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Abstract. This paper uses a suite of Earth system models

which simulate the distribution of He isotopes and radio-

carbon to examine two paradoxes in Earth science, each of

which results from an inconsistency between theoretically

motivated global energy balances and direct observations.

The helium–heat paradox refers to the fact that helium emis-

sions to the deep ocean are far lower than would be expected

given the rate of geothermal heating, since both are thought

to be the result of radioactive decay in Earth’s interior. The

isopycnal mixing paradox comes from the fact that many the-

oretical parameterizations of the isopycnal mixing coefficient

ARedi that link it to baroclinic instability project it to be small

(of order a few hundred m2 s−1) in the ocean interior away

from boundary currents. However, direct observations using

tracers and floats (largely in the upper ocean) suggest that

values of this coefficient are an order of magnitude higher.

Helium isotopes equilibrate rapidly with the atmosphere and

thus exhibit large gradients along isopycnals while radiocar-

bon equilibrates slowly and thus exhibits smaller gradients

along isopycnals. Thus it might be thought that resolving

the isopycnal mixing paradox in favor of the higher obser-

vational estimates of ARedi might also solve the helium para-

dox, by increasing the transport of mantle helium to the sur-

face more than it would radiocarbon. In this paper we show

that this is not the case. In a suite of models with different

spatially constant and spatially varying values of ARedi the

distribution of radiocarbon and helium isotopes is sensitive

to the value of ARedi. However, away from strong helium

sources in the southeastern Pacific, the relationship between

the two is not sensitive, indicating that large-scale advection

is the limiting process for removing helium and radiocarbon

from the deep ocean. The helium isotopes, in turn, suggest

a higher value of ARedi below the thermocline than is seen

in theoretical parameterizations based on baroclinic growth

rates. We argue that a key part of resolving the isopycnal

mixing paradox is to abandon the idea that ARedi has a direct

relationship to local baroclinic instability and to the so-called

“thickness” mixing coefficient AGM.

1 Introduction

Because the ocean is highly stratified and weakly forced,

tracer mixing occurs predominantly along surfaces of con-

stant neutral density (Ledwell et al., 1998). The turbulent flux

associated with mesoscale eddies is usually parameterized as

downgradient eddy diffusion with a coefficient ARedi (Redi,

1982; Griffies et al., 1998). Considering only one dimension

for simplicity, the meridional flux of some tracer C along an

isopycnal is then

FC = v′C′ =−ARedi

∂C

∂s
, (1)

where the overline denotes an average (ensemble or time),

v is the meridional velocity along the isopycnal and ∂/∂s is

a gradient oriented along that isopycnal. The size of ARedi

obviously has the potential to play a major role in determin-

ing the rate of exchange between the interior of the ocean

and the surface. It is generally assumed that all passive trac-

ers experience the same value of ARedi, though it is not clear

that this should be the case for very short-lived tracers or in

the presence of spatially variable sources and sinks.

However, there is not an operational consensus in the

ocean modeling community about how to represent ARedi.
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This is in part because ARedi represents only one dynami-

cally important process associated with eddies. In addition

to stirring fluid parcels along isopycnal surfaces, eddies act

to flatten those isopycnal surfaces as a result of baroclinic

instability, releasing available potential energy. This process

was parameterized by Gent and McWilliams (1990) in terms

of an “eddy Stokes drift” arising from correlations between

the thickness of an isopycnal layer h and the velocities v. By

analogy with Eq. (1) (again considering only the meridional

dimension for simplicity),

v∗ = v′h′/h=−AGM

∂h/∂y

h
=−AGM

∂S
y
ρ

∂z
, (2)

where v∗ is the meridional velocity associated with the over-

turning eddies, AGM is the so-called “thickness diffusivity”

(in reality the diffusivity is implemented as a diffusivity in

interface height) and S
y
ρ is the slope of isopycnal surfaces in

the y direction. As described below, many published models

use the following assumptions to constrain ARedi.

1. It is equal to AGM because the same eddies accomplish

the mixing (Griffies, 1998).

2. It is therefore largest in boundary currents where eddy

kinetic energy is most intense and baroclinicity is

largest.

3. Because the size of the observed overturning circulation

puts limits on how large AGM can be in these boundary

currents (Gnanadesikan, 1999), ARedi is only on the or-

der of a few hundred square meters per second in the

gyre interiors and in the deep ocean.

Examples of models which implement these assumptions in-

clude GFDL CM2.0 (Geophysical Fluid Dynamics Labora-

tory; Gnanadesikan et al., 2006), CSIRO Mk3.6, (Common-

wealth Scientific and Industrial Research Organisation; Gor-

don et al., 2010) NCAR CESM (National Center for Atmo-

spheric Research–Community Earth System Model; Danaba-

soglu et al., 2012) and NorESM (Norwegian Earth System

Model Bentsen et al., 2013). In the GFDL ESM2G model

(Dunne et al., 2012)AGM andARedi are both given by a baro-

clinic growth rate parameterization but have different mini-

mum values. Other models use relatively small constant val-

ues for ARedi, including the Hadley Centre’s HadCM3 and

HadGEM (500 m2 s−1, Jones et al., 2011), GFDL CM2.1

(600 m2 s−1, Gnanadesikan et al., 2006) and GFDL ESM2M

(also 600 m2 s−1, Dunne et al., 2012).

However, these assumptions lead to a paradox. Observa-

tional estimates of ARedi based on tracers and floats (largely

near the ocean surface) show very large values for this pa-

rameter, in the range of thousands of square meters per sec-

ond. Only a few models (the CMCC ESM of Fogli et al.,

2009, and CNRM CM3 of Salas-Melia et al., 2005) use rel-

atively large values of ARedi (2000 m2 s−1 in both cases) in

the ocean interior. We term this order of magnitude differ-

ence between the values if ARedi emerging from theory and

direct observations the isopycnal mixing paradox.

