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Abstract. Three years of 300 kHz acoustic doppler current
profiler data collected in the central Ligurian Sea are anal-
ysed to investigate the variability of the zooplankton biomass
and the diel vertical migration in the upper thermocline. After
a pre-processing phase aimed at avoiding the slant range at-
tenuation, hourly volume backscattering strength time series
are obtained. Despite the lack of concurrent net samples col-
lection, different migration patterns are identified and their
temporal variability examined by means of time–frequency
analysis. The effect of changes in the environmental condi-
tion is also investigated. The highest zooplankton biomasses
are observed in April–May just after the peak of surface pri-
mary production in March–April. The main migration pat-
tern found here points to a “nocturnal” migration, with zoo-
plankton organisms occurring deeper in the water column
during the day and shallower at night. Also, twilight mi-
gration is highlighted during this study. The largest migra-
tions are recorded in November–December, corresponding to
lowest backscattering strength values and they are likely at-
tributable to larger and more active organisms (i.e. euphausi-
ids and mesopelagic fish). The results suggest further appli-
cations of the available historical acoustic doppler current
profiler time series.

1 Introduction

The Acoustic Doppler Current Profiler (ADCP) is a widely
used instrument to monitor the marine currents. Time series
of these measurements span from a few days up to several
years and are available for many coastal and open ocean

sites. However, ADCP data may also be usefully employed
to measure biological variables as pointed out byFlagg and
Smith(1989) andPlueddemann and Pinkel(1989) at the end
of the 1980s, who showed that the acoustic backscatter sig-
nal was correlated with the zooplankton biomass. Since then,
several biological investigations have been carried out using
ADCP observations (Rippeth and Simpson, 1998; Pinot and
Jansá, 2001; Jiang et al., 2007; Ashjian et al., 2002, 1994; van
Haren, 2007). Unfortunately, ADCP data are more qualita-
tive than quantitative because the conversion from backscat-
ter intensity to equivalent zooplankton biomass, usually ob-
tained by direct comparison against coincident data from net
samples, is somewhat problematic, and the resulting relation-
ship provides only rough estimates (Pinot and Jansá, 2001;
Ashjian et al., 2002; Fielding et al., 2004). Nevertheless, the
instrument, ensuring long-term autonomous monitoring, of-
fers the opportunity to study the zooplankton distribution and
its variability on many different temporal and spatial scales.
Thus, its data supply important information required in ma-
rine ecology research that cannot be satisfactorily obtained
using the classical observational methodology based on dis-
crete net sampling.

Furthermore, ADCP data may help in reconstructing the
diel vertical migration (DVM) of the zooplankton which is
probably the biggest animal migration, in terms of biomass,
on the planet (Hays, 2003). Since zooplankton represents the
trophic link between primary producers (i.e. phytoplankton
in the photic zone) and the higher trophic levels up to top
predators, the comprehension of their migratory patterns and
biomass distribution is of crucial importance in understand-
ing the pelagic ecosystem functioning.
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In this context, the paper analyses the echo intensity and
the vertical velocity data obtained from an ADCP moored
in the open Ligurian Sea from September 2003 to Febru-
ary 2006 in terms of variations in the zooplankton biomass
and DVM. These patterns are discussed, taking into account
the results achieved by several different previous studies car-
ried out in the Ligurian Sea, one of the most dynamically
active regions in the Mediterranean.

Although the experiment did not include specific biolog-
ical measurements, the aim of this work is to highlight the
usefulness of long-term ADCP data series to enhance cur-
rent knowledge on zooplankton, especially their migratory
patterns.

The paper is organized into the following parts: Sect. 2 de-
scribes the investigated area, the data and the methodologies
used in the study. The analysis of the zooplankton behaviour
and its variability, with particular attention to the character-
istic patterns of the DVM and the influence of some environ-
mental variables, is given in Sect. 3. The results are discussed
in Sect. 4.

