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Abstract. Temperature, salinity and oxygen data collected

during April and June 2011 (M84/3 and P414 cruises respec-

tively) are analysed to derive the oceanographic character-

istics of the Eastern Mediterranean (EM) basin. These ob-

served characteristics are compared with those from previous

cruises over the period 1987–2011. As a result, the interan-

nual and decadal variability of the EM thermohaline prop-

erties are discussed in the context of the evolution of the

Eastern Mediterranean Transient (EMT) and of the general

circulation of the basin. We found that the state of the EM

is still far from the pre-EMT conditions, though the 2011 re-

sults possibly indicate a slow return to this status. In partic-

ular, a comparison between thermohaline property evolution

deriving from interannual variability of the preconditioning

and air–sea interaction (heat fluxes) in the South Adriatic and

the Cretan Seas reveals aspects of the alternation of the two

dense water sources (Adriatic and Aegean) during the last

three decades, which have strong implications for the hydro-

graphic characteristics of the intermediate and deep layers of

the Ionian and Levantine basins.

1 Introduction

The circulation of the Eastern Mediterranean (EM) is deeply

influenced by several driving forces, strong topographic con-

straints and internal dynamic processes (Robinson et al.,

1991). The basin-scale thermohaline circulation of the EM

is formed by two cells: the closed internal cell of the deep

circulation encompassing the Adriatic–Ionian area and the

Levantine basin, known as the EM conveyor belt, and the

external thermohaline cell involving the exchange of water

between the EM and the Western Mediterranean (Lascaratos

et al., 1999). The first one, mainly driven by the formation of

Adriatic Deep Water (AdDW), which eventually becomes the

Eastern Mediterranean Deep Water (EMDW), is character-

ized by a renewal time of approximately 126 years (Roether

and Schlitzer, 1991). Indeed, the major source of the deep

waters of the EM can be considered the Adriatic Sea.

Recent decades have shown dramatic changes in the circu-

lation of the EM. During the late 1980s and early 1990s, the

EM conveyor belt underwent a major climate shift known as

the Eastern Mediterranean Transient (EMT) (Roether et al.,

1996, 2007; Theocharis et al., 2002), during which dense wa-

ters of Aegean origin replaced the AdDW in the deep layers

of the EM. The structure of the South Aegean Sea (namely,

the Cretan Sea; CS) water column changed as exceptionally

dense and salty water started to fill the deep Cretan basin and

to overflow the sills of the Cretan Arc straits. Observations

conducted in 1987, 1991 and 1995 indicated a reduced trans-

port of Atlantic Water (AW) into the Levantine basin, where

the salinity increased, altering the circulation pattern of the

Levantine Intermediate Water (LIW) from its formation site

towards the Ionian Sea (Klein et al., 1999; Malanotte-Rizzoli

et al., 1999). These drastic changes and the major contribu-

tion of dense water of Aegean origin continued for a period

of 7–8 years. Due to its high density (σθ > 29.35 kg m−3),

the Cretan Deep Water (CDW) continued to fill the deep-

est parts of the Levantine and Ionian basins, uplifting the

resident and older deep and bottom waters of Adriatic ori-
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gin (Schlitzer et al., 1991; Roether et al., 1996; Malanotte-

Rizzoli et al., 1997). CDW appeared to be the most impor-

tant source of the new type of EMDW, the AdDW not being

dense enough to spread over the bottom layer of the EM.

The Aegean source apparently disappeared by about 1995

(Theocharis et al., 2002).

Hydrographic measurements obtained in 2003 indicate a

new ventilation of the deep layers in the Adriatic and Ionian

Seas (see Hainbucher et al., 2006; Manca et al., 2006; Cardin

et al., 2011). The necessary preconditioning for deep con-

vection in the Southern Adriatic (SA) and the formation of

water dense enough to spread below the bottom water of EM

origin were only re-established after 2005, following a salin-

ity increase linked with the influence of EM water at inter-

mediate levels. However, bottom waters encountered in the

deep layers of the Ionian basin were warmer and saltier be-

tween 2003 and 2007 (Rubino and Hainbucher, 2007). This

implies the existence of a delayed link between characteris-

tics of the intermediate layer of the SA and abyssal waters

of the Ionian Sea (Bensi et al., 2013). Experimental obser-

vations show that the Northern Ionian Gyre (NIG) reverses

on an almost decadal scale (Gačić et al., 2010). This rever-

sal is driven by and responsible for internal mass redistribu-

tion within the EM. In particular, it seems mainly driven by

variability in salinity (Gačić et al., 2011; Theocharis et al.,

2014; Velaoras et al., 2014). Wind stress and other external

forces play an important role as they interact with the above-

mentioned processes to shape the variability (strengthening

or weakening) of the surface circulation regime and of the

sub-basin ocean structures (Molcard et al., 2002; D’Ortenzio

and Prieur, 2012; Pinardi et al., 2013). The result is a highly

complex nonlinear system acting at very different spatial and

temporal scales.