One reason this paradox has remained unresolved is that

physical properties in ocean-only models are far less sen-

sitive to ARedi than they are to AGM, as surfaces of con-

stant temperature, salinity and density often align with each

other. However, ARedi can have a more significant impact

on the distribution of tracers that have interior sources and

sinks. Measurements of such tracers thus offer the possibil-

ity of constraining ARedi. Gnanadesikan et al. (2013) demon-

strated that ARedi had a first-order impact on the distribu-

tion of hypoxic waters within a suite of Earth system models

and Gnanadesikan et al. (2015) show that it impacts anthro-

pogenic carbon uptake.

In this paper we expand on Gnanadesikan et al. (2013)

to look at two other tracers.The first is primordial mantle

helium-3. Incorporated into Earth’s interior when it formed,

mantle helium is transported from the interior to regions

where new ocean crust forms. This produces a strong helium

isotope anomaly,

δ3He= (3He/4He)sample/(
3He/4He)atm− 1, (3)

as seen in Fig. 1a. As waters are brought to the surface, the

helium exchanges rapidly with the atmosphere and the iso-

topic signature is destroyed. The Pacific is enriched in man-

tle helium both because waters are out of contact with the

atmosphere in this basin for long periods of time (Khati-

awala et al., 2012) and because the ridge centers in the Pacific

spread faster, producing more new crust and degassing more
3He (Farley et al., 1995).

The second tracer is radiocarbon. Produced by galactic

cosmic rays interacting with nitrogen in the upper atmo-

sphere, radiocarbon equilibrates with the upper ocean on

a relatively long timescale (of order 10 years for a 100 m

deep layer). This equilibration is slow because air–sea gas

exchange is controlled by the difference in pCO2, which

accounts for only a few percent of the total dissolved inor-

ganic carbon and because equilibrating this entire pool de-

pends on the gross, rather than the net exchange. Despite

this, the vast majority of radiocarbon in the air–sea system

(98%) ends up in the ocean. There it decays with a half-

life of 5730 years, corresponding to an e-folding time of

8270 years. Radiocarbon is measured in 114C units, where

a value of 0 means that the radiocarbon is what would be

expected for water at equilibrium with the preindustrial at-

mosphere and −1000 ‰ means no radiocarbon is found in

the sample. The 1 is used to indicate that corrections have

been made for mass-dependent fractionation processes us-

ing 13C, (for more detail see Emerson and Hedges, 2008).

As seen in Fig. 1b the highest radiocarbon in the deep ocean

is found in the North Atlantic where freshly ventilated deep

waters have had the time to equilibrate with the atmosphere.

Waters brought to the surface in the Southern Ocean do not
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Figure 1. δ3He and radiocarbon in the ocean. (a) δ3He from Bianchi et al. (2010) on σ2 ( potential density relative to 2000 m minus

1000 kgm−3) of 36.95. (b) 114C on σ2 = 36.95 from Key et al. (2004). (c) Vertically averaged δ3He vs. vertically averaged 114C (2000–

5500 m). (d) Vertically averaged δ3He vs. radiocarbon age, 2000–5500 m, Pacific sector only.

stay at the surface long enough to have their radiocarbon re-

set and so both deep and surface radiocarbon in the Southern

Ocean lie in the range of −120 to −130 ‰. As waters flow

into the Indian and Pacific oceans, radiocarbon continues to

drop, with the lowest values (around −240 ‰) found in the

North Pacific. While the above-air nuclear bomb tests added

a significant amount of radiocarbon to the ocean–atmosphere

system, relatively little of this is seen in the deep ocean (Key

et al., 2004).

The relationship between deep radiocarbon (averaged be-

low 2000 m) and deep δ3He (Fig. 1c) shows an approxi-

mately linear relationship, particularly as 114C ranges from

−100 to −180 ‰. Atlantic waters show a different slope,

perhaps because of potential incorporation of radiocarbon

and δ3He resulting from nuclear bomb tests. Computing a ra-

diocarbon age from the observations Age=−8270× ln(1+

114C/1000), we see a general increase of δ3He with age in

the Pacific Ocean (Fig. 1d). That the relationship is not per-

fectly linear is expected, given that the sink of radiocarbon is

much more homogeneous than the sources of mantle He.

Together, these tracers bear on an interesting paradox in

solid Earth geophysics. By combining the ratio of 3He to 4He

in hydrothermal waters, and estimating the inventory of man-

tle 3He in the ocean, one can estimate the inventory of mantle
4He. Given the age of the ocean, one can estimate the flux of

mantle 3He to the ocean, which can then be scaled to estimate

fluxes of mantle 4He and also of other elements. If this 4He

results from the decay of atomic nuclei 238U, the resulting

helium flux should be consistent with the geothermal heat-

ing of the deep ocean (O’Nions and Oxburgh, 1983; Turner

and Stuart, 1992). As we will explain in more detail below,

attempts to match the relationship shown in Fig. 1c result in

estimates of 4He flux that are much lower than required to

balance the observed geothermal heat flux. This has been re-

ferred to as the helium–heat paradox (Anderson, 1998). Like

the isopycnal mixing paradox, it is based in an inconsistency

between top-down budgets and direct measurements.

