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Abstract. Assimilation of high-frequency (HF) radar current

observations and CTD hydrography is performed with the

4D-Var analysis scheme implemented in the Regional Ocean

Modeling System (ROMS). We consider both an idealized

case, with a baroclinic slope current in a periodic channel,

and a realistic case for the coast of Vesterålen in northern

Norway. In the realistic case, the results of the data assim-

ilation are compared with independent data from acoustic

profilers and surface drifters. Best results are obtained when

background error correlation scales are small (10 km or less)

and when the data assimilation window is short, i.e. about 1

day. Furthermore, we find that the impact of assimilating HF

radar currents is generally larger than the impact of CTD hy-

drography. However, combining the HF radar currents with

a few hydrographic profiles gives significantly better results,

which demonstrates the importance of complementing sur-

face observations with observations of the vertical structure

of the ocean.

1 Introduction

Skillful ocean forecasts are of key importance for many op-

erations at sea, especially for emergency response services

such as search-and-rescue and oil spill mitigation. In partic-

ular, near-surface currents are an important input to opera-

tional drift forecast models. However, the predictability of

ocean currents remains a challenge due to their turbulent na-

ture and high spatial variability, for example, associated with

eddies.

Observations of the ocean surface temperature (Wentz

et al., 2000; Rayner et al., 2003) and elevation (Fu et al.,

1994) from satellites have become plentiful during the last

decades. New satellite observations include surface salinity

and currents, but the uncertainty of these products still re-

mains too high for use in models with high horizontal res-

olution, i.e. on the order of 1 km. Through efforts such as

the International Argo Program (Roemmich et al., 2009), ob-

servations of the subsurface ocean are increasing in number,

but still remain too few to resolve the vertical and horizontal

density structure of, e.g. oceanic fronts.

Advanced data assimilation (DA) techniques developed in

the field of numerical weather prediction are now used to a

great extent within ocean modelling. The DA schemes range

from multivariate implementations of optimal interpolation,

such as Ensemble Optimal Interpolation (Oke et al., 2010)

in the BLUElink forecast system (Brassington et al., 2007),

to ensemble Kalman filters (EnKF) (Evensen, 2003) in the

TOPAZ 4 system (Sakov et al., 2012) and variational meth-

ods (Dimet and Talagrand, 1986; Courtier et al., 1994) used

in UK Met Office’s FOAM (Blockley et al., 2014). Kalnay

et al. (2007) and Gustafsson (2007) provide an interesting

discussion on the advantages of both EnKF and the time-

dependent variational method, 4D-Var. The latter approach

is applied in this study. In 4D-Var, the aim is to minimize a

cost function, which takes both misfits between model and

background state and between model and observations into

account. One of the main benefits of 4D-Var lies in the fact

that observations are evaluated at the correct time.

Common for these forecast systems is that few, if any, cur-

rent observations are assimilated, mainly owing to a lack of

observations. HF (high-frequency) radars, which can sam-

ple surface currents up to 200 km offshore, provide an ex-

cellent option for mapping surface currents in coastal areas

(e.g. Paduan and Washburn, 2013; Barrick et al., 1977; Chap-

man et al., 1997; Gurgel et al., 1999). Real-time surface cur-
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rents from HF radars can be used for monitoring and emer-

gency applications, but also for data assimilation to improve

the ocean forecasts. Previous studies (see Breivik and Saetra,

2001; Oke et al., 2002; Paduan and Shulman, 2004; Barth

et al., 2008; Zhang et al., 2010, for some examples) demon-

strate the potential of HF radar current observations in ocean

data assimilation systems. The aim of this study is to inves-

tigate whether assimilation of current observations from a

rapidly deployable HF radar system (Kjelaas and Whelan,

2011) in a high-resolution ocean model is a feasible way to

improve the regional ocean forecast during, e.g. an oil spill

event.

Assimilation of HF radar currents requires an ocean fore-

cast system which is ready to use such observations as soon

as they become available. The Regional Ocean Modeling

System (ROMS; http://www.myroms.org), for which a so-

phisticated 4D-Var assimilation system, described in detail

in Moore et al. (2011a, b, c), has been developed, is im-

plemented for a region in northern Norway. The circulation

pattern in this area is dominated by two northward flowing

currents, the North Atlantic Current which flows along the

shelf slope, and the Norwegian Coastal Current. Typical cur-

rent speeds are on the order of 0.2–0.5 m s−1. The proper-

ties of the water masses associated with these currents are in

strong contrast to one another, as the coastal current strongly

depends on freshwater from the Baltic Sea and the Norwe-

gian fjords. During winter the coastal water is also noticeably

colder than the saltier and warmer water masses of Atlantic

origin further offshore. The region just west of Vesterålen,

where the continental shelf narrows considerably, is charac-

terized by high eddy kinetic energy levels (Isachsen et al.,

2012), which makes this a challenging area for ocean predic-

tions. Additionally, there is a strong tidal signal in the area

(Moe et al., 2002), with tidal ranges of 2–3 m. Initial tests us-

ing an idealized model were made before the tests with a real-

istic model configuration. These tests were motivated by the

wish to investigate more in detail the possible impact of HF

radar observations in constraining unstable, highly energetic

and narrow currents on steep slopes, such as we find offshore

of Vesterålen. These idealized experiments were carried out

prior to the field experiment and provided useful information

about the expected impact of assimilating real observations,

as well as starting points for tuning the data assimilation sys-

tem with regard to values of e.g. assimilation window length

and horizontal error correlation length scales.

