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Abstract. In a changing climate, marine pelagic biogeo-

chemistry may modulate the atmospheric concentrations of

climate-relevant species such as CO2 and N2O. To date,

projections rely on earth system models, featuring simple

pelagic biogeochemical model components, embedded into

3-D ocean circulation models. Most of these biogeochemical

model components rely on the hyperbolic Michaelis–Menten

(MM) formulation which specifies the limiting effect of light

and nutrients on carbon assimilation by autotrophic phyto-

plankton. The respective MM constants, along with other

model parameters, of 3-D coupled biogeochemical ocean-

circulation models are usually tuned; the parameters are

changed until a “reasonable” similarity to observed standing

stocks is achieved.

Here, we explore with twin experiments (or synthetic “ob-

servations”) the demands on observations that allow for a

more objective estimation of model parameters. We start with

parameter retrieval experiments based on “perfect” (syn-

thetic) observations which we distort, step by step, by low-

frequency noise to approach realistic conditions. Finally, we

confirm our findings with real-world observations. In sum-

mary, we find that MM constants are especially hard to con-

strain because even modest noise (10 %) inherent to obser-

vations may hinder the parameter retrieval already. This is of

concern since the MM parameters are key to the model’s sen-

sitivity to anticipated changes in the external conditions. Fur-

thermore, we illustrate problems caused by high-order pa-

rameter dependencies when parameter estimation is based on

sparse observations of standing stocks. Somewhat counter to

intuition, we find that more observational data can sometimes

degrade the ability to constrain certain parameters.

1 Introduction

The challenges of a warming climate, and our apparent in-

ability to significantly reduce emissions of climate-relevant

species into the atmosphere, fuel a discussion on geoengi-

neering options. Among the circulating ideas is ocean fertil-

ization on a large scale. There, the underlying assumption is

that the supply of nutrients to the sun-lit, nutrient-depleted

surface ocean will increase biotic carbon sequestration away

from the atmosphere (e.g. Williamson et al., 2012). However,

because of the often non-linear and complex entanglements

of relevant processes, an evaluation of such approaches is not

straightforward. To this end, studies like Yool et al. (2009),

Dutreuil et al. (2009), and Oschlies et al. (2010), which apply

numerical earth system models comprising presumably most

of the fundamental feed-back mechanisms, appear to be best

suited to address pressing questions.

On the other hand, projections of earth system mod-

els are uncertain because the current generation of pelagic

ecosystem models are, in contrast to the physical modules,

based on empirical relationships, rather than being derived

from first principles. The associated problem is two-fold.

First, there is no proof that the ubiquitous, so-called N–P–

Z–D (nutrient–phytoplankton–zooplankton–detritus) pelagic

ecosystem models, which are at the core of most biogeo-

chemical modules, are an admissible mathematical descrip-

tion of the real world (e.g. Anderson, 2005). This specifi-

cally applies to systems that are exposed to extreme con-

ditions by a warming climate or large-scale ocean fertiliza-

tion (e.g. Löptien, 2011). Second, biogeochemical models

depend on many parameters, mostly describing rates (such

as e.g. the maximum growth rate of phytoplankton), which

are, even though they exert crucial control on the model be-

haviour (e.g. Kriest et al., 2010), per se, not known. The need
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to address the latter issue is reflected in an increasing num-

ber of studies which aim to optimize the free model parame-

ters mainly from observations of standing stocks, while few

studies additionally include rate estimates (e.g. Fan and Lv,

2009; Friedrichs et al., 2006; Rückelt et al., 2010; Schar-

tau, 2003; Spitz et al., 1998; Tjiputra et al., 2007; Hem-

mings and Challenor, 2012; Matear, 1995; Ward et al., 2010;

Xiao and Friedrichs, 2014). Nevertheless, it is in practice of-

ten impossible to determine an optimal parameter set (Ward

et al., 2010; Schartau et al., 2001; Rückelt et al., 2010). We

can, admittedly, not rule out that the definition of the model–

data misfit (cost) is at the core of these problems and this

has to be investigated in studies to come. Nevertheless, sat-

isfactory results for cost functions other than the one applied

in this study appear unlikely because the above mentioned

studies comprise a wide range of cost functions already and,

even so, report similar problems. Several conclusions were

drawn from these parameter estimation attempts. For exam-

ple, Matear (1995) concludes that the optimization problem

might be underdetermined while Fasham et al. (1995) and

Fennel et al. (2001) assume that the underlying equations do

not represent actual processes and conditions.

Due to the manifold problems, it is common practice in the

3-D coupled ocean circulation ecosystem modelling commu-

nity to assume that the model equations are accurate and to

determine parameters which aim to achieve a “reasonable”

similarity to observations of standing stocks of prognostic

variables. We mimic this approach focusing on the param-

eter uncertainty only, while we presume that the N–P–Z–D

model equations are accurate.

Major problems associated with parameter selection in

3-D coupled ocean circulation biogeochemical models are

caused by the sparseness of observations in space and time

(e.g. Lawson et al., 1996). Also, biases and deficiencies in

the physical models aggravate the comparison to real data

(Friedrichs et al., 2006; Sinha et al., 2010; Dietze and Löp-

tien, 2013). In addition, high computational costs hinder the

search for the optimal parameter set because only a limited

number of sets can be tested.

In this study we put the assumption to the test that pa-

rameter estimation relying on typical observations of stand-

ing stocks is feasible if enough computational resources were

available. We use a simple modelling framework (box model)

that is computationally cheap such that many thousands of

parameter combinations can be tested. We conduct twin ex-

periments (i.e. we construct our own genuine truth that is

consistent with our model equations). By this approach, we

can control the sparseness and noise levels of (synthetic) ob-

servations used to retrieve parameter sets with optimization

techniques.

Foregoing similar approaches of Lawson et al. (1996),

Schartau et al. (2001) and Spitz et al. (1998) indicate that it

should be possible to recover most model parameters, when

using various sampling strategies or when the synthetic ob-

servations are disrupted with white noise. Our study adds to

the discussion by using an even more idealized model setup,

which makes the interpretation of the results easier and saves

computational cost. Furthermore, we use reddish noise to dis-

rupt the genuine truth, as reddish noise is more typical for

oceanic conditions than the white noise considered in ear-

lier studies (Hasselmann, 1976). Note that our definition of

noise is ambiguous. Generally, noise is defined as a random,

unbiased modification of the genuine truth, effected by e.g.

measurement inaccuracy. In parameter optimization based on

real-world observations, however, the definition of noise is

often broadened and refers to noise effected by the combined

effects of all unresolved processes that can cause deviations

between simulated and observed values. These unresolved

processes comprise e.g. the effects of uncertainties in the ex-

ternal forcing or boundary conditions that drive the model as

well as unresolved mesoscale processes in the ocean.

In the following section, we describe the design of the

numerical experiments: Sects. 2.1, 2.2 and 2.3 present the

model equations, the external forcing and the optimization

techniques, respectively. Section 2.3 does also introduce our

quantitative measure of model performance, the so-called

“cost function”. The underlying observations, the synthetic

data sets from the twin experiments, and the real-world set

are described in Sect. 2.4. Section 2.5 lists all numerical ex-

periments. In Sects. 3 and 4 we present and discuss our re-

sults. Section 5 closes with a summary.

2 Methods

2.1 Model

We use an N–P–Z–D model similar to those used by Yool

et al. (2009), Dutreuil et al. (2009), Oschlies et al. (2010),

Oschlies and Garcon (1999), Oschlies (2002), and Franks

(2002). Our configuration is simpler in that it comprises one

grid box only. This box resembles the surface mixed layer at

a given location. Our approach is computationally cheap and

enables us to test many thousands of parameter combinations

during the search for optimal parameter sets.