This paper examines two connections between the trac-

ers and isopycnal mixing. First, it examines whether resolv-

ing the isopycnal mixing paradox in favor of higher values

of ARedi more consistent with observations could allow for

a different relationship between mantle helium and radio-

carbon. As discussed in Sect. 2, insofar as isopycnal mix-

ing brings deep water to the surface and returns it rapidly

to depth, it would be expected to vent mantle helium with-

out necessarily replenishing radiocarbon. Were this a domi-

nant transport process, it would allow for the relationship in

Fig. 1c with higher mantle helium fluxes. We show that this

is not the case. Second, we examine whether the deep distri-

bution of δ3He can be used to put any constraints on mixing

within the deep ocean below the main thermocline, where di-

rect measurements are sparse. We argue that it does, and that

the values found are larger than in many global circulation

models.

The paper is structured as follows. Section 2 goes into

more detail regarding the isopycnal mixing and helium para-
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doxes. Section 3 describes a new suite of Earth system mod-

els that has been run to explore the dependence of physical

climate and tracer distributions on ARedi. Section 4 examines

the relationship between mantle helium and radiocarbon in

these simulations and concludes that for a realistic range of

ARedi this relationship is relatively insensitive to the value

used. Section 5 examines distributions of δ3He, with a fo-

cus on the southeastern Pacific, and concludes that relatively

high values of ARedi are most consistent with observations.

The results of the Earth system models thus add support for

the existence of both paradoxes. While resolution of the he-

lium paradox is beyond the expertise of the authors of this

paper, potential resolutions to the isopycnal mixing paradox

are discussed in Sect. 6.

2 Two paradoxes in Earth science

2.1 The isopycnal mixing paradox

Dimensionally

AGM,Redi = L
2/T , (4)

where L is a length scale and T a timescale. Most modern

climate models use some version of the closure first pro-

posed by Green (1970) where 1/T is given by the growth

rate of baroclinically unstable waves assuming the growth

rate scales as that described by Eady (1949). In this case, as-

suming thermal wind balance, one obtains

1/T = f/Ri1/2 = f |dU/dz|/N ≈ |Sρ |N, (5)

where Sρ is the slope of density surfaces (Visbeck et al.,

1997). In climate models, the slope is usually taken as some

average slope over a range of depths (for example 100–

2000 m in Gnanadesikan et al., 2006). All else being equal,

these approximations predict that growth rates and diffusion

coefficients should be very small in the center of the subtrop-

ical gyres where isopycnals are relatively flat. An example

is shown in Fig. 2a for the GFDL CM2Mc model of Gal-

braith et al. (2011). Because of its role in moving light tropi-

cal waters into polar regions, particularly within the Southern

Ocean, AGM has a first-order impact on the large-scale circu-

lation of the ocean (Danabasoglu et al., 1994; Gnanadesikan,

1999). Values much larger than 1000 m2 s−1 in the main py-

cnocline tend to produce unrealistic smoothing of the pycno-

cline and suppression of the large-scale overturning circula-

tion unless unrealistically high values of vertical mixing are

applied in the tropics. Thus, in models where ARedi = AGM,

values applied in the center of subtropical gyres are often

very low, on the order of a few hundred square meters per

second.

Measuring AGM directly from observations in nearly im-

possible, but several observational estimates of ARedi do ex-

ist; these estimates seem incompatible with the values of

AGM described above. Modern estimates ofARedi using a va-

riety of methods find relatively large values in the ocean

interior. For example Ledwell et al. (1998), using SF6 re-

leased into the thermocline, estimated an east–west diffusion

of 1500 m2 s−1 and a north–south diffusion of 600 m2 s−1.

Baynte et al. (2013), looking at the Guinea Dome, found

a value of 1000–1200 m2 s−1 in the east–west direction and

500 m2 s−1 in the north–south direction. Estimates with sub-

surface floats yield even larger values, with Bauer et al.

(1998) estimating values of 2000–9000 m2 s−1 in the equa-

torial Pacific and Ollitraut and Colin de Verdiere (2002)

finding values of 1500–3000 m2 s−1 in the North Atlantic.

A recently developed “pseudo-observational” approach uses

satellite-derived surface geostrophic velocities to drive tracer

or particle transport simulations (Shuckburgh and Haynes,

2003; Marshall et al., 2006; Shuckburgh et al., 2009; Rypina

et al., 2012). Lateral diffusion coefficients can then be calcu-

lated directly from such simulations. Abernathey and Mar-

shall (2013) applied this method globally, producing the map

of near-surface ARedi shown in Fig. 2c. Finally, eddy diffu-

sion coefficients can be estimated from eddy-resolving nu-

merical models (Abernathey et al., 2010; Fox-Kemper et al.,

2012; Bachman et al., 2015). All these diverse estimates sug-

gest that ARedi can be several times larger than the values

commonly used for AGM. This is the isopycnal mixing para-

dox.

One question is whether this paradox persists into the deep

ocean. There are only a few direct estimates of ARedi be-

low the main thermocline. Ledwell and Watson (1991), in

the Santa Barbara Basin, found a diffusion coefficient of 10–

20 m2 s−1 on spatial scales of 10 km. Rye et al. (2012) in the

Brazil Basin found a value of around 100 m2 s−1. Both of

these, however, are at depths where lateral motion is likely to

be strongly physically constrained by topography. There are

no observational studies of which we are aware that directly

estimate lateral diffusion between the base of the thermo-

cline and depths associated with the tops of the mid-ocean

ridges. In the few models where it is allowed to vary with

depth, AGM is assumed to drop in the deep ocean, as eddy

kinetic energy is lower there. A zonal average of AGM illus-

trating this is shown for the NCAR CESM model (Danaba-

soglu et al., 2012) in Fig. 2b. However, if the surface values

of ARedi are too low, forcing it to decrease with depth may

actually give less realistic deep values than the vast majority

of parameterizations which simply prescribe values of 500–

1000 m2 s−1 uniformly throughout the water column. Evalu-

ating the extent to which this is the case is a major thrust of

this paper.