In the present study, we have analysed temperature, salin-

ity and oxygen data collected during April and June 2011

(M84/3 and P414 cruises, respectively) to examine the

oceanographic characteristics of the EM basin. We focused

our attention particularly on the properties and possible path-

ways of the AdDW, the EMDW and the LIW. Their evo-

lutions are put in the context of the evolution of the EM

large-scale oceanographic properties and of the circulation

during the last three decades. Finally, we discuss the inter-

annual variability of the preconditioning (salt redistribution)

and air–sea interaction (heat fluxes) in the two main dense-

water source areas for the EM, i.e. the South Adriatic and

Cretan seas.

2 Data and methods

2.1 M84/3 and P414 cruise data sets

The hydrographic data analysed in this study were collected

in the course of two German oceanographic cruises: Me-

teor M84/3 (April 2011) and Poseidon P414 (June 2011).

The Meteor M84/3 cruise was set up to follow the demands

and requirements of repeating hydrography as specified by

the GO-SHIP group (http://www.go-ship.org/), i.e. to obtain

a comprehensive set of physical and chemical parameters

measured to the highest standards. The aim of the cruise

was to cover the quasi-zonal section through the Mediter-

ranean Sea, covering the main basins of the Mediterranean

Sea, with dense sampling of physical and chemical param-

eters throughout the whole water column. The primary goal

of the Poseidon P414 (June 2011) cruise was to identify the

routes of the AdDW into the Ionian Sea, so as to study the

spatial and temporal variability of the spreading and mixing

of the EMDW (Fig. 1a).

The data set has two main components: the continuous

profiles of conductivity, temperature and depth (CTD), and

the discrete data from the water samples. It contains informa-

tion from 61 hydrographic stations sampled during the April

cruise (M84/3) (more information in Tanhua et al., 2013)

and 33 full-depth standard hydrographic stations sampled in

June 2011 during the P414 cruise. A SeaBird SBE911plus

CTD-O2 probe equipped with dual sensors of temperature,

salinity and dissolved oxygen was employed, attached to a

SeaBird carousel water sampler (24-bottle during the M84/3

and 12-bottle during the P414), together with an altimeter.

Additionally, a fluorometer sensor was installed on the CTD

during the M84/3 cruise and a digital reversing thermome-

ter was attached to the probe for quality checking. At al-

most all stations, water samples for dissolved oxygen were

taken at different depths throughout the whole water column.

The oxygen samples were analysed onboard using a poten-

tiometric Winkler titration method. From three depth levels,

depending on the vertical profile of the stations, water sam-

ples were also taken for calibration of the salinity values, and

they were analysed onboard using a Guildline Autosal Sali-

nometer. Data were processed applying the Seabird software

and a Matlab post-processing package. Spikes were removed

from all data by applying the instrumental and climatologi-

cal range criteria backed up by visual checks. Profiles were

then averaged every 1 dbar. The overall accuracies are within

0.002 ◦C for temperature and 0.003 for salinity.

2.2 Long-term oceanographic variability

Vertical distributions of hydrographic data in the EM were

examined to determine the long-term variability in the area

since 1985. Three different approaches were applied:

1. Vertical distributions of temperature and salinity from

the quasi-zonal section crossing the EM, from the Sicily

Strait to the Levantine basin, were analysed by means

of repeated surveys. We used data from all cruises

throughout a trans-basin section: 1987 (Nellen et al.,

1996), 1995 (Hemleben et al., 1996), 1999 (Pätzold

et al., 2000), 2001 (Hemleben et al., 2003) and 2008

(Moutin et al., 2012). All these cruises took place as part
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Figure 1. (a) CTD stations sampled in the Eastern Mediterranean Sea (EM) and Adriatic Sea during the M84/3 (red) and P414 (blue) cruises,

and areas selected for the long-term analysis depicted. Hydrographic sections discussed in the text are identified as aa′ to dd′. (b, c) Monthly

absolute dynamic topography (ADT) map as the rectangles of the Eastern Mediterranean for April and June 2011. Principal structures are

highlighted in the maps.

of collaborative investigations of the EM: the POEM

(Physical Oceanography of the Eastern Mediterranean)

research programme, EMTEC (Eastern Mediterranean

Transient and Ecosystem monitoring), and the BOUM

(Biogeochemistry from the Oligotrophic to the Ultra-

oligotrophic Mediterranean) experiment.

2. The long-term variability of the water mass structure in

the EM was analysed on the basis of single profiles lo-

cated in the central Ionian [17–19◦ E/34.5–36◦ N] and in

the central Levantine [29–31.5◦ E/33–35◦ N]; see Fig. 1.

3. The temporal evolution of the water mass structure in

the CS and SA was analysed on the basis of thermo-

haline parameters collected within the areas depicted

in Fig. 1 between 1985 and 2011. Some of the data

come from the MEDATLAS database (see Maillard et

al., 2002; Manca et al., 2004), while some were col-

lected within the framework of European and German

National projects. The Hellenic Centre of Marine Re-

search (HCMR) provided some of the profiles obtained

between 2006 and 2011 for the CS sampled during the

E1M3A observatory maintenance cruises. Further infor-

www.ocean-sci.net/11/53/2015/ Ocean Sci., 11, 53–66, 2015
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mation regarding the data set used for the SA can be

found in Cardin et al. (2011).