Our prognostic variables are, as indicated by the name

N–P–Z–D, nitrate (N), phytoplankton (P), zooplankton (Z)

and detritus (D). In a nutshell, phytoplankton takes up ni-

trate during growth fuelled by photosynthetically available

radiation (PAR). If phytoplankton lacks nitrate or PAR, or

both, its growth is hampered. Phytoplankton is grazed on

by zooplankton. Both P and Z contribute to particulate or-

ganic matter, here called detritus (D). These contributions

represent e.g. dead plankton and fecal pellets. D is reminer-

alized back to nitrate which closes the cycle. An additional,

faster loop from P and Z to N represents e.g. extracellular

release and “messy feeding”. It might be noteworthy that re-

liable observations of D and Z are rare. Even so they are

typically (as in our case) explicitly represented in order to

simulate the effects of sinking organic matter and as a means
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Table 1. Model parameters and associated ranges explored in this study.

Parameter Description Range Unit

µnew Net max. phytoplankton growth rate 0.1–0.9 day−1

HPAR Half-sat. const for light 5–40 Wm−2

HN Half-sat. const. for nutrient uptake 0.1–1.2 mmolNm−3

Hz Max. grazing/prey-capture rate 0.1–1.1 mmolNm−6

gnew Net. max. grazing rate 0.01–1.6 day−1

mPN Phytoplankton loss to N 0.01–0.6 day−1

mZN Zooplankton loss to N 0.01–0.65 day−1

mDN Remineralization rate of Det. 0.02–0.15 day−1

mZD Zooplankton loss to Det. 0.01–0.9 day−1(mmolNm−3)−1

mPD Phytoplankton loss to Det. 0.01–0.9 day−1

to mimic the (typically) rapid termination of phytoplankton

spring blooms.

Our prognostic equations that determine the temporal evo-

lution of nitrate (N), phytoplankton (P), zooplankton (Z) and

detritus (D) are

d

dt
N=−µmax · gI · gN ·P+mPN ·P+mZN ·Z+mDN ·D (1)

d

dt
P= µmax · gI · gN ·P−mPN ·P−G(P ) ·Z−mPD ·P (2)

d

dt
Z=G(P ) ·Z−mZN ·Z−mZD ·Z

2 (3)

d

dt
D=mZD ·Z

2
+mPD ·P−mDN ·D. (4)

All prognostic variables are scaled to units mmol Nm−3.

gI =
PAR

PAR+HPAR
and gN =

N
N+HN

are the hyperbolic MM

equations describing the limiting effect of light (here PAR

refers to photosynthetically available radiation averaged over

24 h and the surface mixed layer) and of nitrate on nitrate

uptake (Eq. 1) by phytoplankton (Eq. 2), respectively. The

terms mPN ·P, mZN ·Z and mDN ·D in Eq. (1) represent lin-

ear mortality of phytoplankton, zooplankton and remineral-

ization of detritus, respectively. The zooplankton equation

(Eq. 3) comprises two non-linear terms: first, the “Holling

III-type” term

G(P)=
gmaxP2

P2+Hz
, (5)

with the maximum grazing rate, gmax, and the quotient of

maximum grazing and prey-capture rate ε, Hz := gmax/ε.

The second, non-linear term in the zooplankton equation

(Eq. 3) is the quadratic mortality mZD ·Z
2.

The behaviour of the system of partial differential equa-

tions (1)–(4) is determined by parameters such as maximum

growth rates (e.g. µmax in Eqs. 1 and 2) and the MM param-

eters (also referred to as half-saturation constants) HPAR and

HN in Eqs. (1) and (2). These parameters are generally only

poorly constrained and thus optimized.

Growth and loss of phytoplankton are antagonistically af-

fecting phytoplankton stock. An infinite number of combi-

nations of growth-related and loss-related parameters deter-

mines a system in which no phytoplankton will ever emerge.

These systems are not of interest here and in order to steer

the parameter search away from the parameter space without

any net phytoplankton growth, we define

µnew := µmax−mPN−mPD. (6)

By substituting µmax by µnew and by specifying µnew> 0,

we guide the optimization algorithm to search only among

those parameter combinations which can yield net phyto-

plankton growth. Thus, definition (6) reduces the number of

required model integrations considerably. In a similar man-

ner we merge the maximum grazing rate (gmax in Eq. 5) with

the linear zooplankton mortality (mZN in Eqs. 1 and 3) such

that

gnew := gmax−mZN. (7)

These definitions do not reduce the number of free parame-

ters (because the loss rates mPN,mPD and mZN are still opti-

mized), but makes the optimizations computationally more

efficient. A side aspect is that obvious and strong depen-

dency between µmax and mPD (and between gmax and mZN)

is avoided.

The 10 free model parameters are listed in Table 1. To

avoid unrealistic values, we restrict their allowed ranges (Ta-

ble 1), following e.g. Schartau (2003). Note that in our ter-

minology “model parameters” are constants and not to be

confused with “prognostic variables” (N, P, Z and D).

2.2 Setup, external forcing and initialization

For the sake of simplicity and low computational cost, we

consider a system that is homogenous in space, both in hori-

zontal and in vertical direction. As a direct consequence, we

do not have to account for advective and diffusive transport

processes because their divergences, owed to the spacial ho-

mogeneity, are always null. To this end we have a closed sys-

tem – and a highly idealized one. This holds also because
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Figure 1. (a–b) Forcing OPTI: (a) shows the photosynthetically available radiation (PAR) averaged over 24 h and the surface mixed layer

and (b) the total fixed nitrogen in the system. (c–d) like (a–b) but for SENSI, (e) PAR difference, SENSI – OPTI. (f) Difference in total

nutrient content, SENSI – OPTI.

we do not resolve the process of detritus sinking out of the

euphotic zone (which is an important process contributing

to the “biological pump” of carbon in the ocean). However,

this implication does not affect our rather generic conclu-

sions which apply also, probably even more so, to models

of a higher complexity (i.e. models that include more prog-

nostic variables, or are coupled to a more complex physics).

We prescribe the photosynthetically available radiation

(PAR) averaged over 24 h and the surface mixed layer. The

seasonal variation affected by the combination of solar zenith

angle, water turbidity (Löptien and Meier, 2011), cloudiness

and surface mixed layer (Hordoir and Meier, 2012) depth

is idealized by a sinusoid. Our PAR ranges from 2Wm−2

in winter to 50W m−2 in summer. This range is represen-

tative of the surface mixed layer conditions in the Baltic Sea

(Leppäranta and Myrberg, 2009). In addition to PAR, we pre-

scribe the total amount of fixed nitrogen in the system. Our

choice of 3 to 4.5 mmolNm−3 is typical for the sun-lit sur-

face of the Baltic Sea (e.g. Neumann and Schernewski, 2008,

their Fig. 10). The combination of prescribed PAR and the to-

tal amount of fixed nitrogen are subsequently referred to as

the “forcing data set”.

We apply two forcing data sets in this study, which we

name OPTI and SENSI. OPTI is applied whenever model

parameters are optimized. We will find, in some cases, that

very differing parameter sets yield almost identical, or at

least very similar, solutions when driven by OPTI. In those

cases we will test if the apparent similarity among the model

simulations is preserved when the external forcing is slightly

modified, i.e. when it is changed from OPTI to SENSI.

The rationale behind the design of OPTI and SENSI is

– As idealized as possible, but yet, similar to real-world

conditions in the Baltic Sea.

– OPTI and SENSI should be as similar to one another

as possible, and yet different enough to illustrate that

parameter sets that feature similar solutions when driven

by OPTI may well differ substantially when driven by

SENSI.

Forcing data set OPTI is shown in Fig. 1: the PAR fea-

tures a steady seasonal cycle until year 9, when the sum-

mer maximum decreases at a rate of 3.6Wm−2 yr−1. The

nitrate inventory is set constant at 3.3mmolNm−3 until year

5, increases at a rate of 0.2mmolNm−3 yr−1 between year 5

and 11, and set constant at 4.5mmolNm−3 thereafter. Both,

this reduction of PAR and this increase of nutrients (each

by ≈ 30%), are of a magnitude similar to changes detected

during the previous decades in the Baltic Sea (Sanden and

Håkansson, 1996; Kratzer et al., 2003; Sanden and Rahm,

1993). This does also apply to SENSI (Fig. 1b) which is, as

discussed above, very similar to OPTI. The differences be-

tween OPTI and SENSI (Fig. 1e and f) are a slightly lower ni-

trate inventory with a weaker trend in SENSI, an earlier PAR

decrease and a modified seasonal PAR-cycle, as depicted in

Fig. 1c.