One possible resolution of the paradox is the highly

anisotropic nature of eddy transport. Rypina et al. (2012) and

Fox-Kemper et al. (2012) show that eddy diffusion can be

up to 10 times stronger in one direction (generally the zonal

direction) than in the perpendicular direction. Yet all the cli-

mate models used in the CMIP5 (Coupled Model Intercom-

parison Project Phase 5) exercise employ isotropic (scalar)
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Figure 2. Examples of AGM and ARedi. (a) Vertically uniform AGM from Galbraith et al. (2011). (b) Horizontal average of ARedi = AGM

from Danabasoglu et al. (2012). (c) Surface ARedi from observationally based calculation of Abernathey and Marshall (2013).

diffusivities for both AGM and ARedi. Experiments are on-

going regarding the consequences of anisotropic eddy diffu-

sion for ocean models (Reckinger and Fox-Kemper, 2015).

It is not clear, however, how well the observational estimates

capture the details of anisotropy, given that a particular chal-

lenge in making such measurements is removing imperfectly

known background shear flows (see for example LaCasce et

al., 2014, who resolved this issue by looking at the cross-

stream diffusivity only). Such shear flows may also cause

tilts in the major and minor axes of the dispersion tensor that

reflect resolved flows rather than details of the turbulence.

Employing higher subgrid-scale diffusivities in the along-

stream direction in models where one already resolves the

large-scale flow may thus count the impact of the shear dis-

persion twice.

Here, instead, we investigate another possible resolution:

the non-equivalence between AGM and ARedi. Despite the

common assumption that they are equal, there is ample

evidence that the two coefficients can differ significantly.

Linear quasigeostrophic theory can be used to show that

the diffusion coefficient governing lateral buoyancy trans-

port (corresponding to AGM) is very different from the co-

efficient governing along-isopycnal PV (potential vorticity)

transport, which is asymptotically equal to ARedi (Smith and

Marshall, 2009; Vollmer and Eden, 2013). This theory has

been tested in fully nonlinear primitive equation simulations

(Abernathey et al., 2013). These studies all show ARedi to

be larger than AGM. Our experiments are designed to test

whether elevated values of ARedi throughout the water col-

umn give unrealistic results for helium isotopes and radio-

carbon.

2.2 The helium–heat paradox

Given a decay of 238U of 4.26 MeV= 6.02×10−13 J and a ra-

tio ofR = 3He/4He of 1.6×10−5 as in Craig et al. (1975), we

expect one molyear−1 of 3He to be associated with a global

heat flux of about 800 MW. It is estimated that U decay

contributes about 10–20 TW of heating, implying a flux of

around 12 500–25 000 mol 3He year−1. However, Craig et al.

(1975), using a box model calibrated with observations of
3He, estimated a much lower flux of 1070 molyear−1. This

has led to suggestions from geochemists that the mantle

as a whole does not convect, so that helium is trapped in

the deep mantle while heat escapes (O’Nions and Oxburgh,

1983). While alternative explanations for this difference have

been proposed (see for example Harrison and Ballentine,

2003) the exact value of the mantle helium flux remains an

important calibration point for geochemistry.

Box models are, however, a crude representation of the

true rate at which the ocean is ventilated. As each box is

rapidly homogenized, the effective transport of tracer from

the deep ocean to the surface may be much larger than in the

real world. This means that box models with the right mean

overturning fluxes could overestimate the speed at which

tracers make it out of the deep ocean, and thus would re-

quire too large a source of 3He in the deep ocean. On the

other hand, the neglect of mixing fluxes may mean that box

models can underestimate the true flux.

Dutay et al. (2004) simulated helium isotopes in a suite of

ocean general circulation models, which (presumably) have

a more realistic representation of the processes that overturn

the ocean. However, this paper found large ranges in the in-

ventory of mantle helium. Given the differences in model

construction it was far from clear why this was the case.

Bianchi et al. (2010) revisited this problem using a suite of

ocean-only models developed to look at the differing roles

of vertical and lateral diffusion in setting global circulation.

In these models AGM and ARedi were varied together, with

the result that increasing the lateral mixing generally reduced

vertical exchange. Examination of the relationship between

δ3He and 114C in these models showed that those models

with the most realistic radiocarbon, and thus presumably the

most realistic ventilation of the deep ocean, tended to retain

too much mantle 3He. The solution proposed was to reduce

the flux of mantle 3He yet further to 527 molyear−1.

www.ocean-sci.net/11/591/2015/ Ocean Sci., 11, 591–605, 2015
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Figure 3. Two box schematic of a tracer with a source (or sink) in

the deep ocean, the signal of which is transported to the surface box

by mass transportMo and equilibrated with the atmosphere by mass

transport Ma.

However, if ARedi changes are not directly tied to changes

in AGM, as may be the case in the real ocean, the picture is

potentially different. As shown in Pradal and Gnanadesikan

(2014), increasingARedi tends to destratify the high latitudes,

allowing more exchange with the deep ocean and causing sea

ice to retreat. Thus, increasing ARedi would be expected to

reduce mantle 3He. The impact on radiocarbon is, however,

less clear, given the long timescales involved in equilibration

of carbon isotopes. An illustrative model of this is schema-

tized in Fig. 3, in which a source of tracer is introduced into

the deep box, circulation transports tracer between the inte-

rior box and the surface box producing a fluxMo×(Cd−Cs)

and gas exchange restores the surface box to an equilibrium

concentration with a flux Ma× (Cs−Ceq). At equilibrium,

both fluxes are equal to S and the deep concentration is just

Cd = Ceq+ S× (1/Mo+ 1/Ma) (6)

and similarly

Cs =
Cd ×Mo+Ceq×Ma

Mo+Ma

. (7)

Suppose (as we do) that the deep Pacific is primarily venti-

lated from the Southern Ocean. For radiocarbon, the surface

concentrations in the Southern Ocean are closer to the deep

ocean mean of−170 ‰ than to zero, implying thatMo is ac-

tually a little bigger than Ma (consistent with the idea that it

takes about 10 years to equilibrate the surface mixed layer).