2 Materials and methods

2.1 Main features of the investigated area

The Ligurian Sea is a 3000 m-deep basin surrounded in the
north by the Alps and limited by Corsica to the south (Fig.1).
These topographic constraints as well as the thermal contrast
between land and sea give rise to specific local effects that in-
fluence the general circulation of both atmosphere and ocean,
causing a strong variability in the upper ocean. The general
circulation of the Ligurian Basin is characterized by a perma-
nent basin-wide cyclonic circulation involving both the sur-
face Modified Atlantic Water (MAW) and the lower Levan-
tine Intermediate Water (LIW) (Crepon et al., 1982; Millot ,
1999); it also shows important seasonal variability (Astraldi
and Gasparini, 1992). The currents are generally weaker in
the summer than during the winter and the contribution from
the Tyrrhenian Sea is strongly reduced in summer. Signif-
icant inter-annual variability is observed (Vignudelli et al.,
2000; Birol et al., 2010), as well as an intense mesoscale ac-
tivity with marked seasonal variations (Taupier-Letage and
Millot , 1986; Sammari et al., 1995).

Furthermore, due to the interplay of these particular cli-
matic, oceanographic and physiographic factors, the area
is highly productive and hosts a rich and complex ecosys-
tem. This is also sustained by vertical mixing and coastal
upwelling, generated by the prevailing northwesterly wind,
which pumps deep nutrients and other organic substances
contributed by rivers into the euphotic zone where they
fertilize growing phytoplankton populations. Hence, the
area attracts several cetacean species and is part of the
“Cetacean Sanctuary” protected area, established to preserve
the richness and variety of cetaceans living here with more

Fig. 1. Bathymetry and horography of the Ligurian region. Black
dot corresponds to the mooring position.

than eight species, including the fin whaleBalaenoptera
physalus.

All these issues make the Ligurian Basin a meaningful re-
search site for both physicists and biologists.

Several previous studies were conducted in the Ligurian
Sea to determine the composition and biomass distribution
of zooplankton communities (Licandro and Ibanez, 2000;
Licandro and Icardi, 2009; Tarling et al., 2001; Andersen
and Sardou, 1992; Sardou and Andersen, 1996). Although a
comprehensive study which analyses the zooplankton com-
position at a seasonal scale in the whole Ligurian Basin is
lacking, a rough reconstruction of species composition and
dominance throughout the year can be done.

The mesozooplankton is mostly dominated by copepods
(64 % of the total number of taxa); as a general pattern, in
the entire Mediterranean Sea the bulk of the copepod popula-
tion is concentrated in the epipelagic layer above 100 m depth
with abundances decreasing sharply thereafter (Mazzocchi
et al., 2007; di Carlo et al., 1984; Weikert and Trinkaus,
1990; Brugnano et al., 2011). Seasonal variations are ob-
served in the composition of the zooplankton population
with the dominance of different species throughout the year,
such asClausocalanus spp. andFritillaria spp. in win-
ter, andOithona helgolandicaand Temora styliferain au-
tumn (Licandro and Ibanez, 2000). Among the macrozoo-
plankton/micronekton,Tarling et al. (2001) report a dom-
inance of euphausiids (mainlyMeganyctiphanes norvegica
and Nematoscelis megalops) and pteropods (almost exclu-
sively Cavolinia inflexa) in September, while mostlyNe-
matoscelis megalopsis found in the Ligurian central zone
in May (Andersen and Sardou, 1992). A further study by
Sardou and Andersen(1996) shows thatMeganyctiphanes
norvegicaon the coastal side of the Ligurian Front has peaks
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of abundance in February and again in August, as also con-
firmed byMcGehee et al.(2004).

In addition, due to the particular hydrographic conditions
of the area, three main assemblages may be defined: one
linked to the divergence zone of the basin, one associated
to the periphery of the divergence and the latter with the
eastern continental shelf (Licandro and Icardi, 2009). Differ-
ent mesozooplanktonic taxa describe each assemblage, be-
ing copepods of Scolecithricidae family and appendiculari-
ans of genusFritillaria dominant in the divergence, while
Clausocalanus furcatusandParacalanusspp. mainly inhabit
the eastern continental shelf. The third assemblage is mostly
characterized by ostracods and the copepodsNeocalanus
gracilis and Clausocalanus paululus. Each assemblage is
identified by different biomass values, being least in the di-
vergence zone (0.8–1.4 mg m−3), greater at the periphery of
the divergence, and at its maximum in shallower waters on
the eastern continental shelf (1.7–4.2 mg m−3) close to the
study area (Licandro and Icardi, 2009).