For all data sets, derived parameters such as potential tem-

perature, salinity and potential density were obtained from

each original in situ temperature and conductivity profile.

Hereinafter, temperature indicates potential temperature (θ),

salinity is reported according to the practical salinity scale,

density indicates the potential density excess (σθ ), and the

oxygen corresponds to the dissolved oxygen.

2.3 Atmospheric forcing

Air–sea heat fluxes at the air–sea interface were obtained

from meteorological data such as mean sea level pressure,

total cloud cover, wind speed at 10 m above the mean sea

level, air temperature, dew point temperature at 2 m above

the mean sea level, and skin temperature. These data were de-

rived from the European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA-Interim data set with approxi-

mately 0.7◦ spatial resolution, and downloaded on a Gaus-

sian grid with 0.25◦× 0.25◦ resolution in latitude and longi-

tude (interpolated by the ECMWF system from the original

data). Total heat fluxes (Qnet) were obtained as the sum of

the heat flux components: the solar radiation (Qs) was calcu-

lated using the modified Reed formula (Schiano, 1996), the

net long-wave radiation (QB) was obtained by applying the

Bignami et al. (1995) formula, while the sensible (QH) and

latent (QL) heat fluxes were obtained from the bulk aero-

dynamic formulas (Kondo, 1975). More information on the

formulas applied, procedures and coefficients can be found

in Cardin and Gačić (2003). Total winter heat fluxes were

calculated as a time-integral for the period spanning 1 De-

cember to 31 March for the years 1985–2011. Normalized

heat fluxes for each area were calculated applying

Qnorm =
X− µ

σ
,

whereQnorm is normalized value;X is individualQnet to nor-

malize, µ is arithmetic long-term (1985–2011) winter aver-

age calculated from winter daily mean values and σ is long-

term (1985–2011) winter standard deviation.

3 2011 Thermohaline conditions

The monthly average of the absolute dynamic topography

(ADT) in the EM, referred to April and June 2011, are shown

in Fig. 1b and c. Data are obtained from the Live Access

Server of the AVISO web portal (http://las.aviso.oceanobs.

com/las/getUI.do). The ADT is the sum of sea level anomaly

and Synthetic Mean Dynamic Topography computed com-

bining in situ drifter velocities and altimetry measurements.

The error of the Synthetic Mean Dynamic Topography in the

study area is in the range 1–3 cm (Rio et al., 2007). In this

study, the ADT maps are used only to show the major circula-

tion features in the upper thermocline, as some of the stations

sampled during the M84/3 and P414 cruises were positioned

at the edges or across dynamic structures that influence the

water mass pathways. In the EM, several well-developed

sub-basin-scale cyclonic or anticyclonic gyres, permanent or

quasi-permanent, and interconnected by jets and meandering

currents (Malanotte-Rizzoli et al., 1997), were observed in

both April and June 2011.

Temperature and salinity along the quasi-zonal section

crossing the EM, from the Sicily Strait to the Levantine

basin, is shown in Fig. 2. In April 2011, the easternmost

part of the transect was characterized by the presence of

the Levantine Surface Water (LSW), which occupied the

first 50 dbar and showed high temperature (θ > 18 ◦C) and

salinity (S > 39.15). Beneath this layer, a core of LIW with

a salinity maximum of 39.24 on stations 293 (and 292,

not shown) protruded westward (Fig. 2b), occupying the

150–350 dbar layer. Water characterized by S > 39.20 and

θ > 17.50 ◦C flowed out from the CS (St. 297) through the

eastern Cretan Arc spreading into the Levantine Sea, and

breaking the main LSW/LIW tongue with outcrops of the

isohalines (see also Fig. 6). The westernmost part of the

surface layer was mainly occupied by the AW within the

upper 130 dbar and confined by the 38.80 isohaline, con-

tained within the Ionian circulation. AW propagated east-

ward along the pathway observed from the dynamic heights

(ADT, Fig. 1b, c). Hence, from the analysis of Fig. 1b, c and

Fig. 2 we can deduce that the AW veered due to the action

of an intense anticyclonic mesoscale structure centred over

the deepest area of the Ionian (at ∼ 19◦ E, 36◦ N), the edge

of which we sampled at stations 305, 303 and 302. AW intru-

sion into the Levantine basin is very variable and may depend

on the circulation present in the Ionian (Gačić et al., 2010).

In 2011 the NIG circulation was just reversing to cyclonic, as

reported in Gačić et al. (2014). Previously, the main effect of

∼ 5 years of anticyclonic NIG (2006–2010), when the AW

meandered in the northernmost part of the Ionian Sea, was

a general increase in salinity in the Levantine basin (see the

long-term analysis and discussion in Sect. 4) and a general

decrease in salinity in the SA.