We use the incremental, strong-constraint (perfect model

assumption) IS4DVAR driver of ROMS, in which the cost

function is minimized iteratively by applying a conjugate

gradient algorithm, so-called inner loops. Outer loops allow

for relinearization of the full model trajectory where the in-

termediate estimates of the cost function are taken into ac-

count, and is a way to account for nonlinearities not rep-

resented in the tangent linear and adjoint models. ROMS

IS4DVAR is well documented in a series of studies, such

as Powell et al. (2008), Broquet et al. (2009), Zhang et al.

(2010) and Zavala-Garay et al. (2012). As a consequence

of the perfect model assumption, the analyses produced by

IS4DVAR corresponds to a trajectory of the forecast model.

Thus, this approach is not capable of correcting discrepan-

cies caused by flaws in the numerical model itself. We show

that the skill of the predictions produced by the ocean fore-

cast system indeed increases after just one assimilation cycle

when HF radar total currents are included. Including in situ

temperature and salinity profiles to the assimilated observa-

tional data set adds an additional constraint on the circula-

tion.

We start by describing the observational data sets in

Sect. 2. In Sect. 3 we present an idealized assimilation ex-

periment, before a realistic experiment is presented and com-

pared with independent observations in Sect. 4. A summary

and some concluding remarks are given in Sect. 5.

2 Field campaign and observation network

An array of three SeaSonde HF radars, manufactured by

CODAR Ocean Sensors, was deployed along the coast

of Vesterålen in northern Norway in the first week of

March 2013. All three stations were demobilized in the be-

ginning of June 2013. The operating frequency of the radars

was 13.525 MHz, thus, measuring the Bragg backscatter

from waves with wavelength of about 11 m. Paduan et al.

(2006) provide an excellent analysis of sources of errors in

the raw radial currents. When the radials are combined to

form gridded fields of total current vectors, an additional

error, geometrical dilution of precision (GDOP) (Chapman

et al., 1997), is introduced. Each observation data file trans-

mitted by the HF radar system contained estimates of the ob-

servation errors, which are a combination of signal to noise

rations, velocity variances within range cells, and GDOP for

two or more systems. Typically, these errors were less than

20 % of the observed values within a distance of about 40 km

of the radars, gradually increasing to almost 100 % near the

limits of their range. The average relative error is found to be

similar to what would be expected if the errors were mainly

due to GDOP. As the currents observed by HF radars include

tidal currents, the observations are usually subjected to a cor-

rection of the tidal signal before assimilation to account for

discrepancies in observed and modelled tides, as described in

Zhang et al. (2010). However, as our time series is too short

to provide a good estimate of the observed tidal signal, no

corrections of this kind have been made. This would, how-

ever, also be the case during a realistic event, and our results

are thus a demonstration of the potential impact of a rapidly

deployable HF radar system.

The main motivation for deploying the radars in this part

of Norway was the co-location with the annual cod stock as-

sessment cruise of the Institute of Marine Research (IMR)

(see Fig. 1), during which hydrographic and acoustic data

are routinely collected. During the 10-day long 2013 cruise,

Ocean Sci., 11, 237–249, 2015 www.ocean-sci.net/11/237/2015/

http://www.myroms.org


A. K. Sperrevik et al.: Assimilation of high-frequency radar currents 239

  10
o
E   12

o
E   14

o
E   16

o
E   18

o
E 

  67
o
N 

 30’ 

  68
o
N 

 30’ 

  69
o
N 

 30’ 

  70
o
N 

Figure 1. The ship track of R/V Johan Hjort during the cod stock

assessment cruise in March 2013. The cruise started in Tromsø

(north-east in map) and ended in Bodø (bottom middle in map).

The red dots indicate stations where CTD profiles where taken. The

positions of the three HF radars and the ADCP rig are shown as

green diamonds.

a total of 96 CTD profiles were collected (CTD stations are

shown in Fig. 1). Cross-shelf sections allow for sampling of

water masses of different characteristics. The near-surface

observations vary from 2 ◦C and a salinity of 33 inside the

archipelago to 6 ◦C and a salinity of 35 at the furthest point

offshore.

Seven surface drifters from MetOcean, Canada, were de-

ployed from the research vessel (R/V) Johan Hjort as it

passed the area covered by the HF radars (see Fig. 2). These

were iSLDMB (iridium Self Locating Datum Marker Buoy)

drifters, which have a drogue centred at 65 cm below the sur-

face. The precision of the GPS positions are approximately

10 m, implying an error circle with a radius of 10 m. The

analysis in Sect. 4.3 focuses on 3 h long trajectory segments

during which the buoys travelled an average of ∼ 2700 m.

The errors are thus typically less than 1 % of the observed

distance.