Overall, in the Mediterranean Sea, zooplankton dynamic is
characterized by late winter and summer blooms which are
ubiquitous in the different basins and are preceded by phy-
toplanktonic blooms related to environmental factors includ-
ing stratification (Furnestin, 1960; Margalef, 1985). In the
northwestern Mediterranean Sea the late winter zooplankton
bloom is generally delayed to spring (April–May) since the
peak of surface primary production is generally recorded in
February–March (Andersen, 2001a; Fanelli et al., 2009).

2.2 Environmental conditions during the period
2003–2006

The study was carried out in three periods related to the re-
covery and the re-positioning at sea of the mooring (Table1).
Some unusual marine conditions occurred during each of the
three periods. Particularly, the first one took place at the end
of summer 2003, which was among the hottest of the last
century. The anomalous warming affected the whole of Eu-
rope and, above all, the central Mediterranean and was char-
acterized by persistent calm weather conditions from May to
the end of September 2003 (Sparnocchia et al., 2006). Sev-
eral mass-mortality episodes were observed along Mediter-
ranean coasts (Garrabou et al., 2009), as the strong verti-
cal stratification prevented vertical mixing, thus reducing the
oxygen contribution from the atmosphere to the deeper lay-
ers of the ocean, and allowing intense warming of the sur-
face waters. Only at the end of October 2003, after several
strong wind events due to the passage of lows, were the upper
layers completely mixed and normal conditions were again
established. The second experiment was carried out during
the severe winter of 2004–2005 when very intense events of
deep water formation took place in the northwestern Mediter-
ranean Sea, despite significant warming and salinification of
the entire water column which occurred in this winter (Font
et al., 2007). The third experiment was characterized by an

anomalous long period (from April 2005 to February 2006)
of very weak currents. Indeed, the recorded values did not
exceed 30 cm s−1 until November when they increased dur-
ing the passage of the only low system of the overall period
and reached the maximum in the first days of January 2006.
Moreover, winter 2005–2006 showed an abrupt change of the
water mass physical characteristics (temperature and salin-
ity) linked to deep water convection which occurred in 2006
(Smith et al., 2008). Even current direction showed a very un-
common pattern, with several episodes of eastward currents.

This significant inter-annual variability in the circulation
was also evident in the horizontal currents measured by the
used ADCP data (Fig.2). Analysis for inter-annual variabil-
ity was performed on the data collected from October to
February since this period was available for all three deploy-
ments.

During the period 2003–2004 currents were mainly di-
rected towards north-northwest and very few events of weak
southward currents were recorded. On average, the mean
hourly velocities were greater than 15 cm s−1, sometimes
with peaks in the surface layers exceeding 60 cm s−1. On the
contrary, during the period 2005–2006, the average velocity
was less than 10 cm s−1 at all depths and the maximum val-
ues never rose above 45 cm s−1. The prevailing current was
to the west and occurrences of southward currents increased.

The anomalous behaviour of the currents in the last period,
both in velocity and direction, may be associated with the
persistence of a high pressure system over the Ligurian Sea,
inducing an extraordinary long period of calm wind condi-
tion. The anomalous conditions were also confirmed by the
presence of saltier, warmer and shallower-than-normal inter-
mediate water in the Ligurian Basin (compared with previous
years) that was responsible in the first days of February 2006
for the unusual mixed layer depth of 2000 m, in a basin where
it is commonly a few hundred metres deep, and for dense
water formation from February to April 2006 (Martín et al.,
2010).

2.3 Experimental setup

An upward-looking RDI Sentinel 300 kHz ADCP was oper-
ating in the central Ligurian Sea (43◦47.77′ N, 9◦02.85′ E)
from 13 September 2003 until 22 February 2006 to investi-
gate the upper layer dynamics in the area (Picco et al., 2010).

During this period, the mooring was recovered for mainte-
nance and redeployed twice. Each time, the water depth and
hence instruments depths were inevitably slightly different,
also the ADCP temporal resolution was refined for the final
deployment. The whole observation period was divided into
three different phases (Table1).

