals, as-
suming somehow that spatial scales are separable and that
observations may naturally bear information across several
spatial scales. Examples of these schemes range from multi-
scale 3DVAR systems (MS-VAR), sequential applications of
horizontal operators with different correlation length scales
(Mirouze et al., 2016), or inclusion of a large-scale analysis
in the analysis formulation as additional constraint (Guidard
and Fischer, 2008). A possible simplification is to assume
that systematic errors are characterised by long length scales,
as often occurs to some extent (Dee, 2005).

In this study, we develop a hybrid data assimilation system
for the REP14-MED (Mediterranean Recognized Environ-
mental Picture, 2014) NEMO model implementation, based
on the existing 3DVAR system. Section 2 describes the hy-
brid variational data assimilation scheme adopted accounting
for systematic error corrections. In Sect. 3 details on the ex-
periments set-up are provided. In Sect. 4 the results are pre-
sented and discussed. Finally, Sect. 5 offer the summery and
conclusions.

2 The hybrid variational-ensemble scheme

A 3DVAR algorithm has been used to implement and test
our hybrid assimilation scheme. 3DVAR is relatively easy to
implement and to expand, it can easily take into considera-
tion different estimates of BEC, its core is independent of the
primitive equations model core, and it is portable. The cost
function in 3DVAR is defined as

J (x)=
1
2

(
x− xb

)TB−1 (x− xb)

+
1
2
(y−H [x])TR−1 (y−H [x]) , (1)

where x is the analysis state vector at the minimum of J ,
xb is the background state vector, B is the background error
covariance matrix, H is the non-linear observational opera-
tor, y are the observations and R is the observational error
covariance matrix. The cost function is linearised around the
background state and take the following form:

J (δx)=
1
2
δxTB−1δx+

1
2

(
Hδx− d

)TR−1 (Hδx− d) , (2)

where d =
[
y−H(xb)

]
is the misfit, H is the linearised ob-

servational operator and δx = x− xb are the increments.

Following Dobricic and Pinardi (2008), the present
3DVAR scheme assumes that the B matrix can be rewritten
and thus decomposed as follows:

B= V V T , (3)
V = V DV u, vV ηV HV V. (4)

This also has the advantage of imposing pre-conditioning,
as the minimisation is performed on the control variable v
(with δx = Vv), which also serves the purpose of avoiding
the inversion of B.

Basically, the background error covariance matrix is mod-
elled as a linear sequence of several V operators. Each V de-
fines a specific error space. From right to left, V V defines the
vertical covariance computed using multivariate empirical
orthogonal functions (EOFs), V H projects the vertical error
to the horizontal space by means of a recursive filter, V η (the
balance operator) is a 2-D barotropic model accounting for
sea surface height adjustments and V u,v force a geostrophic
balance between temperature, salinity and the velocity com-
ponents. Finally, V D is a divergence damping operator avoid-
ing spurious currents close to the coast in the presence of
complex coast lines (details in Dobricic and Pinardi, 2008).
It is clear that this B formulation introduces flexibility in the
code and allows for the possibility to test different hypothe-
ses.

In our static formulation of the 3DVAR, the vertical trans-
formation operator VV has the form:

V V = Sc3
1/2
c , (5)

where columns of Sc contain multivariate eigenvectors and
3c is a diagonal matrix with eigenvalues of EOFs. Promis-
ing recently published results (Dobricic et al., 2015) pro-
pose a new method to estimate the vertical part of the back-
ground error covariance matrix for an ocean variational data
assimilation system based on high frequency estimates from
a Bayesian hierarchical model. A general approach to defin-
ing hybrid assimilation schemes is to compute B as a linear
combination of the “static” covariance operator, Bc, and the
flow-dependent operator, Be, derived from the statistics of an
ensemble of analyses/forecast:

B= αBc+ (1−α)Be. (6)

The relative weighting (α) still requires empirical tuning but
in general can be adjusted to the size of the ensemble. Large
ensemble size can provide robust estimate of Be and thus
Eq. (6) can be theoretically implemented with small α val-
ues (Ménétrier and Auligné, 2015).

The proposed approach introduces the flow-dependent B
by defining the increment as a weighted sum of parts corre-
sponding to climatological and ensemble covariance matri-
ces:

δx = δxc+ δxe. (7)
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It can be demonstrated (see Appendix A for details) by com-
bining Eqs. (2), (6) and (7) that the following cost function
has the minimum for the same value of δx as the cost func-
tion with the background error covariance matrix defined in
Eq. (6) (e.g. Wang et al., 2007):

J (δx)=
1
2
δxTc (αBc)

−1δxc+
1
2
δxTe

(
(1−α)Be

)−1
δxe

+
1
2
(Hδx− d)TR−1 (Hδx− d) . (8)

In Appendix A we further demonstrate that by updating each
member of the forecast ensemble with Eq. (8), we obtain
the same estimate for the analysis error covariance matrix
as when doing it with Eq. (6).

By defining the control vector v consisting of climatolog-
ical and ensemble parts v = (vc,ve) the cost function be-
comes

J (v)=
1
2
vTc vc+

1
2
vTe ve+

1
2
(Hδx− d)T R−1 (Hδx− d) , (9)

and increment δx:

δx =
(
VDV u, vV ηV H

) (
α1/2Sc3

1/2
c vc+ (1−α)1/2Se3

1/2
e ve

)
, (10)

where columns of Se and 3e can now be computed at any
frequency from a relatively small size ensemble.

Ensemble statistics may also provide estimates of the day
of the horizontal correlation radii to be used in V H. Using
the recursive filter formulation V H takes the form:

V H =Wy

(
Lεy ,1y

)
Gy

(
Lεy1y

)
Wx

(
Lεx ,1x

)
Gx

(
Lεx1x

)
, (11)

where Gx and Gy represent the zonal and meridional recur-
sive filter operators, Wx and Wy are the diagonal matrices
with normalisation coefficient, Lεx,y and 1x,y are the zonal
and meridional length scale and grid spacing respectively.

According to Belo Pereira and Berre (2006), for any sim-
ulated error ε it is possible to define a zonal and a meridional
length scale:

Lεx,y =

√√√√√ σ 2(ε)

σ 2
(
∂ε
∂x,y

)
+

(
∂σ(ε)
∂x,y

)2 , (12)

where ∂x,y are the derivatives in x and y direction, σ 2(ε)

and σ 2(∂ε/∂x,y) are the variances of the background error
and of the derivative. In the ensemble-based approach ε is the
ensemble anomalies computed with respect to the ensemble
mean.