Prior to the cod stock assessment cruise we deployed a

mooring with three separate acoustic Doppler current pro-

filers (ADCPs). The total water depth at the site was 86 m,

its location is shown in Fig. 2. Two Anderaa ADCPs of

600 kHz were mounted at a depth of about 40 m, one up-

ward looking and one downward looking, in addition to an

upward looking 1 MHz Nortek Aquadopp Profiler at about

10 m depth. The observed ocean currents at 1 m depth from

the Nortek Aquadopp ADCP had a variability (standard de-

viation) of 17 cm s−1. The accuracy is 2 cm s−1 for 30 min

averaged samples. This accuracy is obtained as the mean er-

ror of the 30 min averages, given by the standard deviation

of bootstrapped samples in each averaging period. The field
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Figure 2. Positions of the HF radar stations, drifter trajectories, and

ADCP rig. Starting from the south the HF radar stations were at

Litløy, Hovden and Nyksund. The grey arrows are total vector cur-

rents from the HF radar system, indicative of the coverage when all

three stations were operational. The blue lines indicate the iSLDMB

trajectories. The position of the ADCP rig is marked by a green di-

amond.

campaign is described in more detail in Röhrs et al. (2015)

and Christensen et al. (2013).

3 Idealized experiments

Prior to applying the assimilation system to a realistic case

we investigate various options associated with the IS4DVAR

scheme using an idealized setup. More specifically, the

IS4DVAR scheme is tested for an idealized case of strongly

nonlinear, unstable baroclinic flow along a steep slope. The

impact of varying the horizontal error correlation scales,

which are isotropic, the number of inner and outer loops, as

well as the length of the assimilation window is assessed to

provide an indication on how to configure the assimilation

system for the realistic case later on. The tests are set up such

that the model system is essentially without any systematic

error and the evaluation of the test cases is primarily based

on the standard deviation of the analysis error. The main mo-

tivation of these experiments is to test the applicability of

IS4DVAR for such energetic and nonlinear flow as we find in

our study area. Focus is therefore on the ability of IS4DVAR

to reproduce the observed flow features; hence, we have not

added any errors to the synthetic observations. We use a lin-

ear equation of state, and density changes are accommodated

by imposing surface and bottom heat fluxes; hence, in con-

trast to the realistic experiments described later on, salinity

plays no role here.

There are seven prognostic variables in ROMS

(u,v,T ,S,ζ, ū, v̄) representing horizontal velocity in

www.ocean-sci.net/11/237/2015/ Ocean Sci., 11, 237–249, 2015
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easterly direction, horizontal velocity in northerly direction,

potential temperature, salinity, vertically averaged velocity

in easterly direction, vertically averaged velocity in northerly

direction, and sea surface height, respectively.

3.1 Model grid

The model domain is configured as a channel with periodic

north–south boundary conditions and solid walls along the

eastern and western boundaries. The grid is Cartesian with

a horizontal resolution of 2.4 km. We use the f plane ap-

proximation with a constant Coriolis parameter equivalent

to 65◦ N. The domain size is 100× 120 interior grid points

(easterly/northerly directions), and we use 35 vertical levels.

The main topographic features are (i) a shelf along the

eastern boundary, with average depth of 200 m, and width

of approximately 70 km, (ii) a sharp shelf break with a hy-

perbolic tangent profile (maximum slope is approximately

0.1), and (iii) a deep ocean floor with average depth of ap-

proximately 1800 m towards the western boundary. In order

to trigger instabilities, the depth is perturbed with random

values between ±50 m.

3.2 Initialization and forcing of the model

The initial conditions are uniform with T = 10 ◦C, S = 35,

ζ = 0 m and zero velocities. Constant heat fluxes over a pe-

riod of 150 days are applied. The aim is to produce unsta-

ble baroclinic currents that will be guided by topography. To

accommodate this, we apply a net bottom heat flux into the

ocean on the shelf and a net surface heat flux out of the ocean

over the deep ocean (Isachsen, 2011). These fluxes are ex-

actly balanced, such that the net heat flux into the ocean is

zero. Since the deep ocean is wider than the shelf, the sur-

face fluxes are smaller than the bottom fluxes (approximately

160 and 440 W m−2, respectively). The momentum and net

freshwater fluxes are zero.

The water heated over the shelf bottom is rapidly mixed

upwards through the entire water column resulting in a sharp

temperature front near the shelf break. Due to geostrophic

adjustment, a northward flowing, topographically controlled

slope current develops. This current is baroclinically unstable

and heat exchange with the deep water region is facilitated by

macro turbulence (ocean eddies), see Fig. 3.

The domain is periodic so that the water masses flowing

out of the domain at the northern boundary reappear at the

southern boundary. As shown in Fig. 3, the mean northward

surface velocity has a maximum of about 1 m s−1 over the

slope, which means that a drifting object can potentially be

advected through the domain in about 3 days. The flow is also

characterized by baroclinic and barotropic waves and eddies

with propagation speeds that are generally different from the

mean flow speeds. To investigate how upstream conditions

influence the dynamics in this region, we performed an ad-

joint sensitivity study (e.g. Moore et al., 2009; Zhang et al.,
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Figure 3. The mean northward surface velocity during a 3-day sim-

ulation. The region enclosed by the black line is used for assessing

the performance of the data assimilation system.