Thus, about half of the buildup of radiocarbon in the deep

Pacific is due to slow gas exchange and will not be changed

by increasing the ocean circulation. By contrast, helium iso-

topes at the surface of the Southern Ocean are in equilibrium

with the atmosphere, implying a much larger Ma. This im-

plies that helium is more sensitive to changes in mixing than

is radiocarbon. Could resolving the isopycnal mixing para-

dox by breaking ARedi and AGM apart result in a less strin-

gent helium–heat paradox as well? Or are changes in the ef-

fective mixing rate over the range of potentialARedi too small

to make a difference?

3 Model description and experimental setup

The physical climate model used here is described in Gal-

braith et al. (2011) and is a lower-resolution version of the

CM2M model of Dunne et al. (2012). The atmosphere has

a horizontal resolution of 3.75◦× 3◦ in the horizontal and

has 24 levels in the vertical, with a topmost level at 3 mb

and 4 layers in the bottom 100 mb to represent the surface

boundary layer. The finite-volume core atmosphere model

contains up-to-date parameterizations of gravity wave drag,

clouds and radiation (the last of which has a diurnal cycle).

The ocean has a nominal horizontal resolution of 3◦× 2◦,

with enhanced zonal resolution near the Equator so as to re-

solve the equatorial waveguide. In the vertical the resolution

is 10 m over the top 100 m, increasing to 494 m at level 28,

the bottom-most box. The ocean model is run with AGM spa-

tially varying as in Gnanadesikan et al. (2006) ranging be-

tween 200 and 1400 m2 s−1 depending on the shear between

100 and 2000 m depth. As AGM×S defines a streamfunction

for overturning that can become unrealistically large when

slopes become infinite within the mixed layer, a maximum

of AGM× Smax is applied with Smax = 0.01. The coefficient

ARedi by contrast is held fixed over time. For the control ver-

sion of the model a spatially constant value of 800 m2 s−1

was used.

The model was initialized with modern ocean temper-

atures and salinities and with greenhouse gasses and so-

lar radiation fixed at 1860 levels. A 1500-year spinup was

then performed, at which point three additional runs, with

Aredi = 400,1200, and 2400 m2 s−1, were spun off the main

trunk and, along with the control, run for 1000 years. We

will denote the runs by the ARedi coefficient as AREDI400,

AREDI800, AREDI1200 and AREDI2400. Results are

shown from the final century of these simulations.

An additional simulation, denoted ABER2D, sets ARedi

to the value calculated by Abernathey and Marshall (2013)

for the surface layer that is shown in Fig. 2c. As is the case

for all the other runs, this value is taken to be isotropic and

depth-invariant. Neither assumption is likely to hold in the

real world. The runs here should therefore be taken as a first

step towards implementing a more realistic parameterization

of ARedi. This simulation was also initialized from the con-

trol at year 1500 of the spinup and run for 500 years.

A number of biogeochemical tracer packages were run

in our version of ESM2Mc. We will discuss in particu-

lar the Biology, Light, Iron, Nutrients and Gasses (BLING)

model described in Galbraith et al. (2010), which solves for

macronutrient and micronutrient cycling using a mechanis-

tic, but highly parameterized biology. The original version

of BLING carried four tracers, phosphate, dissolved organic
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matter, iron and oxygen. The iron, phosphate and available

light were used to calculate a growth rate, which in turn

was used to diagnose biomass, grazing and uptake using

a quasi-equilibrium assumption. The resulting model pro-

duces nutrient, chlorophyll (Galbraith et al., 2010) and oxy-

gen (Gnanadesikan et al., 2013) fields comparable to those

achieved with models with much more complicated repre-

sentations of ecosystems. The version of BLING used in Gal-

braith et al. (2011) added carbon and radiocarbon cycling,

finding that ESM2Mc produces a reasonable distribution of

radiocarbon as well.

Additionally, simulations of mantle He based on the work

of Dutay et al. (2004) were run. In the original protocol 3He

and 4He are fixed in the atmosphere at prebomb levels and

emitted from the ocean bottom along ridges. Following the

work of Farley et al. (1995), injection is taken as propor-

tional to the spreading rate and occurs at a depth approxi-

mately 300 m above the ridge axis. In the original OCMIP2

(Ocean Carbon-Cycle Model Intercomparison Project Phase

2) protocol (Dutay et al., 2004) the total 3He emission was

normalized to give a global value of 1070 molyear−1 (Craig

et al., 1975) and no temperature anomaly was associated with

the helium flux. Based on the work of Bianchi et al. (2010)

this value was scaled down to 527 molyear−1. CM2Mc also

includes a geothermal heat flux which varies from a value

of around 50 mW m−2 in the abyssal plains to peak values

slightly above 100 mWm−2 in the East Pacific Rise with a to-

tal heat flux to the ocean of about 23TW. Both the bottom

heat and He fluxes are held constant with time.

Spinup is an issue with coupled models. As described in

Pradal and Gnanadesikan (2014) the surface temperatures are

close to equilibrium after a few hundred years. This may not

be the case for the deep ocean however, as the timescale for

equilibrating radiocarbon can be many thousands of years,

far longer than the spinups used in the majority of coupled

climate models (which are generally from a few hundred

to a few thousand years). Caution should thus be used in

interpreting mean results. Since the models are initialized

from observations, changes which enhance errors are likely

to be significant, while it is possible that changes in diffusion

which seem to reduce errors may in fact produce an over-

shoot in the opposite direction after many thousands of years.