The initial values for phytoplankton, zooplankton, detritus

and nitrate in OPTI are set to 0.1,0.1,0.1 and 3mmolNm−3,

respectively. Note however that our simple model configura-

tion is not sensitive to the initial distribution of total nitrogen

among the prognostic variables. After 1 year, the model solu-

tions are barely distinguishable from one another (this holds,

of course, only if zooplankton and phytoplankton are initial-

ized with values greater than zero). Hence we discard the first

year of simulation in all model–data misfits presented here.

Thereafter the simulation is determined by the model param-

eters, the external forcing, and the initial total fixed nitrogen

in the system – rather than being affected by the initial distri-

bution of nitrogen among the prognostic variables.

Ocean Sci., 11, 573–590, 2015 www.ocean-sci.net/11/573/2015/
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2.3 Cost function and optimization

This study explores the requirements for an estimation of

model parameters based on parameter optimization. A pre-

condition for such an approach is the definition of a numer-

ical measure of the misfit between the model simulations

and data (i.e. synthetic or real-world observations). To de-

fine such a measure, or metric, is not straightforward and

there are various approaches, including rather sophisticated

ones based on correlations and Fourier transformations (e.g.

Stow et al., 2009). That said, we pragmatically chose the

sum of the weighted squared differences between the model

and data, for no other reasons than (1) this metric is com-

monly applied in the field of optimization of pelagic ecosys-

tem models (e.g. Ward et al., 2010; Schartau et al., 2001;

Rückelt et al., 2010) and (2) systematic analyses of other cost

functions are beyond the scope of this study. We define the

cost function J as

J =

√√√√( 1

M

M∑
m=1

W 2
m

1

Nm

Nm∑
j=1

(
aj − âj

)2)
. (8)

M denotes the number of prognostic variables, Nm the num-

ber of data values (i.e. synthetic or real-world observations)

of each prognostic variable, aj a data value at time j and âj
the corresponding model result. Wm determines the weight

that each data–model pair contributes to the overall cost J .

It is known that different weighting strategies can yield dif-

fering optimization results (e.g. Evans, 2003). The problem is

that weighting (or no weighting) adds a subjective element to

the optimization process. As we convert all prognostic vari-

ables to the same units (mmolNm−3), we make a pragmatic

choice and compute the cost J with equal weights, Wm = 1

(in agreement with e.g. Prunet et al., 1996; Stow et al.,

2009), which is usually referred to as root mean squared er-

ror (RMSE). If N1 =N2 =N3 =N4, this approach assumes

implicitly that all state variables can be measured equally

well at all time steps. Note that we consider some deviations

from this assumption by investigating sparse data (which is

equivalent to testing a different weighting), as described in

Sect. 2.5. For the sparse data experiments, we calculate the

RMSE based on only a part of the synthetic truth, assuming

that the measurements are restricted to certain periods. All

data aj (synthetic and real-world observations) used in this

study are converted to the same units (mmolNm−3) and the

noise added to disrupt the synthetic truth is of the same or-

der of magnitude for all prognostic variables. In some cases

(Figs. 3, 5 and 7) we will consider the time evolution of the

model–data misfit, which is equivalent to omitting the time

average in the definition of the cost function:

Figure 2. Subsampling of the genuine truth in SPARSE1 and

SPARSE2. The black lines in the respective subpanels refer to the

genuine truth simulation (based on the parameter set “truth” in Ta-

ble 3 under forcing OPTI) of phytoplankton, nitrate, detritus and

zooplankton. The green circles show SPARSE1 subsamples dis-

torted by “level 1” noise (Sect. 2.5). The combination of red dots

(also distorted by “level 1” noise) and green circles refers to data

used in SPARSE2.

Jj =

√√√√( 1

M

M∑
m=1

W 2
m

(
aj − âj

)2)
. (9)

The cost is minimized by an automated numerical optimiza-

tion, known as simulated annealing (Belisle, 1992), followed

by a down-gradient search (Lagarias et al., 1998). We pro-

vide a more detailed description in Appendix A. Note that

the results of Ward et al. (2010) indicate that the choice of

the optimization method is not so crucial if enough model

integrations can be afforded (which is the case in our compu-

tationally cheap setups).

2.4 Data – synthetic and real-world observations

We use two sorts of data, synthetic and real-world obser-

vations (cf. Table 2). The synthetic “observations” are con-

structed by subsampling a model simulation (Fig. 2). We

apply a range of subsampling strategies as explained in the

www.ocean-sci.net/11/573/2015/ Ocean Sci., 11, 573–590, 2015
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Table 2. Parameter retrieval experiments. The experiments are based on different sets of observations (Sects. 2.4, 2.5) and aim to retrieve all,

or a subset of the model parameters listed in Table 1 simultaneously.

Experiment Data Retrieved parameters

EASY Synthetic; daily sampling of all prognostic variables 10

NOISE Synthetic + (various) noise levels; daily sampling of all prog-

nostic variables (N, P, Z, D)

10

MISSING-ZD Synthetic + (various) noise levels; daily sampling of phyto-

plankton (P) and nitrate (N)

10

SPARSE1 Synthetic + level 1 noise; sparse and irregular sampling con-

fined to autumn of phytoplankton (P) and nitrate (N)

10

SPARSE2 Synthetic + level 1 noise; sparse and irregular sampling of phy-

toplankton (P) and nitrate (N) throughout the year but predomi-

nated by late winter and spring samples; extension of SPARSE1

10

OBS10 Real-world observations of phytoplankton (P) and nitrate (N);

station BY5

10

OBS4 Real-world observations of phytoplankton (P) and nitrate (N);

station BY5

4 (µnew, mPD, mDN, gnew)

Table 3. Genuine truth parameter set (column 2) and estimates (column 3–8) obtained by the parameter retrieval experiments described in

Table 2. The values in column 3 to 8 correspond to the first ensemble member of each retrieval experiment. In brackets we list the range

enveloped by all ensemble members.

Parameter Truth EASY NOISE (level 1) SPARSE1 SPARSE2 OBS10 OBS4

µnew 0.45 0.45 0.62 (0.36–0.62) 0.44 (0.44–0.71) 0.32 (0.32–0.58) 0.33 (0.22–0.33) 0.156 (0.156–0.157)

HPAR 15 14.99–15 28.2 (9.8–28.2) 6.53 (6.53–18.4) 18.08 (14.6–35.2) 40.0 (24.5–40.0) 17∗

HN 0.8 0.8 1.19 (0.54–1.19) 0.32 (0.32–0.95) 0.86 (0.8–1.2) 0.93 (0.59–0.93) 0.5∗

gnew 0.08 0.08 0.078 (0.076–0.083) 0.14 (0.09–0.15) 0.17 (0.13–0.21) 0.06 (0.03–0.28) 0.043 (0.03–0.06)

Hz 0.85 0.85 0.9 (0.75–0.9) 0.78 (0.76–0.9) 0.39 (0.39–0.78) 0.19 (0.19–0.9) 0.7∗

mPN 0.06 0.06 0.02 (0.02–0.09) 0.2 (0.01–0.2) 0.07 (0.04–0.08) 0.01 (0.01) 0.01∗

mZN 0.04 0.04 0.037 (0.037–0.045) 0.03 (0.03–0.06) 0.05 (0.04–0.07) 0.25 (0.25–0.63) 0.1∗

mDN 0.1 0.1 0.096 (0.096–0.106) 0.15 (0.09–0.15) 0.1 (0.09–0.1) 0.02 (0.02) 0.02 (0.02)

mZD 0.02 0.02 0.019 (0.019–0.022) 0.06 (0.02–0.06) 0.03 (0.03–0.28) 0.34 (0.34–0.9) 0.017∗

mPD 0.1 0.1 0.094 (0.094–0.104) 0.16 (0.1–0.16) 0.1 (0.1–0.11) 0.04 (0.04) 0.04 (0.04)

Cost

(Eq. 8)

– 0.000 0.087 (0.084–0.087) 0.14 (0.12–0.14) 0.13 (0.12–0.13) 0.764 (0.76–0.77) 0.783 (0.783–0.784)

∗ Denotes prescribed values that were not estimated.

forthcoming Sect. 2.5. The use of synthetic observations

gives, in contrast to using real-world observations, full con-

trol over sampling frequency and distortion by noise (which

can be added to the synthetic samples at will). This “twin

experiment” approach is generally used to test optimization

techniques in an idealized environment which is free of prob-

lems associated with model deficiencies and structural errors.