2009), focusing on the advection of water masses, hence, in-

vestigating the sensitivity of the surface velocity variance to

temperature in a short section over the slope in the middle of

the domain. Based on our results we conclude that an upper

limit of 3 days for the assimilation experiments is adequate.

3.3 Configuration of the data assimilation system

In our experiments, data assimilation is only considered

for interior grid points and no adjustment of the sur-

face/bottom fluxes or boundary conditions are made. The

4D-Var schemes implemented in ROMS also has options for

multivariate background error correlations, which is based

on the assumption of geostrophic balances and the baroclinic

contribution to sea surface height as described in Moore et al.

(2011c). In our case, the Rossby radius is small and the

flow is highly unstable and energetic, implying considerable

ageostrophic forcing. In addition, the main current is close to

the coast and runs along very steep bathymetry; hence, we do

not make use of any such options here. Correlation between

state variables are, however, implicitly accounted for by the

model physics. The estimates of background errors are taken

from day 120 to 150 of the spin-up period, using the stan-

dard deviation of each variable in each grid point. The ver-

tical error correlation lengths for all variables is set to 30 m.

Horizontal length scales are isotropic and the same for all

variables in the entire model domain (Moore et al., 2011c).

3.4 Synthetic observations

Synthetic observations are taken from a separate model simu-

lation that has been forced with time-varying momentum and

heat fluxes. An example of the difference between the simu-

lation used for synthetic observations and the simulation that

forms the basis for the assimilation experiments is shown in

Ocean Sci., 11, 237–249, 2015 www.ocean-sci.net/11/237/2015/
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Figure 4. The difference between the restart fields used for the

assimilation experiments and for obtaining synthetic observations,

here showing sea surface height.

Fig. 4. The difference between the simulations is primarily

related to small-scale features associated with the baroclini-

cally unstable current over the slope. An estimate of realistic

observation errors is assigned to the synthetic observations

for use in the assimilation system, but no random or system-

atic errors are added to the observation values themselves.

The observation locations are shown in Fig. 5. Hydro-

graphic observations, e.g. such as those taken from a research

vessel with a CTD, are simulated by taking a single verti-

cal profile of temperature every hour, zigzagging southwards

with four sections across the slope. A total of 64 temperature

profiles are processed and each individual observation is as-

signed a constant error of 0.05 K. Two simulated HF radars

are used to provide hourly total current vectors in 61 loca-

tions. These HF radar stations are positioned a distance of

ya = 118 km and yb= 166 km from the southern boundary.

The idealized observations are taken at positions where the

beams from the two simulated HF radars intersect.

We assume that the HF radars retrieve radial currents from

an effective depth, De= 2 m, with an azimuthal resolution

of 1θ = 11.25◦. Furthermore, we assume that the maximum

range of the radars is R= 80 km, and that the relative obser-

vation error σR associated with the radial currents is a linear

function of radial distance r . The azimuthal resolution de-

termines the number of beam directions and, combined with

the maximum rangeR, also the number of intersecting beams

from which we can estimate total current vectors.

To obtain the synthetic HF radar observation errors we

have first used standard vector algebra to determine the posi-

tions were the beams intersect and then calculated the errors

in the easterly and northerly directions (σ
(E)
GDOP,σ

(N)
GDOP) due

to geometric dilution of precision (GDOP) (Chapman et al.,

1997). The total errors are then assumed given by

(σ
(E)
tot ,σ

(N)
tot )=

(
σ

(E)
GDOPσRu,σ

(N)
GDOPσRv

)
, (1)
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Figure 5. The black dots show where temperature profiles are taken.

One full vertical profile is taken every hour and four sections are

made, starting from the north. The red dots are the intersection

points of the two simulated HF radars (which are marked as green

triangles). Hourly observations of total current vectors are produced

for the assimilation. The water depth is indicated in grey and ranges

from 200 m on the shelf (light grey) and 1800 m in the deep part

(dark grey).

where (u,v) are the observed speeds in the easterly and

northerly directions, respectively. The errors in a real HF

radar system are more complex than those given by Eq. (1),

but a comparison with error statistics from a CODAR Sea-

Sonde system deployed near Fedje in western Norway indi-

cate that the values obtained from Eq. (1) are reasonable (not

shown here).

Finally, in order to cover the region with the most energetic

currents near the slope, the entire simulated HF radar system

is translated approximately 40 km westwards from the east-

ern boundary, see Fig. 5.

3.5 Results of the idealized experiments

We only consider the velocities (u,v) and the temperature T

in the evaluation of the idealized experiments. Furthermore,

we only consider a limited region of interest similar to the HF

radar coverage area (see Fig. 3) and also restrict the evalua-

tion to the two uppermost vertical levels of the model. We

evaluate a 3-day period using sequential data assimilation

when the assimilation window is shorter than 72 h.

The procedure is as follows: each model simulation results

in an analysis, i.e. a solution of IS4DVAR, which is compared

with the “truth” as represented by the simulation that pro-

vides the synthetic observations. Average bias and standard

deviation for each of the variables (u,v,T ) are calculated

based on all grid points and all output times in the region

of interest. Due to the idealized design of the experiments,

the (u,v,T ) variables have little bias compared to what we

would expect from a realistic model. The standard deviation

is used when deciding which options yield the best results.

www.ocean-sci.net/11/237/2015/ Ocean Sci., 11, 237–249, 2015
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Table 1. Standard deviation (SD) of analysis error in idealized ex-

periments: comparison between different error correlation scales.