Though most data assimilation methods assume that the
model forecast (i.e. the background) is unbiased, that is rarely
the case. Model bias can systematically cause the model to
drift away from the truth, eventually propagating into the
analyses. In limited-area models (LAM) integrated for rel-
atively short time the systematic errors (bias) may derive

from inadequate model physics and parameterisations as well
as inaccurate initialisation and open boundary conditions,
including the atmospheric forcing. An adequate solution is
strictly necessary since the systematic error in the large-scale
forcing field can prevent the right small-scale dynamics from
developing properly and thus can strongly reduce the poten-
tial benefits deriving from the increased resolution and/or im-
proved physics.

Here, we assume that systematic errors are associated
to large-scale errors. This idea is consistent with the high-
resolution model presented in Sect. 3 and with the experi-
mental set-up where the large-scale uncertainties (initialisa-
tion, boundary conditions and surface forcing) are not ac-
counted for in the generation of the ensemble members.

Further expanding the decomposition introduced in Eq. (7)
and following recent studies suggesting the possibility to
treat multiple-scale errors during the analysis steps (Li et
al., 2015), we reformulate the analysis increments as

δx = δxc+ δxe+ δxs, (13)

where the first two terms on right-hand side represent the
increments deriving from the minimisation of Eq. (9) while
the last term indicates the increments due to the large-scale
systematic error not sampled either in the climatological or
ensemble-based estimates of B. Note that the scale decom-
position requires that large-scale and small-scale background
error are mutually uncorrelated. It is worth mentioning that
the large-scale systematic error could be partially accounted
in the generation of the ensemble members; however, this
would imply a considerably large number of ensemble mem-
bers with clear implications on the computational side and
the corresponding Be would then incorporate error informa-
tion at different scales.

The availability of an ensemble simulation allows us to
retrieve estimates of the model bias or systematic error. Re-
calling that

d =
[
y−H (xb)

]
= y−H(xt)+H(xt)−H (xb)

= εo−H(εr+ εs), (14)

where d is the misfit, xt is the true state of the ocean, εo is
the observational error resulting from the sum of εoi and εor
(the instrumental and representation observational errors re-
spectively), εr is the background random error and εs is the
background systematic error (errors are defined as departures
from the true state). Every assimilation scheme is designed
to correct the random error, which is assumed to have zero
mean. The representation error can be defined based on the
knowledge of the dynamics of the simulated system or as be-
ing proportional to the variance of the measurements (Oke
and Sakov, 2008). Se, c and 3e, c introduced in the vertical
covariance (Eq. 10) provide a multivariate statistical repre-
sentation of εr. To obtain a bias, or systematic error, estimate
we can average over the ensemble members and assuming
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Figure 1. Top-left panel: western Mediterranean Sea. Bottom-right panel: model domain and collected data during REP14-MED experiment.
Green dots indicate sea level anomaly measurements from satellite (from 3 to 30 June 2014), red dots CTD positions (from 7 to 24 June
2014), blue dots glider trajectories (surfacing points, from 8 to 23 June 2014). The magenta lines indicate the box used to compute ensemble
statistics. Bathymetric lines are also shown (m).

that the observational error is also unbiased:

d =−εs, (15)

since εr also is zero by definition. Thus, analysing the misfit
of the ensemble members, we can obtain an estimate of the
bias or systematic error. In other words, the ensemble system
is exploited not only to estimate the flow-dependent compo-
nents of the background error covariances, but also to esti-
mate the large-scale bias in the analysis step. From the pre-
vious relationship it is clear that the large-scale bias is orig-
inally defined in observation space and successively mapped
in model space.

In our formulation we assume that the scales in εs and εr
are significantly different and the estimate of the ensemble
systematic error is used simultaneously to the 3DVAR anal-
ysis step to correct the background fields. The small-scale
increments arise from the classical minimisation of the cost
function J :

δxc+ δxe =min
δx
(J (δx)) , (16)

while the large-scale increments due to the systematic error
are defined as

δxs = L
((

xeb+P
T (d)

)
− xb

)
, (17)

where xeb is the background ensemble mean, L is a low-pass
filter used to ensure that scales of the two increments do not
overlap and P is a generic linearised observational operator.

Such a scheme thus requires a fairly dense observational
network to estimate the bias, whose availability may in gen-
eral depend on the simulation area and period. The method
is potentially affected by systematic observational errors and
thus is sensitive to the design of the observational networks.
On the other hand the analysis of the systematic error can
provide useful insights about the error not represented in the
ensemble space and thus help in the definition of the ensem-
ble generation procedure.

Depending on data availability and ensemble size, the bias
estimator can be constant or spatially or temporal dependent.

3 Experimental set-up

In June 2014, a REP14-MED sea trial off the west coast
of Sardinia was conducted by CMRE (Centre for Maritime
Research and Experimentation), coordinating efforts of 20
partners from six different nations. Two research vessels col-
lected a massive amount of data in an area of approximatively
100km× 100km with various oceanographic instruments
(lowered CTD, undulating towed vehicle, CTD chain, ship
mounted ADCP, shallow and deep underwater gliders, moor-
ings, surface drifters and profiling floats). Complementary
information has been retrieved, by remote sensing (sea level
anomalies and sea surface temperature both from Coper-
nicus Marine Environmental Monitoring Service, CMEMS;
http://marine.copernicus.eu/) and existing results from atmo-
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Figure 2. Number of observations per day. The colour coding is
according to Fig. 1. The y axis indicates the number of vertical pro-
files for CTD and gliders and number of points within the model
domain for the SLA data. The x axis indicates time.

spheric and oceanographic operational models. In situ CTD
and glider data together with remotely sensed SLA (sea level
anomalies) and SST (seas surface temperature) have been
used for assimilation while for the sake of simplicity only
CTD data are used for model validations. Spatial and tempo-
ral distributions of observations are provided in Figs. 1 and 2
respectively.

NEMO (Nucleus for European Modelling of the Ocean;
Madec, 2008) has been implemented as the primitive equa-
tions dynamical model component of the data assimilation
system. The ocean engine of NEMO is adapted to regional
and global ocean circulation problems. Prognostic variables
are the meridional and zonal velocities, sea surface height,
temperature and salinity. In the horizontal direction, the
model uses a curvilinear orthogonal grid and in the vertical
direction, a full or partial step z coordinate, a s coordinate
or a mixture of the two can be applied. The NEMO ocean
engine is very flexible allowing several choices for discreti-
sation and parameterisations; details on the present config-
uration are provided on Table 1 while model domain and
bathymetry are shown in Fig. 1.