In this study, the approach is used to explore what kind of

(synthetic) data is needed to retrieve the genuine parameter

set that is underlying a synthetic set of “observation”. More

specifically, we define, a priori, a genuine truth by integrat-

ing the model with a typical set of parameters (as defined in

the second column of Table 3). By subsampling this model

simulation we create a synthetic set of observations. In a sec-

ond step we try to retrieve the genuine parameter set from

the synthetic observations by minimizing the cost calculated

with Eq. (8). By adding increasing levels of synthetic noise to

our genuine truth, we approach, step by step, realistic condi-

tions typical for observations which are, generally, distorted

by reddish noise stemming from unresolved processes such

as e.g. mesoscale dynamics. A detailed description of the

noise process is given below in Sect. 2.5.

The second sort of data we use, are real-world observa-

tions from the surface of the Baltic Sea at 55.15◦ N, 15.59◦ E,

dubbed station BY5. BY5 is an internationally known Baltic

Sea monitoring station which is supposedly representative

for biogeochemical processes of the Bornholm Basin. We

use data sets provided by the Swedish Oceanographical Data

Center (SHARK) at the Swedish Meteorological and Hydro-

logical Institute (SMHI). BY5 was repeatedly sampled dur-

ing 1962–2009 and features an especially high (compared to

typical open-ocean locations) data density of chlorophyll a

and nitrate.
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Figure 3. Temporal evolution of the difference between the genuine

truth and the first ensemble member of the level 1 NOISE experi-

ment (measured by the model–data misfit; Eq. 9). The black (red)

line refers to simulations driven by forcing OPTI (SENSI).

Even so, there are long data gaps, and this is why we

merge all data into a climatological seasonal cycle. This

yields a relatively homogenous data distribution throughout

the climatological year for nitrate and chlorophyll a mea-

surements. Observations are available roughly every three

days. We use a constant chlorophyll a to nitrate ratio of

1.59 % g Chl a mol N−1 by implicitly assuming a Chl a : C

ratio of 1
50

g Chl a g C−1 and a carbon to nitrogen ratio of

6.625 mol C mol N−1. Here, we apply this constant ratio in

order to stay consistent with typical N–P–Z–D modelling ap-

proaches (e.g. Chai et al., 1995; Gunson et al., 1999; Löptien

et al., 2009; Spitz et al., 1998). Note that some recent model

developments include an explicit representation of chloro-

phyll (e.g. Mattern et al., 20012). While, conceptually, these

approaches are more reliable, they, however, necessitate ad-

ditional rather unconstrained model parameters.

2.5 Parameter retrieval experiments

We perform a suite of numerical experiments where we strive

to retrieve model parameters. The experiments differ with

respect to the underlying data base, i.e. they are based on

either, (1) synthetic or real-world observations as described

above in Sect. 2.4, or (2) daily or intermittent sampling, or

(3) samples of all prognostic variables or just of a subset, or

(4) observations distorted by differing artificial noise levels.

In addition, the experiments differ with respect to the num-

ber of parameters that we aim to retrieve simultaneously (by

optimizing a cost function as explained in Sect. 2.3). In or-

der to test whether the optimization algorithm got trapped

in a local minimum, each experiment comprises an ensem-

ble of five parameter optimizations differing only in their

initial parameter guesses. Whenever the algorithm has prob-

lems to identify a unique global minimum, this approach can

result in five differing parameter sets due to a stochastic el-

ement in our optimization algorithm and the varying initial

parameter guesses (Appendix A). Note that we define the

term “global minimum” as the minimum within the parame-

ter ranges given in Table 1 and that a unique global minimum

may not exist.

Table 2 lists all experiments performed. Experiment

EASY, is based on daily synthetic “observations” of all prog-

nostic variables. Because there is no noise added, this re-

sembles ideal conditions never to be attained in reality. The

NOISE experiments are more realistic to this end because

there we add reddish noise, which is more typical for ocean

processes than the white noise considered in earlier studies

(Hasselmann, 1976). Our noise mimics processes such as e.g.

mesoscale dynamics which can add considerably to the mis-

fit between model and observations because it is hard (and

may even be impossible) to resolve the non-linear effects of

eddies on a one-to-one basis.

To construct reddish noise time series, we use an autore-

gressive model and define an AR(3) process (Et , t = 1, . . .n)

by

Et = 0.4Et−1+ 0.4Et−2+ 0.196Et−3+ εt , (10)

εt is a Gaussian white noise process (εt ∼ N(0,0.01), inde-

pendent and identically normal distributed). The standard de-

viation ofEt , t = 1, . . .,n is∼ 0.09 and defined here as “level

1”. Additional noise “levels” are constructed by multiplying

Et , t = 1, ..,n by the constants 0.5, 2, 3, 4 and referred to as

“level 0.5”, “level 2” . . . , respectively. We constructed three

time series as above and added these to the genuine truth of

P, Z and D, respectively. The fourth noise time series, which

is added to N, has the same characteristics but is chosen to

depend weakly negative (r2
= 0.25) on the noise of P.

Typical observations are not only noisy, i.e. are not only

affected by unresolved processes. In addition, observations

are generally intermittent because of the enormous finan-

cial expenses associated with open-sea measurement cam-

paigns. This intermittency applies to time, space and also

sparseness as regards the number of measured variables

(which is predominantly the consequence of the differ-

ing grades of automation of measurements). In order to

mimic the combined effect of sparse observations and noise

on parameter estimation efforts, we designed the experi-

ments MISSING-ZD, SPARSE1 and SPARSE2. MISSING-

ZD is based on daily samples of nitrate and phytoplankton

only (i.e. zooplankton and detritus are not sampled; they

are sampled only in EASY and the NOISE experiments),

while in SPARSE1 and SPARSE2 it is additionally assumed

that nitrate and phytoplankton are only occasionally ob-

served. While MISSING-ZD is tested for various noise lev-

els, SPARSE1 and SPARSE2 are based on synthetic “obser-

vations”, distorted by a very modest “level 1” noise.

Figure 2 shows the respective times of sampling in the

SPARSE experiments: SPARSE1 covers the autumn only and

the average number of observations is roughly seven per year.

SPARSE2 is based on a larger data set which, in addition to

the SPARSE1 autumn data, comprises late winter and spring

data with an average sampling rate of two observations a day.

The experiments OBS10 and OBS4 are based on real-

world observations (Sect. 2.4). They differ in terms of the

number of simultaneously optimized parameters. OBS10
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aims to optimize all parameters listed in Table 1. OBS4 is

less ambitious in that it strives to constrain a subset of four

parameters (µnew,mPD,mDN, gnew) only, while, a priori, set-

ting the other parameters to values flagged with ? in the last

column of Table 3.

3 Results

3.1 EASY

True (i.e. underlying the genuine truth simulation) and re-

trieved (i.e. obtained by parameter optimization based on

subsampling results from the genuine truth simulation) pa-

rameter values for each experiment are presented in Table 3.

All five repetitions of the optimization lead to the same solu-

tion that is the parameter set that underlies the genuine truth

simulation. We conclude that in the absence of noise, the

model parameters can be retrieved by sampling the standing

stocks of prognostic variables. This applies even to monthly,

instead of daily subsampling (not shown). Note that it might

be difficult to retrieve the original parameters in an analo-

gous 3-D setup, as the oceanic component can impose some

unintended noise. This holds particularly for high-resolution

models (cf. Dietze et al. (2014), Sect. 3.8).