SD(u) in m s−1 SD(v) in m s−1 SD(T ) in K

None 0.183 0.223 0.511

5 km 0.168 0.209 0.437

10 km 0.174 0.216 0.447

20 km 0.180 0.223 0.452

Table 2. Standard deviation of analysis error in idealized experi-

ments: comparison between different observation data sets.

SD(u) in m s−1 SD(v) in m s−1 SD(T ) in K

No assimilation 0.183 0.223 0.511

HF only 0.150 0.188 0.442

CTD only 0.183 0.223 0.471

Both HF and CTD 0.168 0.209 0.437

A total of 15 different model simulations with IS4DVAR

have been made. In the simulations we have considered

(i) the horizontal background error correlation scales, (ii) re-

linearization of tangent linear and adjoint models using outer

loops, (iii) length of assimilation window, and (iv) the rel-

ative impact of HF radar observations compared to hydro-

graphic observations.

The results show that using a small horizontal error corre-

lation scale of 5 km gives best results (see Table 1); a likely

explanation is that observation values are erroneously dis-

tributed across sharp gradients when larger correlation scales

are used. Furthermore, using outer loops is beneficial, with

no significant improvement when using more than two re-

linearizations. The length of the assimilation window also

plays a role: slight improvement is obtained when reducing

the window length from 72 to 24 h, but there is essentially

no difference when the window length is further reduced to

6 h. The impact of assimilating HF radar currents is gener-

ally larger than the impact of assimilating hydrography, but

in both cases we obtain improvement for the temperature.

Assimilating only hydrography profiles does not improve the

currents, while assimilating HF radar currents has a positive

impact on both the velocities and the temperature (see Ta-

ble 2).

4 Realistic experiments

The realistic experiments were carried out with a model ap-

plication covering the region of the Lofoten and Vesterålen

archipelago with 2.4 km horizontal resolution (see Fig. 6).

The bathymetry of the domain resembles that of the idealized

application, with a shelf in the eastern part of the domain and

a steep shelf break.

Figure 6. The model domain. The full domain of “NorKyst800” is

shown with the black border while our coarser subdomain is shown

with the red border.

4.1 Model grid and forcing data

The model domain of the realistic model simulations is a sub-

set of the operational high-resolution ocean model at MET

Norway (Albretsen et al., 2011) centred around the Lofoten

and Vesterålen archipelago. The model has 35 vertical lay-

ers with increased resolution near the surface. This model

setup has also been used for transport estimates of north-

eastern Arctic cod eggs and larvae, and a more thorough val-

idation using in situ and drifter data is presented in Röhrs

et al. (2014). As ocean data assimilation requires extensive

supercomputing resources, the horizontal resolution has been

decreased from 800 m to 2.4 km compared to the operational

setup.

The lateral boundary conditions are retrieved from the op-

erational setup at 800 m resolution, using 3-hourly fields of

sea surface elevation, temperature, salinity, and currents. To

remove fine-scale features from the high-resolution fields,

that are unresolved in the coarser grid, the fields are aver-

aged over 3×3 grid points before they are interpolated to the

coarser grid.

Ocean Sci., 11, 237–249, 2015 www.ocean-sci.net/11/237/2015/
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The simulations use open boundary conditions for sea

surface elevation and barotropic currents (Chapman, 1985;

Flather, 1976). For tracers and baroclinic velocities, bound-

ary conditions as described in Marchesiello et al. (2001) are

used. The adjoint and tangent linear models do not have

the same options for boundary conditions, however, so that

clamped boundary conditions with a sponge layer are applied

for these.

As atmospheric forcing we use hourly fields of air temper-

ature and humidity 2 m above ground, 10 m winds, sea level

pressure, cloud cover, and precipitation from MET Norway’s

operational weather forecast at 4 km resolution (Kristiansen

et al., 2009).

A spin-up model simulation was initialized at 15 Febru-

ary 2013 from the smoothed high-resolution fields, from the

operational setup, and run through 15 April 2013. The ini-

tial conditions for the assimilation simulations were obtained

from the spin-up simulation.

4.2 Configuration of the data assimilation system

The configuration of the assimilation system in the realistic

experiment is based on the results from the idealized case

(see Sect. 3.3). Overall, the parameters values we find to be

optimal in the idealized case are also optimal in the realistic

case, with the exception of the horizontal error correlation

length scale, which is increased. Based on the outcome of a

series of tests, we proceed with horizontal background error

correlation scales of 10 km, 10 inner and 2 outer loops.

To further assess the impact of the assimilation window

length on the performance of the assimilation system, a twin

experiment was conducted with the realistic model setup. A

model simulation covering the winter months of 2011 was

used as the true ocean state. Observations of u and v, in an

area similar to that of HF radar coverage during the field cam-

paign, were collected from the true state at every hour for a

duration of 72 h. Random errors, with mean value of zero,

were added to the observations. A period in 2013 with similar

weather conditions was identified, and used as initial condi-

tions for the assimilation experiments. The assimilation sys-

tem was run for this 72 h period several times, successively

decreasing the window length from 72 to 3 h. Comparing sur-

face currents in the resulting analyses with the “true” state,

we find the assimilation window length to have little impact

on analysis quality. Based on the results from the idealistic

experiments, as well as results from the realistic model with

real observations, a window length of 24 h has been used in

the following experiments.