An ensemble of data assimilation system with 14 inde-
pendent members with daily assimilation cycles has been
performed to generate the ensemble statistics. All simula-
tion/assimilation experiments presented hereafter started on
1 June and ended on 30 June 2014, the MED-REP14 pe-
riod. All the experiments are initialised and forced at the
lateral open boundaries using the Mercator-Ocean (Drévil-
lon et al., 2008) product in the Mediterranean Sea, while
surface fluxes are computed by means of bulk formulae us-
ing hourly atmospheric data with 7.0 km horizontal resolu-
tion provided by the Italian Meteorological Centre and based
on the COSMO-ME model, an implementation of the COn-
sortium for Small-scale MOdelling (COSMO). The ensem-

ble members have been generated simultaneously assimilat-
ing perturbed observations varying the corresponding obser-
vational error, and assuming different horizontal correlation
radii in VH.

For the observation perturbation, either weak or strong cri-
teria for retaining observations are used among the ensem-
ble members. Conservative quality check procedures assume
good quality flags in both temperature and salinity and re-
duce the total number of assimilated observations. Filters
have been applied horizontally and vertically to reduce the
higher spatial sampling of observation with respect to the
model grid. Within the ensemble members, different vertical
cut-off scales have been used in the low-pass filter resulting
in differently smoothed profiles. Horizontal data binning has
been applied to the observations falling in 1 or 2 model grid
cells while keeping the original vertical resolution. When the
filtering or binning procedures are applied the corresponding
full resolution profile standard deviation has been used as an
estimate of the observational error. Similar procedures have
been applied to CTD and gliders data.

The default horizontal correlation radii (Lεx,y) have been
computed according to Eq. (12) from the 15-year CMEMS
Mediterranean reanalysis. They correspond to 21 and 12 km
in the meridional and zonal directions respectively. Two addi-
tional sets of correlation radii have been used in the ensemble
generation, they have been defined on the base of sensitivity
experiments and correspond to 12/6 km (meridional/zonal)
and 6/3 km respectively. The three sets of correlation radii
remain constant during the simulated period. An example of
the observational perturbation, associated error and horizon-
tal correlation radii is shown in Fig. 3.

The ensemble generation method spans the uncertainty
linked with the observational sampling and assimilation for-
mulation, implicitly acting on the background ensemble
spread. This method clearly connects the growth of the en-
semble spread to the function used to perturb the observa-
tions and simultaneously links the ensemble spread to ob-
servation availability. For the time being, the perturbation of
surface and lateral boundary conditions is not considered, as-
suming that the flow-dependent component of B is associ-
ated with the small-scale error fluctuations that are reason-
ably well reproduced with the observation perturbation only.
This approach also ensures consistency with the assumptions
done to derive Eq. (8). Although the large-scale forcing may
act as an attractor for the ensemble perturbations, especially
at the sea surface and in proximity of the boundaries, the goal
of the present implementation is the evaluation of the fea-
sibility of a hybrid system that simultaneously corrects the
model’s systematic and random errors. Further refinements
of the ensemble generation strategy may be considered in the
future.

All the ensemble members use a static and homogeneous
B where Sc and 3c are derived from multivariate (tempera-
ture, salinity and sea surface height) vertical EOF computed
from the anomalies with respect to the long-term mean of a
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Table 1. Model configuration details.

No. points x/y/z 235/246/91
1x/1y ∼ 1000 m
1T time-step 100 s
Vertical discretisation Hybrid z–sigma (Siddorn and Furner, 2013)
Surface fluxes MFS Bulk (Oddo et al., 2009)
Atmospheric data Hourly COSMO
SST GOS_SST −30 Wm−2 K−1

Lateral boundary condition (LBC) No slip
Open LBC (barotropic/baroclinic/tracers) Flather (1976)/imposition/Neumann
Bottom friction Non-linear
EOS EOS-80
Tracer advection TVD (Zalesak, 1979)
Tracer diffusion Laplacian along iso-surface Kh = 10
Momentum advection Vector form
Momentum diffusion Bilaplacian along iso-surface Ah =−2.5×107

Vertical turbulence GLS with Canuto et al. (2001) and k–eps
Free surface Filtered (Madec, 2008)

Figure 3. Example of perturbed CTD vertical profile with different
quality check procedure and filtering applied. The solid black line
indicates the full resolution CTD profile while horizontal lines are
the associated observational error. The other colours indicate the
perturbed profile. In the middle panel the three tested couples of
horizontal correlation length scales (Lε

(x,y)
) are shown. The circles

indicate the distance where the horizontal correlation of a single ob-
servation is zero. The green circle length scales are Lεx = 12 km and
Lεy = 21 km, this set has also been used in the reference experiment.
The red circle radii areLεx = 6 km andLεy = 12 km. The blues circle
radii are Lεx = 3 km and Lεy = 6 km.

15-year CMEMS Mediterranean reanalysis. The incremental
analysis update (IAU) strategy has been used to incorporate
analysis increments into the model integration in a gradual
manner (Bloom et al., 1996), spreading the analysis incre-
ments uniformly on a 6 h time window.

Table 2. Experiments.

VV Bias corr. H. Corr Radii

Exp-ref Static-Clim No Const
Exp-Hy1 Hybrid No Variable
Exp-Cl1 Static-Clim Yes Const
Exp-Hy2 Hybrid Yes Variable

In the hybrid variational assimilation system, the gener-
ated ensemble information has been projected into B through
the multivariate (temperature, salinity and sea surface height)
vertical EOFs providing spatially varying daily estimates of
Se and 3e. Ensemble information has been also used to
compute daily varying horizontal correlation radii, Lεx,y , in
V H. Several α values have been tested. Sensitivity experi-
ments have shown that the best results were obtained setting
α = 0.5, meaning that 50 % of the vertical error covariance
derives from the climatological statistics, while the remain-
ing 50 % derives from the ensemble statistics. In our hybrid
system the observational representation error is proportional
to the variance of the measures after binning in a 1 km square
grid.