3.2 NOISE

Noise, even at the very modest “level 1”, prevents our op-

timization procedure from reliably finding a unique global

minimum of the cost function. Hence, as we repeat our

optimization (which contains a stochastic element, cf. Ap-

pendix A) we keep getting different results with very sim-

ilar low costs (0.084–0.087mmolNm−3). Table 3 (fourth

column) shows the result of the first optimization together

with the range enveloped by all of the five repetitions which

compose a parameter retrieval experiment (as described in

Sect. 2.5). It is straightforward to argue that an optimization

that yields repeatedly different results is indicative of either

the non-existence of a unique global minimum or of a de-

ficient optimization algorithm that is not up to the task of

identifying the global minimum.

In our case, however, the situation is more complex: we set

out with a genuine truth simulation, subsample it, and add

noise to the subsamples. Ideally, a parameter optimization

based on these subsamples would retrieve the original param-

eters that underlie the genuine truth simulation. If it would,

the noise added to our synthetic “observations” would induce

a cost of 0.086mmolNm−3 (i.e. the difference between the

genuine truth without noise and the genuine truth including

noise calculated with Eq. 8). Surprisingly, the optimization

algorithm finds minima associated with costs lower than that

(e.g. as low as 0.084,mmolNm−3, Table 3, last entry of col-

umn 4, lower value in brackets). It is hard to overrate the im-

plications of this finding. Obviously, the noise inherent to the

synthetic “observations” has opened up a multitude of local

minima, some of them smaller than the minimum that is asso-

ciated with the original parameters that underlie the genuine

truth simulation (and which we set out to retrieve). Hence,

a new global minimum, distinct from the original parame-

ter set must have emerged or, alternatively, the global min-

imum is not unique within a certain precision. In any case,

the existence of this new minimum implies that the ambigu-

ity of the minimum that is associated with the genuine truth

is not caused by a deficiency of our optimization algorithm,

but highlights a generic over-fitting problem associated with

noisy observations.

The problem associated with retrieving the genuine truth

parameter set is especially pronounced for the parameters de-

termining the phytoplankton growth µ,HPAR,HN as well as

mPN and forHz (quotient of maximum grazing rate and prey-

capture rate, Table 3). These parameters show substantial

differences between the repeated parameter retrieval experi-

ments. For example, the mean percentage differences for the

parameters influencing phytoplankton growth (HPAR, HN ,

µnew) are in the range of 20–60 %, whereas the correspond-

ing costs hardly differ.

The question arises whether it makes any difference to use

the parameter set which gives a better fit to the data instead

of the one underlying the genuine truth. After all, parameters

that are hard to constrain may be non-influential. To explore

this question we change the external forcing from OPTI to

SENSI.

When applying the forcing OPTI, the first ensemble mem-

ber of the retrieval experiment NOISE based on noise at

“level 1” is very similar to the genuine truth and the cost

remains on an equally low level throughout the whole sim-

ulation period. Nevertheless, the model behaviour deviates

considerably from the synthetic truth when the forcing is

changed to SENSI. For example, in the final year of the simu-

lation, the model–data misfit increases by a factor of 10 com-

pared to the average cost during OPTI (Fig. 3) (even though

the total nitrate inventory is lower in SENSI). This is of con-

cern because, clearly, the model sensitivities to changes in

the external conditions differ considerably.

In the following, we explore the impact of noise more

extensively by distorting the synthetic “observations” with

noise at various levels. Note that even the highest noise

level considered here is still within the range of what is in-

herent to real-world observations. All parameter estimates

show an increase in the parameter misfit with increasing

noise level (Fig. 4, grey shaded areas) and, in particular, the

spread among the repeated parameter retrieval experiments

increases – while at all noise levels the respective ensemble

members feature similar costs (Table 4). The spread among

the experiments is largest for the MM parameters and at noise

level 4 their estimates are scattered all over the permitted

range. Thus, very different MM parameters can lead to very

similar model simulations.
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Figure 4. Uncertainties of the estimated parameters as a function of noise added to the synthetic “observations” (underlying the respective

parameter optimizations). The magnitude of noise is expressed, as defined in Sect. 2.5. Typical observations correspond to level 3–4 noise

(Sect. 2.5). The subplots refer to respective model parameters, indicated by the panel’s legends. The y axis limits match the associated

parameter range explored (Table 1). The straight black dashed line refers to the original parameter values (that underlie the genuine truth).

The black lines refers to the ensemble mean retrieved by optimization. The grey shaded areas depict the ranges enveloped by all of the

five ensemble members that constitute the parameter retrieval experiments at respective noise levels (NOISE). In all cases shown here the

external forcing is OPTI. The red lines and red shaded areas are similar to the solid black line and grey shaded area, except that they refer to

MISSING-ZD (as described in Sect. 2.5).

Figure 5. Temporal evolution of the model–data misfit (Eq. 9).

The model–data misfit measures the difference between the genuine

truth and a simulation where the “truth” parameter set (Table 3) is

modified by multiplying HN , HPAR and µ by 4, 3 and 3.6, respec-

tively. The black (red) line refers to simulations driven by OPTI

(SENSI).

Table 4. Costs (range enveloped by all five ensemble members)

for differing noise levels in the NOISE experiments (mmolNm−3).

Two outliers were discarded.

Noise level Cost Genuine truth cost

0.5 0.041–0.042 0.043

1 0.084–0.087 0.086

2 0.171–0.173 0.172

3 0.254–0.258 0.258

4 0.334–0.339 0.344

This finding is confirmed by an exaggerated example in

Fig. 5, which illustrates the difficulties in estimating the

MM parameters on the one hand and their influence on the

model’s sensitivity on the other hand. We compare the gen-

uine truth to a simulation where HPAR, and HN are strongly

increased – much more than usually permitted (HN is in-

creased by a factor of 4, HPAR by a factor of 3). In a sec-

ond step,µnew (µnew = 3.6) was chosen to match the genuine

truth as close as possible under forcing conditions OPTI. De-

spite the extreme changes of the MM parameters, the simu-

lation is relatively similar to the genuine truth (Fig. 5; black

line). This, however, does not apply when switching to forc-

ing data set SENSI (red line in Fig. 5), which leads to very

different model behaviour. We conclude that the MM param-

eters are particularly hard to constrain and that their estimate

depends strongly on the forcing data set used during the opti-

mization process while, at the same time, they are key to the

model’s sensitivity.

The problem with NOISE

The major difficulty in estimating the MM parameters is, ap-

parently, their strong dependency on the maximum growth

rate of phytoplankton (and on one another). Hence, an in-

creased HPAR or HN can be compensated to a large extent

by choosing a larger appropriate value µnew. Figure 6a il-
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Figure 6. Normalized Michaelis–Menten curves (α N
N+HN

) for various half-saturation constants HN , as indicated in the figure legends. The

normalization constant α is chosen such that all curves cross at the same nutrient concentration. Panel (a) and (b) feature nutrient crossover

concentrations of 4 and 0.3mmolNm−2. Shaded areas envelope the HN = 0.5 curve by adding a constant value of ±0.1 to this curve.

lustrates this compensation. It shows various MM curves de-

scribing nutrient limitation for various half-saturation con-

stants, HN . The curves are normalized such that all curves

cross at a nutrient concentration of 4 mmolNm−3 (which

corresponds to a normalization of α = 4
4+0.5

/ 4
4+HN

). This il-

lustrates that, by normalization, all curves can be (roughly)

squeezed into an ±0.1 envelope around the HN = 0.5 curve

(gray shaded area). Such a compensating normalization of

the actual phytoplankton growth (µmax
PAR

PAR+HPAR
·

N
N+HN

) for

distinct MM parameters can be easily achieved by changing

the maximum growth of phytoplankton (µadapt = µmax ·α)

accordingly. In our setup, we find for every choice of HN a

µadapt such that the overall phytoplankton growth is changed

by typically less than 10 % relative to HN = 0.5.

The extent to which a 10 % change of the overall phyto-

plankton growth effects a deviation from the genuine truth is,

naturally, dependent on the choice (or retrieval) of the other

parameters. By performing Monte Carlo simulations (as de-

scribed in Appendix B) we derive a measure that is represen-

tative for the whole range of parameters (as listed in Table 1):

a change of ±10 % of the actual phytoplankton growth re-

sults in a mean change of the cost function of less than 8 %.