In our tests, we also experimented with correlated observa-

tion errors in u and v (which is inevitable due to the way to-

tal vectors are calculated). The difference between runs with

correlated vs. uncorrelated errors added to the synthetic ob-

servations was marginal.

We evaluate the performance of the data assimilation sys-

tem using independent observations from the field campaign

(Sect. 2); that is, observations that have not been used during

the data assimilation and, therefore, serve as an independent

measure of skill.

4.3 Comparison with surface drifters

Ocean forecasts are used for input to trajectory models,

which predict the drift of, e.g. oil spills or objects in the sea.

Thus, the ability of the forecast to reproduce the trajectories

of the surface drifters is a good measure of forecast skill.

To evaluate the error of the assimilated HF radar obser-

vations we compare radial HF radar currents with the corre-

sponding component of drifter speeds, shown in Fig. 7. Only

radials from the two northernmost HF radars, Hovden and

Nyksund, are included due to few drifter positions within the

range of the Litløy radar. We find the overall agreement be-

tween the two data sources to be good, with a correlation

coefficient of 0.72.

As the drifters are rapidly advected northwards after de-

ployment and thus leaving the range of the HF radars,

the results discussed in this section are limited to a sin-

gle data assimilation cycle. The experiments are started on

18 March 2013 at 00:00 UTC. IS4DVAR is run for 24 h, as-

similating observations collected during this period and pro-

ducing modified initial conditions for 18 March 00:00 UTC.

Next, a 5-day free simulation is run, initiated from this up-

dated ocean state. In the following discussions, the first day

of these simulations is termed “analysis”, while the remain-

ing 4-day period is termed “forecast”. This is due to the fact

that the observations taken within the first 24 h were used

during assimilation. It should be noted that the atmospheric

forcing used in these experiments is of higher quality than

what would have been available in a near real-time setting,

which affects the predictability of the ocean forecast.

This procedure has been repeated three times, with dif-

ferent sets of observations to assess the impact the different

observation data sets have on the analysis and subsequent

forecast. During the first simulation, only CTD hydrogra-

phy profiles (both temperature and salinity) were assimilated

(six profiles just south of the HF coverage area fall within the

assimilation window). The observation error standard devia-

tions are set to 0.1 ◦C for temperature and 0.01 for salinity.

These are the same values as used by Broquet et al. (2009)

and, as argued in their paper, a choice that may enhance the

impact of this observation type, which is typically limited in

numbers.

In the following, results from this simulation will be de-

noted “CTD”. The second simulation only included HF radar

total vectors, and is denoted “HF”, while the third simulation

assimilated both CTD profiles and HF radar currents, and is

denoted “ALL”. Additionally, a control simulation, in which

no data assimilation was performed, was conducted for the

same time period, in the following denoted “CTRL”.

During the free simulations, initiated from the analyses

produced by IS4DVAR, simulated surface drifters are re-
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Figure 7. Correlation between radial HF radar currents and the cor-

responding component of drifter speeds.

leased in the positions occupied by the real surface drifters

from the field campaign. Simulated surface drifters are re-

leased every 3 h at the position of the real drifters at that time.

The depth of the simulated drifters is set to 65 cm below the

sea surface, which corresponds to the average drogue depth

of the iSLDMB drifters. In the same manner, numerical floats

were released in the control simulation. We validate the re-

sults from the analysis period and the forecast period of the

simulations separately.

The trajectories of the iSLDMB surface drifters released

during the field campaign are compared with their numerical

twin from the free simulations following the same methods

as used in Röhrs et al. (2012). First, the vector correlation be-

tween predicted and observed drifter velocities is evaluated

using an analysis similar to the method described in Davis

(1985). The trajectories are split into 3 h long segments, and

the drift velocities for these segments are then calculated.

Defining the vector correlation as

r = 1−
〈(vi − vj )

2
〉

〈v2
i 〉+ 〈v

2
j 〉
, (2)

the correlation coefficients r for simultaneous pairs of drifter

velocities may be calculated. The results are given as a value

between 1 and −1, where a value of 1 means perfect corre-

lation in both speed and direction, and a value of 0 means no

correlation, while a value of −1 means that the drifters are

anti-correlated, i.e. having opposite direction but the same

speeds.

The resulting vector correlations between the assimilation

simulations and the real drifters are shown in Fig. 8. The

quality of the CTRL simulation decreases rapidly and, as

the simulation enters into the forecast period, modelled and

observed drifter velocities become uncorrelated. The CTD

simulation follows the CTRL closely. In fact, the correla-

tion coefficient for the CTD simulation is mostly below the

CTRL simulation. As stated above, only six CTD profiles,

sampled south of the area where the drifters were deployed,

Figure 8. Vector correlation as a function of time, when compar-

ing velocity vectors from simulated drifters with the corresponding

values derived from the trajectories of the iSLDMB surface drifters.