The ensemble statistics have also been used to estimate the
model systematic error and a large-scale systematic error cor-
rection has been applied. For every simulated day, d has been
computed using a depth depended observational window to
avoid sampling error in the deep layers. The temporal win-
dow increases linearly from 11 days, at surface, to 25 days
in the bottom layers. The resulting d has been mapped onto
the model grid (P T in Eq. 17) by means of the Barnes (1994)
univariate objective analysis with smoothing length scales of
170 and 90 km along x and y respectively. A length scale of
75 km has been used in the low-pass filter (L in Eq. 17).

www.ocean-sci.net/12/1137/2016/ Ocean Sci., 12, 1137–1153, 2016



1144 P. Oddo et al.: Hybrid variational-ensemble bias-aware data assimilation

To test bias correction and the impact of the ensemble-
based EOFs, results from four different experiments are com-
pared. Exp-ref uses climatological, spatially homogeneous B
and no bias correction; Exp-Hy1 uses the hybrid, spatially
and temporally varying, formulation of B but no bias correc-
tion; Exp-Cl1 uses the static formulation of B (as Exp-ref)
but the bias correction is applied; and, finally, Exp-Hy2 uses
both the hybrid formulation of B and the bias correction. The
differences between the experiments are summarised in Ta-
ble 2.

4 Result and discussion

The quality of the ensemble has been evaluated on the base
of ensemble spread values and distributions. The ensemble
spread is defined as the standard deviation across the ensem-
ble members.

In Fig. 4, the time evolution of temperature and salinity
standard deviations computed from the ensemble members
are shown from the surface to 1000 m depth. At all depths
and for both temperature and salinity, the ensemble spread
reaches a stable value on 10/12 June after 2/3 days assimilat-
ing the CTD and glider data from the first cruise leg (Fig. 2).
The small spread during the first days is mostly confined to
the surface layers and is due to the SLA assimilation. Be-
tween 13 and 22 June, the ensemble spread is nearly constant
at all depths, probably constrained by the dense observational
network, meaning that only a few days are needed to spin-
up our ensemble system. Later on during the simulated pe-
riod, the data density decreases and temperature and salinity
ensemble spreads behaviours differ significantly. The salin-
ity ensemble spread remains nearly constant, whereas the
standard deviation of surface temperature decreases. We can
speculate that the decreased ensemble variability in temper-
ature is due to the surface and lateral forcing shared among
all the ensemble members that rapidly constrain the temper-
ature within the model domain when no observations are as-
similated. On the other hand, salinity reacts slower to surface
forcing. Thus, the methodology used to generate the ensem-
ble could be improved to also account for errors in the ex-
ternal forcing (surface and lateral open boundary conditions)
and model parameterisations.

The horizontal distribution of the near-surface (0.5 m
depth) ensemble standard deviations for temperature and
salinity valid for 12, 18, 24 and 30 June are shown in Fig. 5.

During the simulated period the two state variables show
different behaviours. Temperature standard deviation max-
ima are mostly confined within the observational space and
have well-defined small/medium size structures. On 30 June,
when no more in situ observations are available, a large-scale
maxima structure is evident close to the north-west domain
open boundaries partially due to SLA assimilation, and the
different structures and dynamics developed by the individ-
ual ensemble members approaching the open boundaries. On

Figure 4. Ensemble standard deviation computed over the observa-
tional domain in the observational box (magenta) shown in Fig. 1.
Ordinate indicates ocean depth in metres while abscissa is time.

Figure 5. Horizontal maps of ensemble standard deviation for tem-
perature (left) and salinity (right) at 0.5 m on 12, 18, 24 and 30 June
2014.

the other hand, salinity spread horizontal distributions are
significantly different.

During the entire simulated period, maxima of the salinity
ensemble spread are evident outside the area sampled by the
observational campaign and structures are generally larger
than in temperature. These are probably due to errors in the
salinity content of water masses forcing the simulations at
the lateral open boundaries and conflicting with in situ obser-
vations, thus generating fronts and instabilities. The adopted
method to generate the ensemble members does not account
for uncertainties in the forcing (surface or lateral) or initiali-
sation; further work is necessary in order to assess the impact
of the forcing perturbation. The present work focuses on the
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Figure 6. The top panel shows the static and spatially homogeneous
vertical error correlation matrix, the bottom panel the ensemble es-
timate on 22 June 2014 at lat 7.0◦ N and long 40.0◦ E. The numbers
on the axis indicate to the model levels where the first 78 values rep-
resent temperature and the second 78 values represent the salinity
levels. The matrix blocks represent the correlation of T and S and
their cross-correlations.

potential benefits of a hybrid approach, rather than on evalu-
ating the ensemble generation itself.

Figure 6 shows an example of how the ensemble method
changes the estimates of the salinity and temperature er-
ror vertical correlations and cross-correlations. On 22 June
2014, the ensemble estimates exhibit correlations of back-
ground temperature and salinity significantly different from
the climatological estimate. Clearly, the ensemble method
has added information to the climatological estimates from
the variability generated by the ensemble simulations on par-
ticular days. An interesting feature of temperature and salin-
ity vertical error correlations on 22 June 2014 is the pres-
ence of several local maxima and minima. The similarities
between static and ensemble-based correlations reflects the
error in the large-scale dynamical processes, introduced in
our system by lateral open boundaries conditions. Salinity
correlations (top right corner on both Fig. 6 panels) show
the largest differences between climatological/steady and the
daily estimates. While the salinity climatological correlation
field is characterised by generally positive values, in the daily
estimate a clear anti-correlation pattern is observed starting
at level 50 and persisting toward the bottom. This clearly in-

dicates a more complex vertical error structure probably due
to the presence of an intermediate water mass (the Modified
Levantine Intermediate Waters) and deficiencies in the model
to correctly simulate it. Similar patterns, even if less pro-
nounced, are also observed in the temperature correlation and
temperature–salinity cross-correlations. Furthermore, verti-
cal scales of the correlations differ significantly. For instance,
salinity vertical correlations are longer at the ocean bottom
in case of the ensemble B, while an opposite feature is found
for temperature. This suggests that the ensemble simulations
lead to stronger consistency of the vertical cross-correlation
at the ocean bottom between temperature and salinity with
respect to the static B.