The key metrics which we use here, in particular the relation-

ships between helium and radiocarbon and the sharpness of

the plumes, adjust much more rapidly, with a timescale of

about 100 years. This can be seen by comparing the results

in this version of the manuscript with the discussion paper,

where results were presented after 500 years of simulation.

4 Results

4.1 Mean hydrography

The coarse-resolution Earth system models do a reasonable

job at reproducing the large-scale hydrography of the ocean.

Figure 4a shows the horizontally averaged temperature in

the models. The horizontal axis is cut off at 12◦C (corre-

sponding to a depth of around 200 m) in order to highlight

the differences at depth. The relative lack of sensitivity of

the mean thermocline to changes in ARedi stands in strong

contrast to AGM, which plays a major role in setting temper-

atures at these depths (Danabasoglu et al., 1994; Gnanade-

sikan, 1999). In the deep ocean, there is a general tendency

for the models with higher levels of mixing to produce more

realistic cold temperatures.

Salinity (Fig. 4b) shows a quite different behavior. The

observed mean salinity profile is low at the ocean surface

as a result of fresh mixed layers at high latitudes, it ex-

hibits a subsurface maximum associated with the subtropi-

cal gyres and a subsurface minimum associated with the for-

mation of mode and intermediate waters. The lowest mix-

ing case (AREDI400, black line) tends to overestimate the

strength of polar haloclines, while the higher mixing cases

(AREDI1200, AREDI2400 and ABER2D) all capture the

near-surface salinity maximum while erasing vertical gradi-

ents in salinity below about 1000 m. The AREDI800 simula-

tion does a good job of capturing the deeper salinity structure

but less of a good job near the surface. Together the temper-

ature and salinity plots illustrate the difficulties in “tuning”

Earth system models – parameterizations that improve one

field may not improve another.

Radiocarbon (Fig. 4c) is generally too high in the mod-

els, both at the surface and at depth. This suggests that ei-

ther our rates of air–sea exchange, vertical exchange (due to

advection and diffusion), or both are too vigorous. In gen-

eral, increasing mixing tends to increase radiocarbon in the

deep ocean, though the intramodel differences are gener-

ally smaller than the model–observation differences. To first-

order, the average depletion in the deep ocean is within about

15 ‰ of observations, implying an error in radiocarbon age

of around 120 years.

Helium isotope anomalies (Fig. 4d) are also too large in the

deep ocean (implying too little ventilation in contrast to ra-

diocarbon). As expected, increasingARedi tends to reduce the

deep isotope anomaly. Also as expected, the relative change

appears to be much larger for helium than it is for radiocar-

bon. While the deep overprediction of mantle helium is strik-

ing, the total mantle helium inventory is less sensitive, with

the average value for AREDI400 of 13.2 % and AREDI2400

of 9.3 % bracketing the observed value of 11.1 %. The mod-

els capture most of the observed horizontally averaged δ3He

signal.
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Figure 4. Mean hydrography in the Earth system model suite. (a) Temperature, compared with the World Ocean Atlas. (b) Salinity compared

with the World Ocean Atlas. (c) Radiocarbon, compared with Key et al. (2004). (d) Helium isotope anomaly compared with Bianchi et al.

(2010).

4.2 Ventilation in the model suite

As discussed in Pradal and Gnanadesikan (2014), increas-

ing ARedi results in destabilizing the high-latitude Southern

Ocean and North Pacific. Models with more intense eddy

mixing stir more salt into the high-latitude surface layer.

This reduces the salinity contrast across the winter halo-

cline, which is the dominant factor in determining vertical

exchange in the subpolar North Pacific and Southern Ocean.

The results of this can be seen in Fig. 5. The AREDI400 sim-

ulation with the lowest mixing captures the value of the min-

imum in radiocarbon in the North Pacific, though the depth

at which this minimum is seen is too great. As ARedi in-

creases the result is to bring more young water down in the

North Pacific, reducing the correlation between the observed

and modeled zonal mean from 0.88 (AREDI400) to 0.71

(AREDI2400), and substantially increasing the RMSE (root

mean squared error) in radiocarbon concentration from 22

(AREDI400) to 42 ‰ (AREDI2400). The Abernathey and

Marshall (2013) spatially varying diffusion tends to act like

low diffusion in the south, but higher diffusion in the north,

and so also produces enhanced, unrealistic northern sink-

ing, though not to the same extent as the AREDI2400 case.

The differences between the AREDI400 and AREDI800

runs are largely due to an increase in the gradient between

the Southern Ocean and the North Pacific, with the South-

ern Ocean values of radiocarbon remaining relatively un-

changed, suggesting that lateral transport is important here.

However, the differences between AREDI1200, AREDI2400

and AREDI800 show the impact of decreases in high-latitude

stratification (particularly in the North Pacific) as well. In re-

cent work (Gnanadesikan et al., 2015) we show that the de-

stratification of the North Pacific also results in unrealistic

uptake of anthropogenic carbon in this region.

Mantle helium shows a behavior somewhat similar to ra-

diocarbon, but with the difference that the highest values are

found in the tropical South Pacific rather than in the far north

(Fig. 6a). The AREDI400 case largely captures the loca-

tion of the maximum zonal mean δ3He anomaly but, as with

radiocarbon, increasing ARedi results in ventilation that re-

moves mantle helium from the far northern Pacific, decreas-

ing the correlation with observations and raising the mean

error. There is, however, some sense that the lower values

of ARedi result in an excessively high peak of mantle he-

lium in the tropics, so that the RMSE in zonally averaged

δ3He is actually lowest (4.5 %) for the AREDI800 simula-

tion rather than the AREDI400 simulation (5.5 %), despite

having a lower correlation coefficient (0.74 vs. 0.78). The

ABER2D simulation does less well than the AREDI800 in

this case, though the peak value in the South Pacific is some-

what better captured.
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Figure 5. Zonally averaged 114C (in ‰) in the Pacific. (a) From the observational data set of Key et al. (2004). (b) AREDI400.