The deep layer below 2500 dbar (Fig. 2) is topographically

divided into two by the EM Ridge (see its location in Fig. 1a,

highlighted by the black dotted line). West of it, a large part

of the Ionian basin was dominated by EMDW of Adriatic

origin, still the coldest (θ < 13.48 ◦C), freshest (S < 38.73)

and densest (σθ ≈ 29.20 kg m−3)water mass of the area, with

the highest oxygen value (204 µmol kg−1). The signature of

the AdDW flowing out through the Otranto Strait was also

found in profiles measured in the northernmost part of the

Ionian, as will be shown later. East of it, the deepest part (be-

low 2000 dbar) of the Levantine basin was filled by EMDW

of Aegean origin, with similar σθ but slightly warmer and

saltier (θ > 13.6 ◦C, S > 38.78) than the EMDW found in
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Figure 2. Water properties along a quasi-zonal east–west section in 2011 (marked as aa′ in Fig. 1a): (a) temperature (◦C), (b) salinity,

(c) oxygen (µmol kg−1), (d) density (kg m−3). The upper panel highlights the first 500 dbar. Ierapetra and Mersa Matruh anticyclones can

be identified at ∼ 26 and ∼ 29◦ E respectively.

the Ionian, and with lower oxygen levels (between 185 and

190 µmol kg−1) (see Fig. 2c).

The Cretan Sea water that flowed from the Kasos Strait

showed salinity higher than ∼ 39.15 occupying the first

250 dbar and protruding like a tongue into the Levantine

(Fig. 3, transect B). However, its area of influence was mainly

confined to the north part of the EM Ridge; south of this area

it encountered the AW at the surface, while it mixed with

the LIW in the intermediate layer. Very dense water occupy-

ing the deep layer of the CS remained “isolated” by virtue

of the presence of the sill. Notably, the densest water was

found in the CS at station 288 (θ ≈ 13.95 ◦C, S ≈ 39.06 and

σ0> 29.30 kg m−3; Hainbucher et al., 2014). This water re-

mained blocked in the CS (see St. 289), filling the layer be-

low 1000 dbar. The T –S diagram (Fig. 3d) shows the char-

acteristics of four stations along section bb′. Two of them

(St. 290, green and St. 296, orange) are located in the Lev-

antine basin and they revealed the typical long-lasting pro-

nounced T –S inversions already described in Hainbucher

et al. (2014) for this cruise, and explained by Roether et

al. (2014) in detail. This inversion was caused by a notice-

able increase in temperature and salinity throughout the EM

deep waters due to an anomalously abundant and dense out-

flow of water of Aegean origin produced during the EMT.

Station 289 (magenta) is located directly above the sill of the

Kasos Strait where an inversion of higher temperature and

salinity values at around 500 dbar is found. This might indi-

cate that two kinds of Cretan deep water mass, an older and

a newer, are present in this area. Station 288 (red) is located

in the Aegean Sea and reaches its minimum salinity values at

around 1150 m, indicating the presence of CDW at that level.

From its formation area westwards, the LIW pathway was

directly influenced by the NIG and by the anticyclonic vor-

tex present around 35.5◦ N/19.0◦ E that trapped low-salinity

waters in its centre, as seen in Figs. 1b, c and 3. There, the

LIW bifurcated: one branch flowed westward directly to the

Sicily Channel while the other one flowed northwards along

the eastern shelf-break of the Ionian. To describe the LIW

pathway into the northern Ionian and into the Adriatic, tem-

perature, salinity and density meridional sections along tran-

sect cc′ are presented in Fig. 4. The LIW seems to be influ-

enced by the Pelops anticyclone (PA in Fig. 1b, at∼ 36.5◦ N),

as revealed by the down-sloping of the isopycnals, and by

the water exiting the CS through the Antikythera Strait (right

part of the panels). The southernmost stations of the tran-

sect showed the presence of the AW in the first 100 dbar

while the rest of the stations showed the LIW spreading

northward into the Ionian basin as a warm (θ ≈ 15.0 ◦C) and

www.ocean-sci.net/11/53/2015/ Ocean Sci., 11, 53–66, 2015
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Figure 3. Water properties along the section crossing the Kasos Strait (marked as bb′ in Fig. 1a): (a) temperature (◦C), (b) salinity, (c) density

(kg m−3), (d) T –S diagram of the stations considered on the transect. Positions of salinity inversions along the water column are indicated

in dbar in the diagram and coloured similar to the station profile. The upper panels of (a), (b) and (c) highlight the first 500 dbar.

Figure 4. Water properties along the eastern longitudinal section (N–S) (marked as cc′ in Fig. 1a) following the traditional path of the saline

core water towards the Adriatic Sea: (a) temperature (◦C), (b) salinity, (c) density (kg m−3). The upper panels highlight the first 500 dbar.