The temperature and salinity corrections due to the sys-
tematic error are shown in Fig. 7. The panels on the left
show how the vertical structure of the systematic error, av-
eraged over the entire domain, evolve during the simulated
period. In the right panels the maps of the systematic error
correction averaged between 12 and 28 June at 100, 350 and
1000 m depth are shown. During the first 4 days the num-
ber of in situ observations increase and the spatial coverage
improves. The systematic error computation and thus the cor-
responding correction is strongly affected by this observation
sampling error. The sampling error is particularly evident in
the surface and near-surface corrections (between the sur-
face and 300 m depth), where scale of horizontal variability
is small, that oscillate between positive and negative values.
In the deeper layers, the amplitude of this oscillation is sig-
nificantly smaller. However, the overall effect of the correc-
tion after 4 days is to decrease the warm bias present in the
deep temperature initial conditions and to increase salinity
content at intermediate depths. At the end of the first cruise
leg, 11 June, the systematic error stabilises. After the initial
shock due to the correction of the initial state, the systematic
error correction corrects errors due to the surface forcing, the
lateral open boundary condition and the inadequate model
parameterisations.

The combined analysis of vertical structures and horizon-
tal maps supports some inferences. A thin layer with negative
temperature correction is present between 5 and 15 m, the ef-
fect is to increase the stratification above 15 m and decrease
below. The model systematic error is clearly due to the ver-
tical diffusion; however, it is difficult to distinguish between
error in the surface forcing or in the vertical turbulence clo-
sure scheme adopted. At 100 m depth the temperature correc-
tion is generally positive. The corrections map at this depth
shows minimum values along the boundaries indicating that
vertical mixing can be the source of the model failure. In the
deeper layer the correction is more stable over the integrated
time, and maps show maximum correction values close to the
lateral open boundaries. Thus, the adopted scheme is mostly
acting on the external lateral forcing.

The surface salinity field reacts slowly to surface forcing.
Simulation errors are mostly due to advection/diffusion pro-
cesses. The salinity corrections in the first 100 m are char-

www.ocean-sci.net/12/1137/2016/ Ocean Sci., 12, 1137–1153, 2016



1146 P. Oddo et al.: Hybrid variational-ensemble bias-aware data assimilation

Figure 7. Left panels: y axis indicates depth in metre, x axis indicates time in days, colour are the systematic error correction horizontally
averaged over the whole model domain for temperature (◦C, top) and salinity (bottom). Right panels: z axis indicates depth, x and y are
latitude and longitude respectively, the colours are the systematic error correction averaged between 12 and 28 June at 100, 350 and 1000 m
depth for temperature (◦C, top) and salinity (bottom).

acterised by positive and negative values partially due to the
observation sampling and systematic model error. At 100 m
depth the scheme increases the salinity content of the water
masses along the southern open boundary with the excep-
tion of the south-east corner where negative corrections are
found. This is probably due to a misplacement of the water
masses present at this depth. At 300 m depth the systematic
error correction is generally positive and acts along the open
boundaries. The simultaneous analysis of the temperature
corrections indicates that warm and salty intermediate wa-
ters (the Modified Levantine Intermediate Waters) are poorly
represented in the nesting model. At deeper layers the salin-
ity correction is negative along the boundaries while it goes
toward zero in the centre of the model domain. We can argue
that the vertical stratification of the nested model is too weak
and tends to mix intermediate and deep water masses. The
positive core in the centre of the model domain suggests also
that the choice of NEMO parameters for the vertical mixing
is not optimal, leading to the vertical diffusion of the salt in-
troduced with the data assimilation scheme.

The impacts of the daily ensemble-based B and the bias
correction on the quality of the simulations are evaluated
comparing observations with model backgrounds.

In order to fully assess the performance of each experi-
ment the mean squared error (MSE) is decomposed follow-
ing Oke et al. (2002) and the single components analysed:

MSE=MB2
+SDE2

+ 2SmSo (1−CC) ,

where MB is the model mean bias, SDE the standard devia-
tion error, Sm and So are the modelled and observed standard
deviations and CC is the cross-correlation between modelled
and observed fields. The skill of each experiment, with re-
spect to a reference experiment (Exp-ref), is calculated based

on the MSE. The skill score (SS; e.g. Murphy and Epstein,
1989) is defined as

SS= 1−
MSE
MSEr

,

where MSEr is the MSE of Exp-ref. The normalised (us-
ing the observed standard deviation) root mean square er-
ror (RMSE), mean bias and standard deviation error together
with the cross-correlation and Skill Score vertical profiles
for temperature and salinity and for the four experiments
are shown in Figs. 8 and 9 respectively. In Table 3 the non-
normalised statistics vertically integrated at predefined layers
are also listed. All the statistics are computed using data and
corresponding model backgrounds collected during the sec-
ond leg of the cruise, which started on 12 June and ended
25 June 2014.

The analysis of the single components of the model error
allows us to identify the effect of the bias correction proce-
dure and the impact of the daily, ensemble-based estimate
of vertical covariance. The two simulations without the bias
correction (Exp-ref and Exp-Hy1) are characterised by a sim-
ilar vertical structure and values of temperature and salinity
RMSE (Figs. 8a and 9a for temperature and salinity respec-
tively). Both the simulations are characterised by a large tem-
perature RMSE below 500 m depth, while they both show a
maximum in salinity RMSE at about 400 m. Large errors are
also observed in temperature between 60 and 200 m depth
and in salinity between 40 and 150 m depth. The vertical pro-
files of the mean bias (Figs. 8b, 9b) clearly indicates that at
intermediate and deep layers this error structure is due to a
large bias characterising the system (initial state and lateral
open boundary conditions). The near-surface RMSE maxima
do not have a clear correspondence in the mean bias struc-
ture. The bias nature of this error is confirmed by the results
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Table 3. Model bias (MB), standard deviation error (SDE), cross-correlation (CC) and skill score (SS) for the different experiments and
integrated between different layers. For each quantity the best performing models is highlighted in bold.