The vertical displacement of the mooring was checked
using pressure measurements from a CTD device installed
close to the ADCP and using the distance of the ADCP to wa-
ter surface computed followingVisbeck and Fischer(1995).
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Table 1.Experimental configuration of the ADCP during the three deployments, from September 2003 to February 2006.

Period No. of samples Sample frequency Depth Bin size

13 Sep 2003–24 May 2004 6120 1 h 58 m 8 m
23 Sep 2004–15 Apr 2005 4943 1 h 100 m 8 m
19 Apr 2005–22 Feb 2006 14934 30 min 80 m 8 m

Fig. 2.Distribution of the horizontal currents recorded at 40 m depth from October to February during the three deployments.

The mooring in all three periods showed good stability, in-
deed pitch and roll data never exceeded 2.5◦, well below the
9◦ limit defined by the manufacturer for tilt compensation.
Pitch and roll data showed a standard deviation less than than
1◦ for all three periods, satisfying the requirements for good
velocities data (RD Instruments, 2007).

All observations were quality checked; data were consid-
ered valid only (a) if characterized by at least three beam
solutions, (b) if satisfying the constraints of maximum range
established byGordon(1996) and (c) if the threshold of error
velocity was not exceeded.

In all three periods the percentage of data rejected was
less than 0.1 %. The final overall ADCP data set consists of
11 063 hourly data and 14 934 samples with a sampling time
of 30 min (Table1).

Several supplementary data were used. Particularly,
the sunrise/sunset times at the mooring location were
computed by using the air–sea toolbox developed at
Woods Hole Science Center (http://woodshole.er.usgs.gov/
operations/sea-mat/air_sea-html/index.html), while surface
wind data on the mooring site were obtained from the
ERA-Interim (Dee et al., 2011) database products from
the European Centre for Medium-Range Weather Forecasts
(ECMWF).

In addition, values of net primary production (NPP) ob-
tained from the vertically generalized production model
based on MODIS and SeaWIFS measurements (http://
www.science.oregonstate.edu/ocean.productivity) were used
as proxies of surface primary production in the area (Behren-
feld and Falkowski, 1997). Considering the normal delay
of about 1 month between peaks of surface production and

the increase in zooplankton biomass (Truscott and Brindley,
1994) values of NPP may help to interpret the ADCP ob-
served profiles.

2.4 Volume backscattering strength computation

The measure of the echo intensity scattered by the ocean is
usually given in terms of volume backscattering strength (Sv
hereafter) in dB re (4π m)−1. FollowingDeines(1999), Sv is
computed for each depth cell along each of the four beams
through Eq. (1):

Sv=C + 10log10((Tx + 273.16)R2) − LDBM − PDBM

+ 2αR + Kc(E − Er). (1)

C (−143.5 dB) is the instrumental constant of RDI profil-
ers for Workhorse Sentinel ADCP 300 kHz.Tx is the ADCP
internal temperature in◦C. R is the slant range defined in
Eqs. (3) and (6). LDBM is the 10log10 of the transmit pulse
length in m (8.21 m for all three deployments).PDBM is the
10log10 of the transmit power in Watt, defined by RDI for the
ADCP model here used as 14 dBW.E is the echo intensity
provided by the ADCP.Er (40 counts) is the echo reference
value when there is no signal and it is specifically determined
for each instrument.Kc is the factor for converting to dB unit
the raw echo data provided by the ADCP and it is defined
through Eq. (2) (RD Instruments, 2007):

Kc =
127.3

Tx + 273
. (2)

α is the sound absorption coefficient for the seawater that
is variable with depth, computed according to the Ainslie

Ocean Sci., 10, 93–105, 2014 www.ocean-sci.net/10/93/2014/

http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/index.html
http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/index.html
http://www.science.oregonstate.edu/ocean.productivity
http://www.science.oregonstate.edu/ocean.productivity


R. Bozzano et al.: Temporal variations of zooplankton biomass in the Ligurian Sea 97

(Ainslie, 1998) formula, a simple expression which takes
into account the contribution of boric acid, magnesium sul-
fate and pure water, and depends on temperature and salinity.
These last two parameters are obtained from the climatolog-
ical MED6 database, a gridded monthly mean of in situ mea-
surements of temperature and salinity for the entire Mediter-
ranean and the near-North Atlantic area at 0.25◦ resolution
(Brankart and Pinardi, 2001). Data from the MED6 database
are selected in a 0.25◦, square centred on 9.375◦ E, 43.75◦ N,
the grid point closest to the mooring.