(c) AREDI800 (d) AREDI1200 (e) AREDI2400 (f) ABER2D.

Figure 6. Zonally averaged δ3He in (%) in the Pacific. (a) From the observational data set of Bianchi et al. (2010). (b) AREDI400.

(c) AREDI800 (d) AREDI1200 (e) AREDI2400 (f) ABER2D.
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4.3 Radiocarbon vs. mantle helium

The changes in deep tracers are reflected in changes in the

scatterplot of deep δ3He vs. 114C (Fig. 7). As the mixing

increases, the peak seen in the southeastern Pacific becomes

smoothed out and the maximum depletion decreases. How-

ever, all five runs lie close to the observed relationship. Since

the δ3He values are linear in the source term, it is easy to see

that doubling this term to the value of Craig et al. (1975) will

lead to a strong offset. The results of Bianchi et al. (2010)

appear to be robust against changes in ARedi that are not di-

rectly associated with changes in AGM. Resolving the isopy-

cnal mixing paradox thus does not affect the helium–heat

paradox.

This result is contrary to what might be expected from the

changes in the tracers seen in Figs. 5 and 6, which show clear

changes in the extreme values of these tracers in the deep

ocean and substantially greater penetration of young waters

as ARedi increases. However, these changes in the endpoints

do not substantially change the effective rate at which tracer

signals make their way from the deep ocean to the surface.

Our results thus suggest that the key barrier to transfer be-

tween the deep ocean and the surface is not mixing across

the mixed layer base but transport from the ocean interior

to the high-latitude regions. Such transport is accomplished

both by advection and turbulent diffusion. If one considers

a Péclet number for the deep South Pacific UL/ARedi, deep

velocities U are on the order of 1 mms−1 but the length scale

L between where He is injected and where isopycnals reach

the surface is on the order of 4000 km. Thus, even for the

highest value of ARedi, the Péclet number is greater than 1

and advection dominates mixing.

Examination of changes in overturning supports this idea.

We can define the overturning as

Mover =

z2∫
z1

xe∫
xw

v× dx× dz, (8)

where v is the northward velocity, and xw,xe,z1 and z2 are

the limits of integration in the west, east, and vertical di-

rections. The integral is taken at 30◦S in the Pacific. If the

integral is performed relative to the surface (z1 = z,z2 = 0,

Fig. 8a) the similarity in the northward transport of sur-

face water is emphasized, but differences appear in the deep

ocean. Note that the value does not go to zero at the bot-

tom because water that flows into the southern Pacific leaves

through the Indonesian throughflow and Bering straits. This

net flux does change as ARedi changes. Summing the north-

ward transport from the bottom of the ocean upward (z1 =

H,z2 = z where H is the ocean depth, Fig. 8b), we see that

the models with constant ARedi all have similar inflows of

deep water of around 10 Sv (only the ABER2D simulation is

noticeably lower). The main thing that changes between the

simulations is whether this water is largely returned below

the thermocline (as happens for the higher mixing cases) or

whether some small fraction of it upwells into the tropical

thermocline and is returned through the Indonesian through-

flow (as appears to be the case for AREDI400). From the

point of view of flushing the deep tropical Pacific, however,

it is largely irrelevant which pathway is taken. Instead, what

matters is the throughflow, which is relatively constant across

the different models.

4.4 The southeastern Pacific δ3He plume

Both the models and observations show high values in the

southeastern Pacific, where a rapidly spreading rift releases

large amounts of mantle helium. The sharpness of this plume,

however, varies substantially between the models. In Fig. 9,

the distributions at 2500 m are overlaid with the actual ob-

servations between 2250 and 2750 m (filled squares). Differ-

ences in color thus highlight locations where the model is

mismatched with the in situ observations. In Fig. 9a we see

that there are some differences between the gridded and in

situ observations. This reflects the fact that in order to ex-

trapolate over the relatively coarse observations in the deep

ocean to a global data set, Bianchi et al. (2010) had to de-

fine a radius of influence that effectively smooths the data

and may be comparable to the size of some of the features

seen in the model output. For this reason, we have not cho-

sen to present RMSEs, as these would imply a greater degree

of precision than is justified given the coarseness of the sam-

pling and the model.

However, even a qualitative comparison makes it clear that

the mixing exerts a strong control over how well the models

match the observations. In the AREDI400 run (Fig. 9b), the

symbols over the East Pacific Rise show up as lower than the

model, which produces a peak value exceeding 70 %, while

the highest values in the observations are around 45 %. By

contrast, the AREDI2400 model produces no values higher

than 36 %. The AREDI800, AREDI1200 and ABER2D mod-

els all produce peaks that are qualitatively similar to obser-

vations.

This is not merely the impact of the depth chosen. Fig-

ure 10 shows a depth–longitude section of δ3He cutting

through the center of the plume between latitudes of 20 and

30◦ S. Again, we see that the observations over the ridge

show up as too low in the AREDI400 run, too high in the

AREDI2400 run and close to the simulated values for the

AREDI800, AREDI1200 and ABER2D simulations (though

note that the highest values in the models are displaced down-

wards relative to observations). This suggests that very low

diffusion coefficients in the deep southeastern Pacific are not

consistent with the release of helium there, in contrast to cur-

rent theory. The values that are most consistent with the ob-

servations are comparable to what is found nearer to the sur-

face. This suggests that the isopycnal mixing paradox is not

simply a matter of ARedi being much larger than AGM in the

surface layer but also in the deep ocean.
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Figure 7. Scatterplots of δ3He vs. 114C for different values of ARedi. On all plots observations are in black. (a) AREDI400 (red) and

AREDI800 (blue). (b) AREDI1200 (red) and AREDI2400 (blue) (c) ABER2D (red).