The vertical, dashed line indicates the shift from the analysis to the

forecast period. A value of 1 means perfect correlation in both speed

and direction and a value of 0 means no correlation, while a value

of −1 means that the velocities are anti-correlated, i.e. same speeds

but opposite directions.

were used. We do not have CTD data co-located with any

drifters and, therefore, cannot draw any conclusions regard-

ing the impact of the CTD data. Assimilation of HF radar

currents, on the other hand, significantly improves the simu-

lated drifter velocities during both the analysis and the fore-

cast period. Note that adding CTD hydrography to the HF

currents further improves the model predictions during the

first forecast day, which is in contrast to the detrimental ef-

fect of only using CTD observations. A likely explanation is

that the addition of hydrographic observations acts as an ad-

ditional constraint of the vertical density structure, demon-

strating the importance of constraining all state variables.

The significance of the improvement has been tested com-

paring ALL and CTRL using a Wilcoxon rank–sum test. The

improvement in current direction is statistically significant,

while not so for the speeds. Our interpretation is that the ma-

jor benefit of assimilating HF radar currents in these simu-

lations is the correction of the current direction, e.g. adjust-

ments in the positions of eddies and the coastal current. This

test does not imply that no improvement in speed is obtained

(Fig. 8 indicates that the results are better) but that the impact

cannot be statistically verified with the limited observational

data available.

The impact of data assimilation is also evaluated by com-

paring observed and predicted trajectories. For this compari-

son we use the method presented in Liu and Weisberg (2011),

in which not only the end points of the observed and mod-

elled trajectories are compared but also the entire history

of the drifter trajectories. The normalized cumulative La-

grangian separation is defined as
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Figure 9. Drifter pathways for two different drifters as observed

(green), predicted by CTRL (red) and predicted by ALL (black).

The grey tracks shows the pathways of the perturbed initial position

floats. The trajectories shown here were released at the start of the

analysis.

s =

N∑
i=1

di/

N∑
i=1

loi, (3)

where di is the separation distance between observed and

modelled trajectory endpoints at time ti after initialization,

loi is the length of the observed trajectory and N is the to-

tal number of time steps evaluated. A skill score S is then

defined as

S =

{
1− s, if s ≤ 1,

0, if s > 1.
(4)

High skill score means that observed and modelled trajecto-

ries agree well throughout the period under evaluation.

The skill score is calculated both for the analysis period

and for the following 48 h of the forecast period. The results

are shown in Table 3. Assimilation do improve predictions

of drifter trajectories, although the impact is more limited

compared to the drifter velocities. The results show that the

skill improves when we consider periods longer than a day.

In these cases, data assimilation seems to constrain the ocean

circulation in such a way that the predicted trajectories does

not stray as far away from the observed paths as they do in a

free simulation. As an example of the ability of the model to

predict pathways of drifting objects before and after assimila-

tion, two examples of modelled versus observed trajectories

are shown in Fig. 9. Note that the drifter in the left panel is

released within the area covered by the HF radar antennas,

while the drifter in the right panel is released outside of the

coverage area.

4.4 Comparison with ADCP measurements

We proceed by comparing model results with current mea-

surements from the ADCP rig deployed in our area of inter-

est. A brief comparison of the HF radar total currents with

Table 3. Skill score during analysis and forecast when comparing

with the surface drifters.

Observation set Analysis Forecast

CTRL 0.42 0.18

HF 0.44 0.30

CTD 0.40 0.16

ALL 0.43 0.33

Figure 10. The current roses show current speed and direction dis-

tributions at the ADCP location during the observation campaign

for (a) ADCP (at 1 m) and (b) HF radar. Only simultaneous obser-

vations have been used.

the ADCP measurements is shown in Fig. 10. Hourly aver-

ages of the ADCP observations at 1 m depth have been gen-

erated to better match the HF observations, and only observa-

tions from periods where observations from both sources are

available are included. The ADCP measures greater current

speeds than the HF radar, which may be due to the fact that

the HF radar currents are spatially averaged as well as tem-

porally. It should also be noted that the dominating current

direction is slightly more eastward in the HF measurements

and that the current directions measured by the HF radars

exhibit greater spread.

The results shown in this section are based on 10 se-

quential data assimilation cycles, where HF radar currents as

well as CTD profiles of temperature and salinity are assimi-

lated. Starting from the analysis of the “ALL” experiment de-

scribed above, the model state at the end of the assimilation

window is used as the initial condition for a new assimila-

tion cycle, thus, generating an analysis for the following day.

This procedure is then repeated. From each resulting analy-

sis a forecast run is initiated, in the same way as described

above. Each forecast thus has a 4-day overlap with the fore-

cast from the previous day.

We compare the results from these forecasts with the speed

and direction measured by the ADCPs. The upper ADCP

measured currents starting 0.5 m below the surface and down

to 8 m in vertical bins of 25 cm, while the lower ADCP mea-

sures currents from 41 m to the surface in 1 m bins. From the

lower ADCPs, only data below 8 m are used for validation.
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Figure 11. RMSE and bias of transport speed (upper panels) and

direction (lower panels) in the water column stretching from 0.5 to

8 m below the surface relative to the ADCP, as a function of forecast

day.