Poseidon P414 stations are identified by the letter P and Meteor M84/3 by the letter M. Pelops anticyclone can be identified at ∼ 36.5◦ N.

saltier (salinity maximum ranging from 38.8 to 39) tongue

of water. At the time of the cruises (April and June) the

LIW core (S >= 39.0) did not enter the Adriatic through

the Strait of Otranto, and only water with S < 38.80 was

advected over the Otranto sill, occupying the intermediate

horizon in the Adriatic. The deep layer (> 800 dbar) of the

SA (Fig. 5) was filled with AdDW (θ ≈ 13.07 ◦C, S ≈ 38.73,

σθ ≈ 29.275 kg m−3). However, only a part of the AdDW

overflowed the Otranto sill (depth∼ 800 dbar), cascading

along the Ionian continental margin towards the deep layer

of the central Ionian. The intense mixing affecting the AdDW

branches sinking toward the abyssal plain of the Ionian Sea

leads eventually to a warming and salinification (Manca et

al., 2003; Hainbucher et al., 2006; Bensi et al., 2013) as well

Ocean Sci., 11, 53–66, 2015 www.ocean-sci.net/11/53/2015/
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Figure 5. Water properties along the western longitudinal section (N–S) in the Ionian (marked as dd′ in Fig. 1a): (a) temperature (◦C), (b)

salinity, (c) oxygen (µmol kg−1). The upper panels highlight the first 500 dbar. Meteor M84/3 stations are identified by the letter M.

as to a reduction in the relatively high dissolved oxygen con-

tent associated with the AdDW.

The western meridional (N–S) section dd′ (Fig. 5) links

the SA and Ionian Seas along the Italian coast, ending at the

western edge of the quasi-zonal transect crossing the EM.

This field distribution complements the information inferred

from Fig. 4, indicating that the LIW did not enter the Adri-

atic, while the cyclonic circulation observed is coherent with

the ADT distribution shown in Fig. 1b and c. High-salinity

waters characterized the intermediate layer spreading from

east to west in a cyclonic circulation with the core of the LIW

located between 200 and 300 dbar, whereas low-salinity wa-

ters were confined to the surface layer along almost the whole

section shown from the northern part of transects (b) and (c),

depicted in Figs. 4 and 5. The latter also shows two cores

of high salinity water, the first located at St. M309 and the

second at St. M305, both catching a less diluted signal of the

LIW spreading westward from the Levantine. Beneath the

LIW, low-salinity waters (38.72) with relatively high oxygen

content (198 µmol kg−1) filled the deepest part of the cen-

tral Ionian. They can be attributed to relatively fresh and re-

cently ventilated water of Adriatic origin. The oxygen min-

imum was located in the layer 1000–1300 dbar, with values

around 180 µmol kg−1, showing that this layer was scarcely

renewed.

Maps of salinity distributions (Fig. 6a) at 100 dbar and at

the isopycnal surface of σθ = 29.05 kg m−3 (Fig. 6b), i.e. the

typical horizon of the LIW (Malanotte-Rizzoli et al., 1997),

provide evidence of the major water masses occupying the

basin from the Sicily Channel to the Cretan Passage and their

circulation patterns. The AW entered the Ionian Sea from

the Sicily Channel and protruded towards east and north,

occupying an extended portion of the west half of the Io-

nian basin. A front running from 36 to 40◦ N separated low-

salinity waters of Atlantic origin (< 38.45) from Ionian Sur-

face Waters (38.60). This pattern confirms that the anticy-

clone positioned at 19◦ E (Ionian gyre in Fig. 1b and c) acts as

a sorting point from which the AW divides into two branches,

one flowing to the east and the other proceeding northward.

Bifurcated pathways of LIW were also recognizable from the

salinity distribution at 29.05 kg m−3 (Fig. 6b): (i) the tongue

defined by S ∼ 39.0–39.05 spread directly from the Cretan

Passage towards the Sicily Channel; (ii) the other branch of

LIW was embedded in the NIG, and extended north of the

Peloponnesus peninsula along the eastern border of the Io-

nian basin. On its way towards west and northwest the LIW

mixed with the surrounding waters, decreasing its salinity.

4 Long-term variability in the Eastern Mediterranean

The long-term variability along the quasi-zonal section, from

the Sicily Strait to the Levantine basin, is discussed here

through the analysis of the vertical distributions of temper-

ature and salinity sampled during six repeated surveys car-

ried out in different oceanographic stages of the EMT: 1987,

which represents the pre-EMT phase; 1995 when the EMT

was in full swing – i.e. a large amount of Aegean-derived

deep water was still deposited in the near-bottom waters

around the Cretan Arcs and the Adriatic salinity maximum

decreased; 1999 and 2001 showing the evolution of the EMT;

and, finally, data from cruises carried out in 2008 and 2011

which reflect the more recent oceanographic situation. Fig-

ures 7 and 8 show the vertical distributions of temperature

and salinity respectively. For a detailed discussion on the ma-

jor findings from the cruises carried out in 1987, 1995 and

1999, the reader is referred to the works by Klein et al. (1999,

2000), Malanotte-Rizzoli et al. (1999), Manca et al. (2003)

and Roether et al. (2007). A similar approach was used by

Touratier and Goyet (2011) to determine the distributions of

properties (θ , S, oxygen) along a west–east transect in the

EM, but considering all stations (from the Medar/Medatlas II

database) within a band of 200 km and for years 2000–2001.