Layer MB SDE CC SS

ref Hy1 Cl1 Hy2 ref Hy1 Cl1 Hy2 ref Hy1 Cl1 Hy2 ref Hy1 Cl1 Hy2

Temperature

0–50 −0.05 0.02 0.11 0.16 0.02 −0.02 0.02 −0.06 −0.01 0.15 0.17 0.22 – 0.19 0.07 0.21
50–110 0.10 0.13 0.03 0.03 0.10 0.16 0.05 0.03 0.19 0.26 0.17 0.19 – −0.50 0.37 0.47
110–215 0.09 0.08 −0.05 −0.03 −0.04 −0.04 −0.06 −0.08 0.24 0.17 0.26 0.25 – −0.06 0.20 0.29
215–470 0.06 0.04 −0.06 −0.04 −0.12 −0.12 −0.12 −0.14 0.07 0.18 0.21 0.34 – 0.11 0.10 0.25
470–930 0.41 0.40 −0.03 −0.02 −0.10 −0.10 −0.02 −0.04 0.04 0.37 0.46 0.51 – 0.11 0.81 0.84
0—930 0.23 0.22 −0.03 −0.01 −0.08 −0.08 −0.05 −0.07 0.08 0.27 0.33 0.39 – 0.06 0.47 0.55

Salinity

0–50 −0.01 −0.02 0.01 0.01 −0.01 −0.01 −0.02 −0.02 0.23 0.07 0.36 0.61 – −0.24 0.28 0.52
50–110 −0.01 −0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.14 0.23 0.64 0.62 – 0.10 0.64 0.66
110–215 0.02 0.00 −0.01 −0.02 −0.02 −0.02 −0.02 −0.02 0.14 −0.01 0.19 0.09 – −0.04 0.08 0.01
215–470 −0.10 −0.10 −0.02 −0.02 −0.04 −0.04 −0.03 −0.04 0.08 0.20 0.09 0.07 – −0.02 0.62 0.62
470–930 −0.05 −0.05 −0.01 −0.01 −0.02 −0.02 −0.01 −0.01 0.44 0.49 0.52 0.46 – 0.03 0.38 0.36
0–930 −0.05 −0.05 −0.01 −0.01 −0.02 −0.02 −0.02 −0.02 0.27 0.31 0.36 0.33 – 0.00 0.42 0.42

obtained with the two experiments where the bias correction
has been applied. This also confirms that our simple sys-
tematic error correction procedure is capable of significantly
reducing this bias. Both Exp-Hy2 and Exp-Cl2 RMSE and
mean bias are characterised by a nearly uniform and rela-
tively small values. However, the systematic error correction
increases the temperature mean bias between 20 and 70 m
depth, meaning that scales (both spatial and temporal), pro-
cedure or observation sampling used are probably not ade-
quate at these depths. On the other hand, at similar depths,
the systematic error correction reduces the salinity mean bias
(Fig. 9b). We argue that temperature and salinity systematic
errors in these layers have different length scales.

The standard deviation error indicates the capability of our
system to correctly reproduce the amplitude of the observed
spatial/temporal variability. Differences between climatolog-
ical and daily estimates of the background error covariance
are evident. The usage of daily hybrid B without the bias
correction introduces in the system a large temperature stan-
dard deviation error between 60 and 150 m depth, signifi-
cantly larger than in Exp-Ref. It is interesting to note that
the same vertical error statistic (B) when applied together
with the bias correction procedure (Exp-Hy2) reduces sig-
nificantly the standard deviation error at the same depths.

The differences introduced by the daily, ensemble based,
estimates of the background vertical error covariance are ev-
ident analysing the cross-correlation (Figs. 8d and 9d for
temperature and salinity respectively) and the skill scores
(Figs. 8e, 9e). The Exp-Hy2 with systematic error correc-
tion and daily estimate of the vertical error background co-
variance has a temperature cross-correlation generally higher
than the other experiments. These differences are at a max-
imum between 20 and 80 m and below 250 m depth. On the
other hand, in the salinity field the maximum differences are
observed near the surface (between 0 and 50 m depth) while

Figure 8. Vertical profiles of temperature error components and
skill score for the different experiments: black lines indicate the
Exp-ref results, red lines indicate Exp-Hy1 results, blue lines in-
dicate Exp-Cl1 results and green lines indicate Exp-Hy2 results.
(a) Normalised root mean square error. (b) Normalised mean
bias. (c) Normalised standard deviation error. (d) Cross-correlation.
(e) Skill score.

in the deeper layers Exp-Cl1 and Epx-Hy2 perform in a sim-
ilar way. Both the experiments with the bias correction show
a decreased cross-correlation with observed salinity between
200 and 400 m depth.

The overall experiment statistics are listed in Table 3. Exp-
Hy2 vertically integrated temperature skill score is 55 %;
47 % is due to the systematic error correction (Exp-Cl1 SS
is 0.47), whereas the remaining part is due to the introduc-
tion of the daily ensemble-based estimates of B. The simple
introduction of the ensemble-based B (Exp-Hy1) produces a
worsening of the solution between 50 and 215 m depth. We
argue that the small structures introduced with the assimila-
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Figure 9. As Fig. 8 but for salinity.

tion scheme are not in balance with the surrounding environ-
ment and develop incorrect dynamics; the correction of the
systematic error allows the model to incorporate the infor-
mation provided.

The vertically integrated salinity Exp-Hy2 and Exp-Cl1
skill scores are 42 %, although they have different vertical
distributions. Exp-Hy2 strongly outperforms Exp-Cl1 in the
surface layers (0–50 m depth), while it does not significantly
improve the model solution between 110 and 215 m depth.
In the other layers the two systems have a similar perfor-
mance. The improvements and the worsening are both due
to the cross-correlation between observations and modelled
salinities. This can be a consequence of the relatively small
ensemble size that has not adequately sampled the model er-
ror.

5 Summary and conclusions

During June 2014 an extensive sea-trial (Recognized Envi-
ronmental Picture, REP14-MED) off the west coast of Sar-
dinia was conducted by CMRE (Centre for Maritime Re-
search and Experimentation). Two research vessels and a
glider fleet collected a massive amount of data in an area of
approximatively 10 000 km2. Remote sensing data and ex-
isting products from atmospheric and oceanographic opera-
tional models were also collected as an additional observa-
tional data set and boundary conditions, respectively.

A Nucleus of European Modeling of the Ocean (NEMO;
Madec, 2008)-based model has been implemented in the area
with a horizontal resolution of approximatively 1 km and
91 hybrid vertical levels. The model has been initialised and
forced at the lateral open boundaries using Mercator-Ocean
(Drévillon et al., 2008) daily analyses, while atmospheric
forcing was computed by means of interactive bulk formu-
lae (Oddo et al., 2009) using the hourly operational products
from the COSMO-ME limited-area atmospheric model.