R is the slant range to the scattering layers being measured
along the beam in metres expressed by Eq. (3):

R =
B + (L+D

2 ) + [(n − 1)D] +
D
4

cosθ

C′

C1
, (3)

whereB is the blank in metres (1.76 m for all deployments),
L is the transmit pulse length in metres,D is the depth cell
length in metres (8 m for all deployments),n is the depth cell
number of the scattering layer being measured,θ is the beam
angle in degrees (20◦), C1 is the speed of sound in the water
used by the ADCP (set to 1475.1 m s−1), while C′ is the av-
erage sound speed from the transducer to the range cell that
depends on the depth (computed by means of Mackenzie for-
mula; (MacKenzie, 1981)) using the same MED6 data previ-
ously extracted and interpolated at a vertical resolution of
1 m from 0 up to 100 m. To be used in Eq. (1), the slant range
should not be less thanπR0/4, whereR0 is the Rayleigh dis-
tance defined by RDI for the Workhorse Sentinel 300 kHz
ADCP as 0.98 m. According toGordon(1996), the maxi-
mum range of acceptable dataRmax should satisfy Eq. (4):

Rmax = H cosθ, (4)

whereH is the distance of the instrument to the surface. In
all three deployments both requirements were satisfied. The
backscatter strength value Sv was obtained by averaging the
results of Eq. (1) applied to the four available beams. The
averaged Sv profiles for the three deployments at different
depths are shown in Fig.3. The results show that these values
can be influenced by a low signal to noise ratio, as pointed out
by Gostiaux and van Haren(2010), who suggest modifying
Eq. (1) as

Sv=20log10(R) + 2αR − A

+ 10log10(10KcE/10
− 10KcEr/10) (5)

and introducing the ADCP transmit lagLa in Eq. (3), thus
obtaining Eq. (6):

R =
B + (L+D+La

2 ) + [(n − 1)D] +
D
4

cosθ
. (6)

In order to determine the constantA, a best linear fit be-
tween the Sv values obtained by the Gostiaux and van Haren

Fig. 3. Average backscatter strength profiles for the three deploy-
ments.

equation and the Sv values calculated by the Deines for-
mula is performed using only the bins that satisfy the test
Kc(E − Er) > 10. In the 2003–2004 data set, the signal to
noise ratio is very high for almost all acquired data, so that
the improvement of the Gastiaux and van Haren equation
is limited to a quite constant little shift for all layers. On
the contrary, in the 2004–2005 data set, the differences be-
tween the backscattering strength values computed using the
two methods increase with the increasing of the slant range.
These differences become more marked for the data acquired
in the third deployment, while disagreement is also found for
the first two bins.

Furthermore, the closest bin to the transducer is character-
ized by a very weak signal and consequently the ADCP pro-
file shows a high gradient on the second bin: this behaviour
is due to the transient time needed by the instrument to trans-
mit and receive the signal, thus during this gap of time the
acquired data can be erroneous (Lane et al., 1999).

Taking into account the previous issues, the used Sv values
have been computed using Eq. (5), discarding the bin closest
to the transducer, as well as the one closest to the sea surface
since it may be strongly affected by the atmosphere (Schott,
1989).

www.ocean-sci.net/10/93/2014/ Ocean Sci., 10, 93–105, 2014
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Fig. 4. Backscatter strength at 40 m depth during the three deploy-
ments: (left) detrended monthly averaged time series with error
bars corresponding to uncertainties in the average estimation; (right)
monthly maximum- and minimum values. Data from year 2003 in
blue, 2004 in green, 2005 in pink, and 2006 in orange. Time axis
aligned from January to December.

3 Results

3.1 Seasonal variability

The monthly mean backscattering strength values computed
for each time series at the common depth of about 40 m are
shown in Fig.4. Although none of the time series covers an
entire year and not all months are complete, the three dis-
tributions show similar seasonal behaviour with an increase
in spring and lower values during the fall months. A rela-
tive maximum is also detected in January–February, while an
abrupt drop, with very low values, is recorded in July 2005.