Data from the M5/6 cruise in 1987 show the hydrographic

conditions prior to the EMT in the Ionian and Levantine

basins, when the AdDW was clearly the main contributor

to the EMDW (Figs. 7a and 8a). This distribution is con-

sidered a reference for the climatological state of the EM

(Schlitzer et al., 1991). Indeed, the deep western and cen-

tral Ionian showed a temperature of 13.30 ◦C and salinities

lower than 38.68. On the other hand, observations conducted

during the EMT phase, in 1995 and 1999 (Figs. 7b, c and

8b, c respectively), revealed the presence of Aegean waters

outside the Cretan Passage, with large salinity and tempera-

www.ocean-sci.net/11/53/2015/ Ocean Sci., 11, 53–66, 2015
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Figure 6. Horizontal distribution of salinity at 100 dbar (a) and on the 29.05 kg m−3 isopycnal (b).

ture values, lying at the deepest layer of the EM. Enhanced

salinity and temperature relative to 1987 (values higher than

38.84 and 13.60 ◦C) were already ubiquitous in early 1995

(Roether et al., 2007), with the exception of the western Io-

nian deep layer which was still occupied by low-salinity and

low-temperature waters (S < 38.68, θ < 13.30 ◦C). In 1995,

waters of Aegean origin at the Cretan Passage were clearly

recognizable by a dome of the ventilated bottom waters as-

sociated with θ > 14.0 ◦C and S > 38.78. An analogous dis-

tribution was found in 1999 (see Theocharis et al., 2002;

Manca et al., 2003) at the Cretan Arc and at the easternmost

part of the Levantine basin (Figs. 7d and 8d), blocked by the

bathymetry constraint of the EM Ridge. In the same years,

signs of new EMDW of Adriatic origin were already evident

in the western continental slope of the Ionian Sea, i.e. indi-

cating that a major change occurred between 1999 and 2003

in the abyssal part of the Ionian basin, where AdDW returned

gradually to become the principal contributor to the EMDW

(Hainbucher et al., 2006; Manca et al., 2006; Rubino and

Hainbucher, 2007; Bensi et al., 2013). In 2008 (Figs. 7e and

8e) only the Levantine basin was still under the influence of

the warm and saline CDW that overflowed during the EMT,

whilst the EMDW that resided in the Ionian abyssal layer was

influenced by more recent AdDW with modified properties,

being warmer and saltier (θ = 13.40 ◦C, S = 38.72) than in

the past. These results are consistent with the tendency to-

ward the warming of and salinification of the AdDW pointed

out by Rubino and Hainbucher (2007) and seen also in 2011

(Figs. 7f and 8f) when, in general, temperature and salinity in

the abyssal layer of the Ionian Sea (θ ≈ 13.40 ◦C, S ≈ 38.75)

indicated almost everywhere a continuous relaxation of the

EMT since the early 1990s.

The analysis of the upper layer (0–500 dbar) in Figs. 7

and 8 showed that the decadal variability of the Ionian and

Levantine thermohaline properties is strongly related to the

variability of the AW pathway, which in turn is influenced by

the circulation regime in the Ionian Sea. In the last decades,

different regimes alternated, leading to an increase (when

AW was transported toward the Ionian basin by anticyclonic

circulation) and to a decrease (when AW was transported

toward the Levantine basin by cyclonic circulation) in the

salinity in the Levantine basin. This variability is clearly ev-

ident in Fig. 8, where the salinity of the upper thermocline,

especially in the Levantine basin, appears to oscillate on mul-

tiannual or decadal scales. A relative minimum in salinity

was evident in 1987 (Fig. 8a) and was followed by an in-

crease in 1995. At the end of 1980s the AW flow in the Io-

nian increased and an anticyclonic circulation up to 39◦ N

arose (Malanotte-Rizzoli et al., 1997). This anticyclonic pe-

riod lasted until 1996. The two salinity distributions in 1987

and 1995 (Fig. 8a and b, respectively) represent the limits of

a period during which the salinity progressively increased.

Different mechanisms acting separately or even in com-

bination could potentially explain part of such variability.

Gačić et al. (2010, 2011) and Theocharis et al. (2014) showed

that internal mechanisms seem to prevail over the atmo-

spheric forcing in engaging the reversal of the circulation

in the Ionian, which in turn modifies the position of the

Atlantic–Ionian Stream responsible for the salinity distribu-

tion in the EM. In contrast, Pinardi et al. (2013) suggested

that the reversal was wind driven.