In order to address the data assimilation issues charac-
terising ocean limited-area models with dense observational
networks, a 3DVAR assimilation scheme was implemented
and coupled with the NEMO-based code. Following Dobri-
cic and Pinardi (2008) the present variational scheme decom-
poses the background error covariance matrix (B) in a se-
quence of linear operators, each of them representing a spe-
cific component of the error structure. Two main issues have
been encountered in the present assimilation exercise. The
first is related to the small scales sampled by the dense ob-
servation network, which are poorly represented in the tra-
ditionally stationary vertical component of B. The second
concerns the large systematic errors partially introduced by
the external forcing (experiment initialisation, lateral or sur-
face open boundary conditions) and partially due to inade-
quate model physics. In order to overcome these limits and
improve the system, a variational-ensemble hybrid assimila-
tion system has been developed and implemented. A small
size ensemble (14 members) has been created by combin-
ing perturbation of observations and background-error hor-
izontal correlation radii in the B matrix. The choice of cre-
ating the ensemble members by perturbing only the analy-
ses is mostly justified by the nature of the experiment we
conducted. In fact a perturbation in the model initialisation
or model parameterisations would require a relatively long
integration time in order to fully develop and reach a sta-
ble condition. On the other hand, perturbing the observations
on a daily assimilation system allows us to quickly generate
ensemble statistics with amplitudes similar to the model er-
ror. The statistical information retrieved from the ensemble
members has been used to address both the small-scale and
the systematic error issues. In order to improve the represen-
tation of the small-scale error in the background error co-
variances, the climatological-based VV operator (accounting
for the multivariate vertical background error covariances)
has been replaced with a daily and spatially varying estimate
computed by applying multivariate EOFs analysis to the en-
semble members’ anomalies. Furthermore, the climatolog-
ical estimates of the recursive filter horizontal correlation
radii used to model the VH operator have been substituted
with daily estimates computed from the ensemble statistics
according Belo Pereira and Berre (2006).

To correct the systematic error the ensemble members’
misfit statistics have been used. For every simulated day an
estimate of the systematic error has been obtained by averag-
ing the misfit over the ensemble members and assuming that
observational error and random model error have both zero
mean. The results have been mapped onto the model grid us-
ing a univariate objective analysis (Barnes, 1994) and super-
imposed to the ensemble daily mean. At each assimilation
step the differences between the corrected ensemble mean
and the last available daily average corresponding fields have
been filtered with a low-pass filter with a 75 km length scale
and the results superimposed to the 3DVAR corrections.
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The implementation of our strategy suffers from the need
to empirically choose the parameters associated with the
combination of stationary and ensemble-derived covariances
and with the scales for the large-scale bias estimation, which
can both benefit from further tuning in the future. However,
these experiments represent a proof-of-concept for including
flow-dependent and large-scale aspects in a variational as-
similation framework.

In order to test the validity of our hypothesis and to quan-
titatively estimate the differences introduced with the hybrid-
variational scheme designed, the results of four different ex-
periments have been compared. Exp-ref uses the standard
3DVAR scheme with static and homogeneous VV and VH
both computed using a 15-year Mediterranean CMEMS re-
analysis (Adani et al., 2011). In Exp-Hy1 the climatological
VV and VH have been weighted with daily estimates from the
ensemble statistic, with VV also varying spatially. Exp-Cl1
uses the same B formulation of Exp-ref but the systematic er-
ror correction procedure has been applied. Finally, Exp-Hy2
uses the same B formulation of Exp-Hy1 but the systematic
error correction procedure has also been applied. The sim-
ple introduction of the hybrid estimate of B does not signif-
icantly improve the model results. This is probably due to
the relatively small ensemble size and the amplitude of the
large-scale systematic error characterising our experiments.
The vertically integrated Skill Score of Exp-Hy1 with respect
to Exp-ref is 0.06 for temperature and 0 for salinity, indi-
cating improvements in temperature mean error of 6 % and
no improvements in the salinity field. However, a significant
worsening of the model temperature is observed between 50
and 100 m. The systematic error correction accounts for a
large part of the improvements and the ensemble-based es-
timates of B produce the best results when used in combi-
nation with the systematic error correction (Exp-Hy2). We
can argue that the small-scale corrections introduced with
the new formulation of B are not in balance with the sur-
rounding environment and thus not properly ingested into the
model solution, thus requiring the additional large-scale bias
correction. In both Exp-Cl1 and Exp-Hy2, the systematic er-
ror correction correctly reduces the large warm bias affecting
the temperature initial state and lateral open boundary con-
dition below 500 m and simultaneously removes the salinity
error at intermediate depth due to the absence in the external
data of the correct water masses at this depths. The adopted
methodology seems to produce satisfactory results. During
the first days, with the observational data availability increas-
ing, the systematic error oscillates and finally adjusts the er-
rors associated to the initial conditions of the experiments.
The amplitude of the corrections during this initial phase is
relatively large. After the errors due to the initialisation have
been reduced, the amplitude of the systematic error correc-
tion significantly reduces and acts mostly on the lateral open
boundary conditions. The improvements in the Exp-Hy2 are
mostly due to improvements in the cross-correlation and thus
to a better reproduction of horizontal and vertical dynamics

and structures. In terms of SS for temperature, Exp-Hy2 per-
forms best at all the depths, with an overall improvements
of 55 % with respect to Exp-Ref while the Exp-Cl1 ver-
tically integrated temperature improvement is 47 %. Large
parts of differences between Exp-Hy2 and Exp-Cl1 can be
traced back to an improved cross-correlation coefficient be-
tween modelled and observed values. The salinity statistics
show different model behaviours. The vertically integrated
SS are similar for Exp-Cl1 and Exp-Hy2, both improve Exp-
Ref results by about 42 %. However, the distribution of the
error differs significantly along the vertical. Exp-Hy2 out-
perform Exp-Cl2 in the first 100 m of the water column as
consequence of larger cross-correlation coefficient with ob-
servations, while Exp-Cl2 perform better in the intermediate
layers (between 110 and 215 m). It should be noted that the
idea of using the current information from misfits or from the
ensemble to improve the analysis has been recently applied
in several other studies (Wang et al., 2007, 2008; Desroziers
et al., 2006; Hamill and Snyder, 2000; Etherton and Bishop,
2004). However, in all the methods, and also in schemes pre-
sented and adopted in this paper the weights given to the cli-
matological and ensemble-based B estimates are arbitrary.
The vertical dependency of the hybrid system’s performance
suggests that the empirical methods used in the estimates of
the ensemble size and the relative weights of static and hy-
brid B require a more objective and formal approach. The
two quantities are clearly correlated. In this study we used a
small ensemble size (14 members) and constant (both spa-
tially and temporally) weights obtaining, however, encour-
aging results. Recently, Dobricic et al. (2015) overcame this
issue by proposing a method based on Bayesian hierarchi-
cal model where the relative weights arise directly from the
computations based on Bayes’ theorem.