The seasonal NPP values show a pronounced inter-
annual variability (Fig. 5). In 2003 the mean annual
NPP cycle is characterized by two peaks: the ma-
jor one in April (707 mg C/m2 day−1) and the other
in November (481 mg C/m2 day−1). In 2004 there is a
unique peak of NPP from March to May (mean NPP =
706± 70 mg C/m2 day−1), while in 2005 an extraordinarily
high NPP peak is recorded from April (1221 mg C/m2 day−1)
to May (1070 mg C/m2 day−1), but high NPP values persist
until August (on average 547± 42 mg C/m2 day−1).

The pattern of backscattering strength values is consistent
with NPP trends with an expected delay of about 1 month
between the peak of surface primary production and the re-
sponse by the zooplankton community. Indeed, the peak of
zooplankton biomass is recorded in April–May (Fig.4) after
the peak of NPP in March–April (Fig.5).

In Fig. 4, apart from the generally high values observed
from April to June (common to the three deployments),
which are consistent with the main peak of NPP in temperate

Fig. 5.Monthly averaged net primary production values recorded in
the study area during the sampling period.

areas, the second greatest value for the third deployment oc-
curred in January 2006. This fully agrees with the increase in
NPP values recorded in December 2005 and the recognized
delay between phytoplankton production and the successive
zooplankton biomass increase, as previously explained. On
the other hand the low Sv value found in July 2005, the only
year in which this period was examined, was in agreement
with the almost complete disappearance ofMeganyctiphanes
norvegicafrom the upper water layers, as observed byAn-
dersen(2001b) in June in the western Ligurian Sea. This
species goes deeper at the end of its reproductive season
(end of spring) and lives at 500 m and even 1000 m, being
the deepest sampled species (Franqueville, 1971; Sardou and
Andersen, 1996). In addition,Huntley and Brooks(1982) re-
ported that when food is scarce in the surface waters, the
usual DVM performers cease vertical migration until food
concentrations suffice to support it and this likely occurs in
July, far from the peak of NPP in surface, when food avail-
ability is low.

The observed ADCP time series is also in agreement, in
terms of seasonal dynamic, with the distribution of monthly
mean Continuous Plankton Recorder (CPR) data collected
in the northwestern Mediterranean Sea in the period 1977–
1999 (Licandro and Icardi, 2009). This ADCP time series is
substantially uniform down the water column, at least to 30 m
depth, while a greater variability is noted below this depth
and between the ADCP time series of the three deployments.

3.2 Daily mean cycle

The first experiment starts at the end of the anomalous warm
summer 2003 and the measures are limited to the upper 50 m
of the sea. From the beginning of the observational period in
September 2003 to the first half of October, the mean daily
backscatter strength values are high, particularly in the lay-
ers above 30 m depth (Fig.6). Starting from mid-October
until the first days of December 2003, with the exception

Ocean Sci., 10, 93–105, 2014 www.ocean-sci.net/10/93/2014/
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Fig. 6.Time series of daily mean backscatter strength data recorded
during the three deployments. Year is indicated below January label.

of early November, they undergo a significant decrease and
slightly higher values are recorded only sporadically below
30 m. From mid-December 2003, the signal begins to grow
and the whole observed water column becomes substan-
tially homogeneous. From mid-April the measured values are
again high, even if only on a few occasions, reaching those
recorded in October. A weak reduction appears in the surface
layer shortly before the recovery of the mooring at the end of
May 2004.

The mooring configuration adopted in the second exper-
iment allows investigation down to 80 m depth. The mean
daily backscatter strength data collected above 35 m depth
show a trend similar to the one of the previous period 2003–
2004: starting from mid-October 2004 the values decrease
until December, when they start to grow slowly again to
reach (after a short period of attenuation in March 2005) the
highest values in April. However, in the upper 30 m layers the
Sv values remain high the whole time and the homogeniza-
tion of the examined water column occurs only sporadically
below 25 m depth until January 2005, when strong signals
begin to be registered even in the deepest layers. At the end
of March, after a short period of decrease, which affects the
water column up to almost the surface, the Sv values are large
at all depths.