To account for discrepancies between the vertical resolution

of the model and the observations, we have chosen to focus

the comparison on depth-integrated values. To evaluate the

depth-integrated flow, we integrate from 0.5 m below the sur-

face and down to 8 m for the upper ADCP, while for the lower

ADCP we integrate from 8 m and down to 41 m. Transport

magnitude and direction, given by the vertically integrated

ADCP currents, are compared with the same quantities cal-

culated from model results. Root mean square error (RMSE)

and bias values are calculated as a function of forecast day,

and values corresponding to the same forecast day number

are binned together

From inspection of time series of transport magnitude and

direction (not shown), we find that the upper ADCP mea-

sures a transport with mostly north–northeasterly heading

during the period. The CTRL simulation predicts a north–

northwest-headed current during the period in question. In

addition to the discrepancy in direction, the transport mag-

nitude predicted by the CTRL is too weak during the whole

simulation in both upper and lower sections. Figures 11 and

12 show mean RMSE and mean bias of the series of simula-

tions along with the means ±1 standard deviation.

In both upper and lower sections it is evident that assimi-

lation causes a reduction in speed RMSE and bias compared

with the control run. The change in bias indicates that the pre-

dicted current remains more energetic throughout the fore-

cast period. As for direction, the assimilation runs perform

better than the control run in the lower section, with reduced

RMSE for all forecast days. In the upper section, however,

direction predictions seem to be of similar quality in the as-

similation runs as in the control run. A possible explanation

for this might be that the currents in the near-surface layers

Figure 12. RMSE and bias of transport speed (upper panels) and

direction (lower panels) in the water column stretching from 8 to

41 m below the surface relative to the ADCP, as a function of fore-

cast day.

are strongly affected by the wind stress. Any changes made

to the current in the near-surface layers by the assimilation

system may thus have a short life span in the model if the

wind stress imposed on the surface yields a different direc-

tion. Changes at deeper depths, on the other hand, have a

greater chance of being sustained. This advocates for the in-

clusion of surface forcing in the control vector.

5 Discussion and concluding remarks

In the presented experiments we have assimilated HF radar

and hydrography profiles in both an idealistic and a realis-

tic model. In both cases hydrography profiles were sparse in

comparison with the number of HF radar current observa-

tions. The realistic experiments were carried out for a spe-

cific time period and the results are therefore influenced by

local weather conditions and do not necessarily represent the

variations in predictability of different flow regimes.

Starting with an idealized test case with synthetic HF to-

tal currents and hydrography profiles being assimilated, we

find that it is necessary to keep the horizontal error corre-

lation length scales fairly small. The strong currents along

the steep topography are associated with sharp fronts and,

when large correlation length scales are used, the informa-

tion provided by the observations may be erroneously spread

across these fronts. As the incremental strong constraint 4D-

Var is based on repeated iterations of a tangent linear version

of the model and its associated adjoint model, the lineariza-

tion assumption needs to hold throughout the assimilation

window. In our case, with strongly nonlinear and energetic

currents, this window needs to be quite short. Both the ideal-

ized and the realistic experiments give best results when the
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window is 24 h. We also find that relinearizing the prelim-

inary solution through outer loops is beneficial for the per-

formance of the data assimilation system. These findings are

confirmed when similar experiments are performed with a

realistic model with real observational data.

Hydrographic observations alone did not yield a signifi-

cant positive impact on the surface currents, not even in the

idealized experiments where more (synthetic) profiles were

assimilated, compared to the realistic case. The profiles do,

however, have a positive impact on the density field in the

model, reducing analysis salinity RMSE from 0.31 in the

control run to 0.16 in the experiment where both HF currents

and hydrography profiles were assimilated. Also, the temper-

ature RMSE is reduced from 3.0 to 2.2 ◦C. As the ship was

moving in the opposite direction of the dominating currents,

ship-based observations of temperature and salinity during

the forecast period have little value for validation purposes.

Comparison with satellite observations of sea surface tem-

perature (not shown here), however, suggests that tempera-

ture predictions are improved throughout the forecast when

CTD profiles are assimilated.

With assimilation of HF currents, on the other hand, the

current forecasts are improved. Gridded fields of surface cur-

rents, with temporal resolution of 1 h provide the data assim-

ilation system with improved positioning of eddies and more

realistic current speed. In the idealized experiments we even

see improvement in the temperature. There are indications

that this also holds in the realistic experiments, but indepen-

dent observations are too sparse to confirm this. Using both

HF currents and CTD profiles for assimilation yields the best

results. Although CTD profiles did not improve the current

forecasts alone, together with the HF radar surface currents

they seem to add an additional constraint on the circulation.

These results demonstrate the importance of sampling not

only the surface but also the subsurface density structure.

We conclude that using HF radar currents in operational

data assimilation systems is useful for improving predictions

of upper ocean transports, which is highly relevant for oil

spill mitigation purposes and search-and-rescue operations.

Assimilation of the HF radar radial components directly by

utilizing a suitable observation operator holds the potential

for further improvement and is the focus of ongoing efforts.

Using radials will increase both the number of observations

available for assimilation as well as the coverage area. Errors

introduced by the algorithms combining radials from two or

more antennas will also be eliminated.
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