There are several possible future improvements of the
hybrid variational scheme method presented for estimating
background error covariances. Ménétrier and Auligné (2015)
suggested a theoretical framework where hybrid weights and
parameters for the localisation of ensemble-derived covari-
ances are jointly optimised as a function of the ensemble
size. An alternative possibility may be to include the α pa-
rameter in the minimisation of the cost function obtaining an
optimised and variable relative weight.

6 Data availability

Data used in this publication are property of the North At-
lantic Treaty Organization, who owns all rights, including
intellectual property rights. Data originated during REP14-
MED experiment by NATO STO Centre for Maritime Re-
search and Experimentation (CMRE, www.cmre.nato.int)
and by experiment partners. For the distribution of the data
set please contact data@cmre.nato.int.
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Appendix A: Accounting for the hybrid formulation in
the cost function

We start from the cost function:

J (δx)=
1
2
δxT B−1δx+

1
2
(Hδx− d)T R−1 (Hδx− d) . (A1)

To define our hybrid assimilation schemes, we compute B as
a linear combination of the “static” covariance operator, Bc,
and the flow-dependent operator, Be:

B= αBc+ (1−α)Be, (A2)

where α is the relative weight. Substituting Eq. (A2) in
Eq. (A1), we obtain the new hybrid cost function:

J (δx)=
1
2
δxT

(
αBc+ (1−α)Be

)−1
δx

+
1
2

(
Hδx− d

)TR−1(Hδx− d
)
. (A3)

We define now the increment as a weighted sum of parts cor-
responding to static and flow-dependent covariance matrices:

δx = δxc+ δxe.

We want to demonstrate that

J (δx)=
1
2
δxc

T (αBc)
−1δxc+

1
2
δxe

T
(
(1−α)Be

)−1
δxe

+
1
2

(
Hδx− d

)TR−1(Hδx− d
)

(A4)

has the minimum for the same value of δx as Eq. (A3).
To minimise Eq. (A4), δxc and δxe must satisfy ∂J (δx)

∂xc
= 0

and ∂J (δx)
∂xe
= 0, which gives

(αBc)
−1δxc+

∂

∂xc

(1
2
δxTe

(
(1−α)Be

)−1
δxe

)
+

1
2
∂Jo

∂xc
= 0, (A5)[

(1−α)Be
]−1

δxe+
∂

∂xe

(1
2
δxc

T (αBc)
−1δxc

)
+

1
2
∂Jo

∂xe
= 0, (A6)

where Jo is the observational term. Assuming that δxc and
δxe can be perturbed independently, both the second terms
on the left-hand side of Eqs. (A5) and (A6) are null:

∂

∂xc

(
1
2
δxe

T
(
(1−α)Be

)−1
δxe

)
= 0, (A7)

∂

∂xe

(
1
2
δxc

T (αBc)
−1δxc

)
= 0, (A8)

and

∂Jo

∂x
=
∂Jo

∂xe
=
∂Jo

∂xc
= 2HTR−1 (Hδx− d) . (A9)

This is a reasonable assumption, because the two random val-
ues are sampled from different Gaussians. Although they are
defined over the same space, one is sampled from historical
states, and the other from current forecasts. Pre-multiplying
Eq. (A5) by αBc and Eq. (A6) by (1−α)Be, removing the
null terms, summing the two subsequent equations and ap-
plying Eq. (A9) yields

0= (δxc+ δxe)+
1
2

[
αBc+ (1−α)Be

]∂Jo

∂x
. (A10)

Multiplying Eq. (A10) by the inverse of the hybrid covari-
ance:

0=
[
αBc+ (1−α)Be

]−1
(δxc+ δxe)

+HTR−1[H(δxc+ δxe)− d
]
. (A11)

This is also the minimum of Eq. (A3) that we wanted as a
proof.

Furthermore, defining the background and analysis pertur-
bations around the true state xt as

δxb = xb− xt (A12)

and

δxa = xa− xt, (A13)

by adding and subtracting the true state (A11) becomes

0=
[
αBc+ (1−α)Be

]−1
(xa− xb− xt+ xt)

+HTR−1[H(xa− xb− xt+ xt)− (y−Hxb)
]

(A14)

or

0= [αBc+ (1−α)Be]−1 (δxa− δxb)

+HTR−1 [Hδxa− (y−Hxt)
]
, (A15)

which can also be written as{[
αBc+ (1−α)Be

]−1
+HTR−1H

}
δxa

=
[
αBc+ (1−α)Be

]−1
δxb+HT R−1 [y−Hxt

]
. (A16)

Multiplying each side of Eq. (A12) by its transpose, taking
the expectation, assuming that observational errors are inde-
pendent of background errors,{[
αBc+ (1−α)Be

]−1
+HTR−1H

}
A{[

αBc+ (1−α)Be
]−1
+HTR−1H

}T
=
[
αBc+ (1−α)Be

]−1
E
{
δxb(δxb)

T
}

[
αBc+ (1−α)Be

]−T
+HTR−1RR−1H. (A17)

Assuming the B contains the true background error co-
variances, i.e. well-specified background errors, and using
Eq. (A2):

E
{
δxb(δxb)

T}
= αBc+ (1−α)Be. (A18)
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Thus,{[
αBc+ (1−α)Be

]−1
+HTR−1H

}
A{[

αBc+ (1−α)Be
]−1
+HTR−1H

}T
=
[
αBc+ (1−α)Be

]−1[
αBc+ (1−α)Be

][
αBc+ (1−α)Be

]−T
+HTR−1RR−1H (A19)

or{
[αBc+ (1−α)Be]−1

+HTR−1H
}

A{
[αBc+ (1−α)Be]−1

+HTR−1H
}T

= [αBc+ (1−α)Be]−1
+HTR−1H. (A20)

Dividing by
{
[αBc+ (1−α)Be]−1

+HTR−1H
}
,

A=
{

[αBc+ (1−α)Be]−1
+HTR−1H

}−1
, (A21)

where A= Eδxa(δxa)
T is the analysis error covariance ma-

trix. Equation (A15) demonstrates that independent forecast
updates in each ensemble member by using Eq. (A4) give the
same optimal estimate of updated covariances as Eq. (A3).
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