Reverse reasoning implies that, on average, a precondition

for detecting a change of ±10 % in the actual phytoplankton

growth is a cost function which can be determined with a pre-

cision higher than ±8 %. This is, however, unrealistic given

the typical noise levels inherent to observations.

In summary, we conclude that in the presence of even only

modest noise different settings of the MM parameters (within

the permitted range, Table 1) can not be distinguished from

one another – if the maximum growth rate of phytoplank-

ton is changed accordingly. Note that the level of potential

compensation between MM parameters and maximum phy-

toplankton growth depends on the forcing and gets more ef-

fective as the range of nitrate variations decreases (Fig. 6b).

This implies, in turn, that the smaller the nitrate variations in

the forcing data set used for parameter estimations, the larger

the difficulties to retrieve the MM parameters.

3.3 MISSING-ZD, SPARSE1, SPARSE2

Per se sparse data are, surprisingly, not problematic. As men-

tioned in Sect. 3.1, a variation of experiment EASY with

monthly samples of standing stocks succeeded in retrieving

the genuine truth parameter set by optimization. Under real-

world conditions, however, sparse and irregular sampling is

typically accompanied by noise and some prognostic vari-

ables may even be not observed at all (e.g. detritus, zooplank-

ton).

The effect of unavailable observations of Z and D, in com-

bination with noise added to P and D, is illustrated by the red

shaded areas in Fig. 4. (The experimental setup correspond-

ing to these illustrations is identical to the setup used to plot

the gray shaded areas, except that zooplankton and detritus

are not incorporated in the cost (experiment MISSING-ZD)).

In MISSING-ZD, the estimates of most parameters worsen

and this holds especially for the retrievals of the parameters

included in the zooplankton growth equation (Eq. 3). Inter-

estingly, this does not hold for the MM parameters (andµnew,

which is not independent as described above) where the in-

clusion of D and Z observations into the cost function is of

no benefit for the parameter retrieval – on the contrary, it ap-

pears as if the inclusion of Z and D “dilutes” the relevant

information in the cost function and the detailed information

about Z and D adds unnecessary, and potentially misleading,

information for the estimation of the MM parameters.

Another real-world problem is sparse data in time such

as e.g. a seasonal bias in the number of available observa-

tions. Often, the data coverage is characterized by strong sea-

sonal differences. The experiments SPARSE1 and SPARSE2

are designed to explore this. In both cases “level 1” noise is

added. SPARSE1 is based on subsamples originating mainly
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from autumn. SPARSE2 uses in addition observations from

late winter and spring (cf. Fig. 2).

A technical detail is that our optimization algorithms seem

to be more prone to converge towards a local minimum asso-

ciated with relatively high cost when sparse observations are

used. As a consequence we had to discard one estimate dur-

ing experiment SPARSE1 and two estimates during experi-

ment SPARSE2 (where the cost exceeded 0.2). Apart from

this technical issue we find that SPARSE1 leads to surpris-

ingly good parameter estimates, i.e, only slightly worse than

the estimates obtained in MISSING-ZD, perturbed by noise

at the same level, even though the data coverage is sparse.

SPARSE2, even though based on more data and generally as-

sociated with lower costs, shows no overall improvement. To

the contrary, the estimated parameters related to zooplankton

grazing are further away from the genuine truth parameters

than in SPARSE1 (Table 3). In particular, the estimates of

gnew,mZN and mZD worsen considerably (while the ensem-

ble mean estimate of mPN and µnew improve). Some devia-

tions are substantial; e.g. some retrievals of gnew exceed the

genuine truth parameters by more than 2.5-fold and some re-

trievals of mZD exceed the genuine truth parameters by more

than 10-fold.

These increases are not independent from one another. The

parameter estimates ofµnew and gmax are correlated in the re-

peated experiments (correlation coefficient 0.5 which is sta-

tistically significant, chance probability < 0.05). Correlation

coefficients between µnew and mDN are 0.96, while the cor-

relation coefficients between gmax and mZD (mZN) are even

higher (0.98 and 0.99, resp.).

This illustrates that many parameters are not independent

of one another – in addition to obvious pairs such as growth

and loss terms, and the ones described in Sect. “The prob-

lem with NOISE”. These additional (compensatory) depen-

dencies are the consequence of constraining parameters with

standing stocks, as is common practice.

Standing stocks alone do not contain information on resi-

dence times of the “base currency” nitrogen in the prognos-

tic components. What they do contain is (only) information

on the difference of in- and out-going fluxes, as changes in

standing stocks are determined by variations in the difference

of in- and out-going fluxes. When changing both in- and out-

going fluxes by the same amount, the standing stocks will

not be affected. Hence standing stocks are not necessarily

affected by accelerated or decelerated nutrients cycles. This

causes dependencies among e.g. µnew andmDN, as described

above. Figure 7 shows an example where an increase ofmDN

can, in large part, be compensated as regards its effect on the

cost by increasing µnew and mPD accordingly (even though

the model structure is non-linear). Increasing all three param-

eters results in a strongly increased N-P-D loop (up to 200 %

as indicated by the red numbers) and, at the same time, in a

simulation of all prognostic variables that is very similar to

the genuine truth. Another example is the optimization study

(based on real-world observations) of Oschlies and Schartau

Figure 7. Potentially small effects of cycle speed – an example.

Here, we compare simulations which differ from the genuine truth

in that they feature increased fluxes among the compartments as

indicated by the red numbers in the upper panel. The original pa-

rameter values are listed in Table 3 (column 2). The lower panel

shows the temporal evolution of the difference (Eq. 9) between the

genuine truth and the simulation with increased cycling. The black

(red) line refers to simulations driven by OPTI (SENSI).

(2005) who found a comparable model–data misfits among

two model versions which featured a factor 2.5 difference

in primary production. Consistently, Friedrichs et al. (2007)

report “different element flow pathways” for similar model–

data misfits.

The problem with SPARSE

The comparison of the parameter retrieval experiments

SPARSE1 and SPARSE2 illustrates that the timing of the ob-

servations is relevant because not all times of the year contain

information for the estimation of all parameters: SPARSE2

contains predominantly late winter and spring information

which improves the estimates of some phytoplankton growth

parameters. For all other parameters, however, the strong sea-

sonal bias in SPARSE2, i.e. the underrepresentation of the

second half of the year in the cost, seriously hampers their

successful retrieval. Figure 8 illustrates this in detail. Appar-

ently, the periods that contain information about the limiting

effects of light and nutrients, i.e. about the MM parameters,

are very short. The “information containing” period forHPAR

(dark yellow patch in Fig. 8) starts in spring when the surface

mixed layer shoals to less than the “critical depth” (Sverdrup,

1953). It ends as nutrient limitation kicks in (which at the

same time denotes the start of the “information containing”

period forHN). Note that the changes in PAR incorporated by

the dark yellow patch are only a fraction of the full amplitude
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Figure 8. (a) Seasonal cycle of nutrient and light limitation of phy-

toplankton growth (second year of the genuine truth simulation

driven by OPTI). The MM term for light PAR
PAR+HPAR

and nutrients

N
N+HN

are denoted by a yellow and blue line, respectively. (b) Cor-

responding seasonal cycle of phytoplankton (green line), zooplank-

ton (red line) and detritus (grey line). Shaded areas mark periods

where the system is limited predominantly by light (yellow area)

and by nutrient (brown area) before the zooplankton dynamics start

to dominate the system. The dark yellow shaded area depicts light-

limited periods in which there is net phytoplankton growth.

of the season cycle. The “information containing” period for

HN (dark brown patch in Fig. 8) ends when the dominant

control is exerted by top-down controlling Z.

Likewise, the information content about the other parame-

ters is not equally distributed throughout the year. For exam-

ple, the information about the zooplankton growth parame-

ters is most pronounced in summer, when high abundances

prevail. Obviously, loss rates are hard to assess during times

when the respective prognostic variables are close to the limit

of detection.

3.4 OBS10, OBS4

Real-world observations are typically sparse as regards time,

space and sampled variables. In addition they are noisy.