The massive production and outflow of CDW was the prin-

cipal manifestation of the EMT. To observe the evolution of

the thermohaline properties of the water column in the CS

(Fig. 9, upper panel) and in the SA (Fig. 9, lower panel), Hov-

möller time diagrams of the thermohaline properties during

the period 1986–2011, based on all CTD profiles sampled

in the areas indicated in Fig. 1a, were obtained. Special at-

tention was given to the density= 29.20 kg m−3; this is the

maximum density recorded in 1987 at the reference level of

1300 dbar in the proximity of the Kasos Strait, and it is con-

sidered the threshold density for filling the deep layers of

the EM. The 900 and 800 dbar levels highlighted represent

Ocean Sci., 11, 53–66, 2015 www.ocean-sci.net/11/53/2015/



V. Cardin: Thermohaline properties in the Eastern Mediterranean 61

Figure 7. Sections of temperature (◦C) (see inset map) in (a) 1987 (Meteor M5/6), (b) 1995 (Meteor M31/1), (c) 1999 (Meteor M44/4), (d)

2001 (Meteor M51/2), (e) 2008 (BOUM) and (f) 2011 (Meteor M84/3). The upper panels highlight the first 500 dbar.

the outflow levels above the Kasos and Otranto sills, respec-

tively.

The time evolution of salinity in the CS shows, firstly, a re-

markable increase in a large part of the water column (from

400 dbar to the bottom) in the period 1985–1992. As demon-

strated by Theocharis et al. (1999), in the subsequent period

(1992–1994) the strong decrease in temperature due to the

very cold winters in 1992 and 1993 caused the accumula-

tion of a huge amount of dense water (σθ > 29.20 kg m−3),

as shown by the rapid rise of the 29.20 kg m−3 isopycnal

(Fig. 9c, upper panel). At the same time, in the SA (Fig. 9c,

lower panel) the salinity was < 38.70 from 200 dbar to the

outflow depth, slightly increasing until 1990 (S > 38.70), and

then decreasing until about 1997. The 29.20 kg m−3 isopyc-

nal depth rose from 600 dbar (in 1985) to about 250 dbar (in

1992). The maximum density observed at the overflow depth

was 29.25 kg m−3.

In the period 1992–1995, the CS density at the outflow

level of the Kasos Strait remained higher than 29.25 kg m−3

and corresponds to the period of the most intense and con-

tinuous outflow of the new CDW into the Levantine basin

(Theocharis et al., 1999). In the SA, in contrast, density

rapidly decreased to values≈ 29.20 kg m−3 only in the deep-

est portion (650–800 dbar) of the water column involved in

the exchange with the Ionian Sea. In this period, the EMDW

of Adriatic origin present in the Ionian Sea and in the Levan-

tine was progressively displaced by the new denser CDW.

Our analysis confirms what was hypothesized by Roether

et al. (2007) regarding the evolution of the Cretan water ther-

mohaline properties post-EMT (from 1995) at the outflow

level – i.e. that due to the slow deepening of the 29.20 kg m−3

isopycnal, the density levels exceeded pre-EMT values for

several years. The strong CDW outflow was compensated for

by an increased inflow of surface Levantine waters and by

the Transitional Mediterranean Water, which in the CS was

traceable by a salinity minimum (Theocharis et al., 1999) be-

tween 200 and 400 dbar in 1993–1995, progressively deep-

ening and losing its characteristics around the second half of

the 2000s. The presence of Transitional Mediterranean Water

presumably inhibited further significant vertical mixing and

dense water production after 1993.

As shown by Klein et al. (2000) and Cardin et al. (2011),

the decrease in salinity at the intermediate level in the SA

reached a minimum in 1995, after which the salinity started
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Figure 8. Sections of salinity (see inset map) in (a) 1987 (Meteor M5/6), (b) 1995 (Meteor M31/1), (c) 1999 (Meteor M44/4), (d) 2001

(Meteor M51/2), (e) 2008 (BOUM) and (f) 2011 (Meteor M84/3). The upper panels highlight the first 500 dbar.

to increase again until 2005. It is evident from Fig. 9 that suf-

ficient preconditioning was established to resume the AdDW

production during the first half of the 2000s. This was the re-

sult of a massive import of LIW and Cretan Intermediate Wa-

ter (CIW) from the Ionian. However, it was only after 2005

that the AdDW at the overflow depth at the Otranto sill re-

gained a density > 29.20 kg m−3.

During the last part of the period studied, namely from

2005 to 2011, salinity at the intermediate level in the CS

continuously increased, reaching absolute maximum values

of > 39.10 in 2011. A concomitant temperature increase

that prevented effective convection able to produce as much

dense water to fill the deep Cretan basin was observed. In the

same period in the SA the salinity of the whole water col-

umn decreased, as did the density after a relative maximum

(29.20 kg m−3 at 600 dbar) in 2006.

The role of the preconditioning, linked to the basin circu-

lation, in promoting the alternation of dense water formation

in the CS with that in the SA is important, but the relevance

of the air–sea interaction cannot be neglected. Therefore, in-

terannual variability in the normalized heat flux (Qnorm) was

analysed in the two sites for the period December to March

(Fig. 10). The general behaviour in the two sites was similar.

Particularly noteworthy is the heat loss which occurred in

the winters 1991–1992 and 1992–1993 in the CS and which

triggered the active phase of the EMT. Another period of in-

tense winter heat loss was from 2002 to 2006, for both sites.