Figure 8. Overturning in the South Pacific at a latitude of 30◦ S across the different model runs. Overturning is computed as a running sum

of northward transport. (a) Overturning summed from top to bottom, emphasizing similarity in northward surface flow. (b) Overturning

summed from bottom to top, emphasizing similarity in deep inflow of Antarctic Bottom Water.

5 Conclusions

Our simulations of helium isotopes and radiocarbon have not

resolved either of the two paradoxes outlined earlier in the

paper. While larger values of isopycnal mixing varying in-

dependently of AGM do allow for more exchange between

the surface and deep ocean, this exchange does not change

the fundamental relationship between radiocarbon and he-

lium isotopes in the deep ocean. Isopycnal mixing does not

offer a solution to the helium paradox. Moreover, the distri-

bution of helium isotopes in the abyssal ocean do not sup-

port the idea that values of ARedi below the thermocline must

be much smaller than values at the surface, as found in the

NCAR CESM model. Nor do they support the idea that the

coefficients must be much smaller than the values of AGM

found in boundary currents where isopycnal slopes are much

larger, as found in models such as GFDL’s ESM2G. Instead,

relatively large values of ARedi are needed to produce suffi-

ciently diffuse plumes.

Resolving the helium paradox is beyond both the scope of

this paper and the expertise of the authors. However, we can

comment on the isopycnal mixing paradox. Recall that this

paradox stems from three assumptions – equivalence ofAGM

and ARedi, a strong relationship between AGM and baroclin-

icity, and limits on the maximum value of AGM. While the

last two of these appear to be well founded in theory and

modeling, it is not at all clear that AGM should equal ARedi.

Indeed, recently published estimates ofAGM andARedi based

on theory (Smith and Marshall, 2009; Vollmer and Eden,

2013) and simulation (Abernathey et al., 2013) show differ-

ent values for the two coefficients. Our results here support

the idea that breaking this equivalence allows for more re-

alistic tracer distributions in many parts of the ocean, par-

ticularly in the abyssal South Pacific. The reasons why this

equivalence breaks down are less clear but likely have to do

with the fact that anomalies in layer height can be tightly

connected to anomalies in velocity, and that viscous forces

act to smooth out such variations in ways that they do not act

to smooth out variations in passive tracers.

These simulations highlight the utility of passive tracers in

constraining climate models. Passive tracers can reveal when

improvements in physical fields are occurring for the wrong

reasons. As discussed in Pradal and Gnanadesikan (2014),

the changes produced by increasing ARedi act to reduce er-
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Figure 9. δ3He (in %) in the SE Pacific between the depths of 2250 and 2750 m. Symbols are taken from observational data set of Bianchi

et al. (2010). (a) Gridded data set of Bianchi et al. (2010) showing effects of smoothing. (b) AREDI400. (c) AREDI800. (d) AREDI1200.

(e) AREDI2400. (f) ABER2D.

Figure 10. δ3He (in %) in the SE Pacific between the latitudes of 20 and 30◦ S. Symbols are taken from the observational data set of Bianchi

et al. (2010). (a) Gridded data set of Bianchi et al. (2010) showing effects of smoothing. (b) AREDI400. (c) AREDI800. (d) AREDI1200.

(e) AREDI2400. (f) ABER2D.
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rors in sea surface temperature in the North Pacific, where

the baseline model is too cold. Without carefully examining

the circulation it would be easy to conclude that this produces

a more realistic climate. However, as shown by the radiocar-

bon, the improvement in sea surface temperature comes at

the cost of (unrealistically) increasing deep convection. Ad-

ditionally, there may be locations (such as the deep South Pa-

cific) where gradients in physical properties along isopycnals

are relatively weak but tracer gradients are relatively strong,

so that passive tracers act as a better constraint on model

physics than traditional physical tracers. Utilizing such trac-

ers, however, requires knowledge about sources and sinks

that are not always well-constrained. We suggest that more

attention to tracer–tracer relationships, particularly regarding

radiocarbon, may be helpful in this regard.

While the results here do support the idea that the isopyc-

nal mixing paradox should be resolved in favor of allowing

ARedi to differ from AGM and indicate that relatively large

values of ARedi in the ocean interior do not result in break-

ing the models, more work is clearly needed to find a fully

prognostic parameterization. Three areas in particular require

more attention.

1. Because coupled models do not necessarily place

boundary currents in the right place, fixing ARedi as we

have done here can result in higher impacts of isopycnal

mixing in boundary currents than is physically reason-

able. This may be one reason that the ABER2D simula-

tion produces too much convection in the North Pacific.

Our results support the continued development of mod-

els that predict both the length and timescales involved

in isopycnal mixing.

2. Our ABER2D results assumed a mixing coefficient that

is isotropic. In reality, mixing is probably larger in the

zonal or along-flow direction than in the meridional or

cross-flow direction. Better constraining of anisotropy

in both observations and numerical simulations remains

an important task.

3. Our results also assume that ARedi is constant with

depth. Again, both numerical simulations (Abernathey

et al., 2013) and limited observational results (Rye et al.,

2012) suggest this is unlikely to be the case, with higher

values at internal critical layers and lower values in the

deep ocean where flow is constrained by topography.

More work is needed however, to constrain this vertical

dependence, as our results suggest it is unlikely to be

simply related to stratification.

The Supplement related to this article is available online

at doi:10.5194/os-11-591-2015-supplement.
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