Hence, by using real-world observations we face a combi-

nation of the problems described in the Sects. 3.2 to 3.3. We

use quality checked data with a rather unusual high data cov-

erage – but still data gaps exist and the noise level is con-

siderable (Sect. 2.4). The typical noise level inherent to our

real-world observations, approximated by the standard de-

viation of observed P from July to December amounts to

0.4mmolNm−3 which corresponds to a “level 3–4 noise”

as defined in Sect. 2.5. Since we use real-world observa-

tions now (and no genuine truth), the “true” parameter set

is unknown and we compare different parameter estimation

strategies with one another. From the lessons learned above,

we expect a similar model performance when estimating all

free parameters simultaneously (OBS10) and when estimat-

ing only the subset µ, mPD, mDN and gnew (OBS4) because

– the MM parameters and Hz can not be constrained in

the presence of noise (Sect. 3.2), i.e. one choice is as

good as another given that the remaining parameters are

adjusted accordingly.

– the effects of changes in µmax can be compensated by a

similar change ofmPN. Hence, given the noise level and

probable model deficiency, they can not be constrained

simultaneously,

– the observational data do not contain information about

Z and D and we thus do expect that prescribing the loss

rates of Z (mZD and mZN) will not worsen the model–

data misfit considerably.

Given the lower degree of freedom in OBS4, we expect in

addition that the global minimum will be easier to detect.

We find that indeed all speculations hold: when optimizing

10 parameters, repeated parameter retrievals lead to different

parameter estimates associated with almost equal cost, while

for OBS4 repeated optimization leads to strikingly similar

parameter estimates. Figure 9 shows the simulations based

on the “best” parameter estimates of OBS10 and OBS4, cor-

responding to costs of 0.764 and 0.783 mmolNm−3, respec-

tively. Because the difference between the two simulations

is much smaller than the misfit of each of the simulation to

the (noisy) observations, we conclude that it is impossible to

judge which parameter set performs better.

4 Discussion

This study adds to the ongoing discussion about the prob-

lems of constraining all the parameters of state-of-the-art

pelagic ecosystem models simultaneously (e.g. Ward et al.,

2010; Schartau, 2003; Matear, 1995; Spitz et al., 1998; Rück-

elt et al., 2010). By design, we can disentangle some of

these potential problems: by using “twin experiments” (or,

in other words, a subsampled synthetic “truth” rather than

real-world observations), we can rule out the effects of a po-

tentially deficient model formulation. Hence, we know that

our problem is not ill-posed as regards the underlying equa-

tions, non-resolved processes or uncertainties in the external

forcing and boundary conditions other than we willfully in-

troduced. (Note that, even so, no unique solution may ex-

ist.) Furthermore, the twin experiment approach gives us

full control over the “observations”, i.e. we can adjust the

sampling (with respect to both, variables and time) and the

noise inherent to our “observations” at will. The advantages

of this approach have been appreciated in previous studies

already (e.g. Friedrichs, 2001; Gunson et al., 1999; Law-

son et al., 1996; Schartau et al., 2001; Spitz et al., 1998).

One major difference here, however, is the usage of red-

dish noise. Previous studies focused on data sampling, ne-

glecting any noise or using white noise, to mimic errors in

the observational data. The difference in the noise structure

is essential. The impact on the optimization differs proba-

bly because red noise differs from white noise as there is
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Figure 9. Real-world observations from station BY5 (55.15◦ N,

15.59◦ E; dots) and model simulations (lines). The red (blue) line

refers to a model simulation integrated with the optimized parame-

ter set retrieved during experiment OBS10 (OBS4).

more variance associated to timescales (days, seasonal to in-

terannual) that are resolved by a typical ecosystem model.

Thus, an optimization procedure is more prone to sense a

relation between noise-induced cost and parameter choice.

Consequently, low-frequency noise disrupts parameter esti-

mation much more than white noise, which is in line with the

findings of Friedrichs (2001), who rates systematic biases as

much more detrimental than the presence of white noise.

Note that our definition of noise is broadened as it does

not only include measurement accuracy but refers to noise

effected by the combination of all unresolved processes that

can cause deviations between simulated and observed val-

ues. Noise amplitude and structure that come along with this

broadened definition of noise are hard to assess and we are

not aware of any studies giving guidance on this. For the time

being we assume reddish noise, which is typical for ocean

processes (Hasselmann, 1976). As regards typical noise am-

plitudes we find that the median of the relative standard error

of all surface nitrate concentrations in the global monthly cli-

matology of Garcia et al. (2010) is 20 %.

Returning to our experiments, we find that even a fraction

of these typical noise levels does already prevent any mean-

ingful parameter retrieval, as illustrated in Sect. 3.2. The rea-

son is that noise at this level can open up “spurious” minima

which are associated with a cost lower than the cost associ-

ated with the genuine truth simulation. Such “spurious” min-

ima are often related to very different parameter values than

the genuine truth and might either be distortions of the min-

imum related to the genuine truth or minima opened up in

addition. Note that such difficulties were not reported by ear-

lier studies using twin experiments disrupted by white noise.

We conclude that the structure of the noise is relevant.

The parameter set associated to a spurious minimum may

well imprint differing sensitivities when the external forc-

ing is changed (Sect. 3.2, Fig. 3) and the overall behaviour

of such a model reminds of extrapolation with an overfit-

ted polynomial. In agreement with the early supposition of

Matear (1995), who used real data and calculated the error-

covariance matrix (via inversion of the Hessian matrix), we

can relate major problems back to parameter dependencies.

Here we broaden the common definition of “parameter de-

pendencies” and refer to changes in a certain parameter that

can, in large parts, be compensated by changing other param-

eters accordingly. Such dependencies are reflected by high

correlations of some parameter estimates in repeated runs.

Note, however, that the level of compensation depends on

the forcing conditions.

To our knowledge, however, there is no technique to ex-

amine all dependencies in a formal and useful way for the

task at hand. Typical approaches such as correlation analy-

sis or those based on analysing the Hessian matrix (as e.g.

Fennel et al., 2001; Kidston et al., 2011), have, in our con-

text, their limitations because the dependencies are manifold

and include up to four-way-parameter interactions. The Hes-

sian matrix is designed to detect mutual dependencies be-

tween two parameters. Furthermore, it is a function of the

model forcing and boundary condition and of the choice of

the underlying parameter set, because it is a local derivative.

We, however, are interested in more generalized findings. We

thus have to rely on the model structure and illustrative exam-

ples to illustrate dependencies. Besides the obvious potential

compensations of growth and loss terms, such dependencies

occur e.g. in the growth term of phytoplankton (and similarly

in the growth term of zooplankton). Other strong dependen-

cies are a consequence of optimizing the model parameters

with standing stocks. Since standing stocks are not necessar-

ily affected by accelerated or decelerated nutrients cycles, all

loops in the model structure contain strong parameter depen-

dencies (Fig. 7).

A large part of the problems, associated with the parame-

ter retrievals in the presence of noise, can be traced back to

the Michaelis–Menten formulations which determine most

of the model’s sensitivity to the external forcing (Sect. 3.2,

Fig. 5). This finding is in agreement with Friedrichs et al.

(2006), who point out that the half-saturation constant for

nutrients appears highly correlated to the maximum phyto-

plankton growth rate. Surprisingly we find that even an ex-

traordinarily well sampled, full seasonal cycle of prognos-

tic variables does not contain enough information to con-

strain the sensitivity of an N–P–Z–D model such that it can

unambiguously project system dynamics in e.g. a warming

world. In a nut shell, the reason is that only short periods are

predominantly controlled by actual nutrients and/or light de-

pleted conditions (Fig. 8). Generally these periods are not

ended by replete conditions but by other dominating pro-

cesses such as e.g. top-down control of zooplankton. This

means that the information, which is relevant for parame-
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ter optimization, within a seasonal cycle is rather limited,

despite its apparently large variations in light and nutrient

availability, and is generally not sufficient to constrain the

systems’ behaviour e.g. under anticipated climate change.

Thus, laboratory experiments might be required to test the

behaviour of ecosystems on anticipated future changes in the

environmental conditions and to test and calibrate our mod-

els. An additional (somewhat related) problem is that a real-

istic (i.e. within the bounds spread by typical observational

errors) simulation of standing stocks does not ensure a cor-

rect cycling speed among prognostic variables (Fig. 7). It is

important to note that, by making the model more complex,

the above described problems do not disappear; on the con-

trary, additional problems are prone to emerge. Hence, more

sophisticated observations such as rates or fractionating iso-

topes are mandatory for constraining fluxes or transfer rates

among the prognostic variables.