In this period, in the SA both preconditioning and heat loss

were favourable to the AdDW production, whilst in the CS

the presence of the above-mentioned Transitional Mediter-

ranean Water counteracted the noticeable heat loss reported

in Fig. 10. From 2007 to 2011 neither basin was subject to

significant heat loss. The increased temperature in the CS

and the decreased salinity in the SA made the situation in

the two basins very similar in terms of the density at their

own outflow depths. Also, thermohaline properties in the CS

were still very different from those recorded in the pre-EMT

phase.

The alternating capability of the Cretan and Adriatic seas

in producing dense water by means of the internal salt re-

distribution between the Ionian Sea and Levantine basin has

already been pointed out by Gačić et al. (2011), Theocharis et

al. (2014) and Velaoras et al. (2014). Our comparative anal-

ysis also suggests that the evolution of thermohaline proper-
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Figure 9. Hovmöller time diagrams of temperature, salinity and density for the period 1986–2011 for the Cretan Sea and Southern Adriatic.

The selected areas are shown in Fig. 1a. The 900 and 800 bar levels highlighted represent the outflow level above the Kasos and Otranto sills,

respectively. The y-axes are expanded at the top.

Figure 10. Normalized winter heat fluxes between 1985 and 2011

for the southern Adriatic (SA; blue) and the Cretan Sea (CS; red)

with respect to their own mean. Winter period is defined as Decem-

ber to March. The selected areas are shown in Fig. 1a.

ties of the two potential dense water source areas is subject

to the complex interactions among preconditioning, air–sea

interactions, and local dynamics and circulation.

The spatial and temporal evolution of the water mass struc-

ture was also analysed through the comparison of vertical

profiles of temperature and salinity within two areas: the cen-

tral Ionian and the central Levantine (see Fig. 11a and b for

vertical profiles and Fig. 1 for the location of the areas). This

analysis includes the data from cruises already discussed in

the previous paragraph. The inset graphs enhance the oceano-

graphic characteristics for the deep layer below 1500 dbar.

Salinity and temperature profiles for both areas (Fig. 11a

and b, zoomed areas) are mostly indicative of changes in the

water mass structure related to the EMT. In 1987, the cen-

tral Levantine below 2500 dbar showed a vertical homogene-

ity in temperature and salinity in the ranges ≈ 13.34 ◦C and

≈ 38.66, respectively. In 1991, a slight increase in salinity

from ∼ 500 dbar down to the bottom was seen. In 1995, the

salinity increase was remarkable, especially below 2300 dbar

where it jumped from 38.71 to ∼ 38.84 because of the new

dense CDW outflow (Roether et al., 1996). Its signature was

tracked until 2007, when the salinity started to decrease.

Meanwhile, in the central Ionian the salinity continued to

increase, the abyssal layer being filled by newly formed

AdDW, saltier and warmer; this was still evident in 2011.

The most recent data (2008–2011) in the deep layer in the

central Levantine show a salinity and temperature decrease,

probably a result of the basin internal mixing (Roether et al.,

2014).
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Figure 11. Vertical profiles of temperature (◦C) and salinity in the central Levantine (a) and central Ionian (b). For graphical purposes the

salinity scales have the same unit length but range from 38.6 to 39.6 for the central Levantine, and from 38.2 to 39.2 for the central Ionian.

The selected areas are shown in Fig. 1a.

5 Conclusions

This paper discusses data collected in 2011 during the Me-

teor M84/3 (April 2011) and the Poseidon P414 (June 2011)

cruises in the context of the spatial and temporal evolution

of the large-scale oceanographic properties of the EM during

the last three decades. Additionally, we discussed the interan-

nual variability of the preconditioning and air–sea interaction

(heat fluxes) in the two main dense water source areas for the

EM, i.e South Adriatic and Cretan Seas.

Our results, which are the most recent analysis for the

whole EM, reveal that the thermohaline properties in the

study area were still far from those observed in the pre-EMT

phase (1987). The 2011 oceanographic conditions in the deep

layers of the central Ionian, however, lie between the thermo-

haline characteristics of the EMT and those of the pre-EMT

phase, indicating a possible slow return towards the latter.

The abyssal layer of the central Ionian experienced the ef-

fect of a post-EMT phase, which started in about 2003, char-

acterized by the arrival of newly formed AdDW waters, com-

pletely different from the recent past in that they are saltier

and warmer. In the following years, this new EMDW of Adri-

atic origin seemed to have propagated towards the abyssal

Levantine basin.

This study highlights the relationship between the hydro-

logical property distribution of the upper layer in the Levan-

tine basin and the alternate circulation regimes in the Ionian,

which modulates the salinity distribution in the EM.

The comparative analysis of the evolution of the thermoha-

line properties in the two potential dense-water source areas,

SA and CS, demonstrates that, as far as dense-water accumu-

lation is concerned, the alternation of the two sites is strongly

influenced by the preconditioning driven by the reversal of

the NIG. Nevertheless, the role of the air–sea interaction and

the local dynamics should be taken into account in assessing

the decadal variability of the EM thermohaline cells.
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