5 Summary and conclusions

To date, parameters associated with biogeochemical pelagic

models, coupled to 3-D ocean circulation models, are, more

often than not, assigned by rather subjective parameter tun-

ing exercises. It seems straightforward to assume that auto-

mated numerical optimization procedures which minimize

some quantitative measure of the deviation between obser-

vations and their simulated equivalents are more objective

and thus represent a reliable procedure for parameter alloca-

tion. In the past, such an approach was barred by excessive

computational demands. Recent advances in so-called offline

approaches (Khatiwala, 2007, 2008; Kriest et al., 2012) and

optimization procedures (Prieß et al., 2013) have severely re-

duced the demands and pushed the tasks within reach.

However, per se, it is unclear how far such approaches will

carry, even if the underlying model equations were exact. Our

study provides some insight by applying optimization pro-

cedures which minimize a generic cost function (root mean

squared errors) based on a synthetic set of “observations”,

which was produced by sampling our simulation at specific

times. Differing levels of artificial noise were added to the

synthetic “observations” to mimic typical real-world condi-

tions. By mimicking sampling strategies and noise inherent

to the observations we systematically explored what kind of

observations are required to retrieve the parameters of the

“genuine truth” simulation by parameter optimization. This

“twin experiment” approach (as it is often referred to) gives

guidance on the question what kind of information, or model

parameters, can be extracted from observations. The caveat

here is that we implicitly assume that the underlying mathe-

matical equations are exact – certainly an overoptimistic as-

sumption since the equations are not derived from first prin-

ciples (cf. Smith et al., 2009).

Our exercises suggest that monthly observations of all

prognostic variables are sufficient to retrieve the actual model

parameters correctly. However, this does not hold if the ob-

servations are defiled by noise. Even modest noise levels

(≈ 10%) can already lead to minima in the cost functions

which are associated to a lower cost than the genuine truth

simulation. We find that these minima develop due to strong

parameter dependencies, or rather their potentially compen-

sating effects when other parameters are changed accord-

ingly. Such dependencies occur e.g. in the growth term of

phytoplankton and in circular parts in the model structure.

The implication is that, in the presence of noise, the opti-

mal parameter set in terms of cost is not necessarily the cor-

rect one. This is of concern because we find that, although

the optimal solution and the genuine truth are similar un-

der the given external forcing, they can feature very diverg-

ing behaviour, once the forcing is adjusted within the enve-

lope of e.g. anticipated changes in the Baltic Sea. Most of

this behaviour is apparently caused by the poorly constrained

Michaelis–Menten (MM) parameters which are commonly

used to describe nutrient and light limitation of phytoplank-

ton growth (Fasham et al., 1993; Yool et al., 2009; Dutreuil

et al., 2009; Oschlies et al., 2010), although the MM formu-

lation is controversial (Smith et al., 2009).

Other than noise, we find that typical characteristics of

real-world observations such as irregular sampling in time or

the absence of observations of simulated prognostic variables

such as e.g. zooplankton and detritus do also seriously ham-

per attempts to retrieve all model parameters simultaneously

(Fig. 4). An exception to the latter rule are the MM parame-

ters which are apparently easier to constrain when zooplank-

ton and detritus observations are not part of the cost function.

Hence, more data are not necessarily better data. The inclu-

sion of more data in the cost function might even degrade the

ability to constrain certain parameters.

As regards real-world conditions (where only noisy and

irregularly sampled data of some prognostic variables are

available to assemble some quantitative measure of model

performance) our findings suggest a sequential, two-step ap-

proach, starting with an estimation which focuses on the MM

constants and to take care that the measure of model per-

formance contains relevant information only. This applies

both to sampled variables and to sampling time interval and

should prevent unnecessary “dilution” of information which

is vital because the parameter estimation is so sensitive to

noise. For example, it does not make sense to constrain MM

constants which determine growth limitation with data char-

acterized by a period of plenty or with observations of D and

Z. Furthermore, the larger the range of sampled conditions,

the higher the probability of retrieving meaningful model pa-

rameters. A cross-validation with a second independent data

set as a last step can increase the confidence in the model

further (Gregg et al., 2009).

Our experiments with real-world observations imply that

the other parameters may be estimated in a second step dur-

ing which the MM parameters are held constant to a priori

values. This approach is seemingly in line with earlier stud-
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ies which suggest estimating only a sub-set of the model pa-

rameters rather than all in one (e.g. Friedrichs et al., 2006;

Kidston et al., 2011). One downside of such an approach is

that in this case generally unknown parameters have to be

given assumed values before optimization, while prescribing

incorrect values for a sub-set of the unknown model parame-

ters prevents the correct estimate of all dependent parameters

(which is particularly problematic for the MM parameters).

This approach might thus result in a satisfactory fit to the

observations while it does not guarantee a correct model be-

haviour once the external forcing conditions of the model are

changed. Nevertheless, such an approach can be reasonable

and convenient for other purposes, e.g. when comparing dif-

ferent models for hypothesis testing.
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Appendix A: Optimization algorithm

Simulated annealing is a “stochastic global optimization

method”. This meta-heuristic method, adopted from anneal-

ing in metallurgy, is developed to find the global optimum

in a large parameter space. Because of its design it is less

prone to end up in a local optimum than are e.g. gradi-

ent search algorithms. The method is described in detail by

e.g. Kirkpatrick et al. (1983) and was successfully applied

to optimize bio-geochemical models by e.g. Matear (1995).

We use an initial “temperature” of 100 for each dimension

which is reduced iteratively by multiplication by 0.95. Af-

ter 200 iterations the temperature is raised to a higher value

(= reannealing), anticipating to restart the search and leave a

local minimum.

We use three parameter sets (1): µnew = 0.65, HPAR =

20, Hn = 0.6, gnew = 0.2, Hz = 0.7, m= 0.08, mZN =

0.15, mDN = 0.08, mZD = 0.17, mPD = 0.15, (2): µnew =

0.9, HPAR = 5, Hn = 0.35, gnew = 0.8, Hz = 0.6, m= 0.02,

mZN = 0.03, mDN = 0.12, mZD = 0.08, mPD = 0.3 and (3):

µnew = 0.75, HPAR = 35, Hn = 0.1, gnew = 0.2, Hz = 0.9,

m= 0.1, mZN = 0.2, mDN = 0.03, mZD = 0.3, mPD = 0.2

randomly as initial guesses. Note that these initial guesses

are randomized by the non-deterministic simulated annealing

algorithm. After 10 000 iterations we switch, consecutively,

to the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

(Shanno, 1970) in order to refine the parameter set retrieved

by simulated annealing. BFGS is an approximation of New-

ton’s method and belongs to the class of hill-climbing opti-

mization techniques that seeks a stationary point of a (prefer-

ably twice continuously differentiable) function. A necessary

condition for a minimum is a gradient of zero. The algo-

rithm does not necessarily converge unless the function has

a quadratic Taylor expansion near the optimum. It uses the

first and second derivatives. Note that the Hessian matrix of

second derivatives does not need to be evaluated, but is usu-

ally approximated by rank-one updates specified by gradient

evaluations (or approximate gradient evaluations).

Appendix B: Monte Carlo simulations

In order to assess the effect of a ± 10 % change in phyto-

plankton growth on the cost (see the section “The problem

with NOISE”) we perform a set of Monte Carlo simulations.

This approach is necessitated by the fact that the sensitivity

towards changes of phytoplankton growth is determined by

the combination of all parameters. We chose randomly 600

parameter sets within the bounds of Table 1 and use forc-

ing data set OPTI. In a second step these parameter sets are

modified such that they feature a ±10 % change in the phy-

toplankton growth. Finally, we integrate the 3×600 configu-

rations. The difference in cost of the +10 and −10 % config-

uration, relative to the unperturbed, averaged over all of the

600 triples, yields the sensitivity we set out for.
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