Summer data are available only for the third experiment, in
a long period of exceptionally calm conditions of both ma-
rine and atmospheric dynamics. From mid-June to the end
of August the recorded Sv values are very small, especially
below 30 m depth. A significant reduction of total zooplank-
ton biomass in the summer months is also shown in the CPR
data (Licandro and Icardi, 2009). However, except for a few
events of short duration, the mean daily backscatter remains
weak until mid-February, when a significant further drop is
observed just before the end of the measurements.

Despite the significant inter-annual differences, a fairly
constant characteristic in the time series of the monthly mean
hourly Sv data is the presence of a marked daily cycle, with
low values during the daylight and high ones in the night
(Fig. 7). In correspondence with the sudden changes in the
Sv signal, negative peaks in the early morning and positive

Fig. 7. Monthly mean daily cycle of backscatter strength values at
different depths. Year is indicated below January label.

ones in the afternoon are found in the monthly time series of
the vertical velocity mean hourly values (Fig.8).

A noteworthy agreement results between the time of sun-
rise and sunset at the mooring position, and the time at which
the lowest and highest daily values of both vertical velocity
and Sv hourly changes occur, especially for the third period
when the used sampling time is set at 30 min. It should be
noted that significant values of vertical velocity are recorded
almost exclusively for a short time around dusk and dawn.
This characteristic suggests that these velocities are related
mainly to displacements of the scatter elements rather than
to vertical motions of the water masses.

3.3 Diel vertical migration

Results mentioned above can be ascribed to the diel vertical
migration performed by several species of the zooplankton
population. This is a vertical movement, generally involving
a 24 h cycle, the causes of which are not yet fully understood
(Ringelberg, 2010). Three main patterns have been identi-
fied: “normal” or “nocturnal” DVM involves animals mov-
ing deeper in the water column during the day and shallower
at night. A less common behaviour is exhibited by a slow
descent following arrival at the surface at dusk, and a sub-
sequent second ascent to the surface towards the end of the
night, prior to the dawn descent (“twilight migration”). Other
species or live stages undergo “reverse migration”, where the
zooplankton ascend at dawn and descend at dusk (Heywood,
1996; Jiang et al., 2007; Cisewski et al., 2010).
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Fig. 8. Monthly mean daily cycle of temporal derivative of
backscatter strength and vertical speed at 40 m depth for the three
deployments: (top) 2003–2004, (middle) 2004–2005, and (bottom)
2005–2006. Vertical dashed lines correspond to hour of sunrise
(cyan) and sunset (blue) of each month. Time axis aligned from
April of one year to May of the following year. Year is indicated
below January label.

The backscatter strength shows significant differences
both in time and with depth. To better investigate these pat-
terns, two different data sets for each experiment are ob-
tained, separating the observations taken between sunrise and
sunset (Fig.9, on the left) from those collected between sun-
set and sunrise (Fig.9, on the right).

During the first experiment, the measured data show
a quite uniform vertical distribution of the backscattering
strength. These values are for most of the examined period
rather large during both day and night. Only in two periods,
between October and December 2003 and for a few days in
January 2004, the diurnal values undergo a significant reduc-
tion, denoting fewer scatter organisms during daylight. In the
second and third experiments, such small values are never
observed above 30 m depth. In this upper layer the backscat-
ter strength signal remains large with small differences be-
tween day and night. Below 40 m depth a strong reduction
is often observed during daylight, while in the night the sig-
nal increases and has a tendency to homogenize the whole
observed water column.

3.4 Spectral analysis

The spectral analysis performed on the three time series at
the shared depth of 40 m does not differ significantly among
samples. It is characterized by a dominant 24 h peak and

Fig. 9. Time series of backscatter strength profile for data collected
(left) between sunrise and sunset and (right) between sunset and
sunrise in the three deployments. Year is indicated below January
label.

a series of minor peaks at the higher harmonics. It con-
firms the predominance of a signal with a 24 h cycle cor-
responding to the so-called “normal” or “nocturnal” pat-
tern (Fig.10). The secondary 12 h peak may be attributable
to a different DVM pattern, the so-called twilight migra-
tion (Cushing, 1951).This is sometimes distinguished in the
hourly Sv values, especially during the third experiment that
has 30 min temporal resolution (Fig.11). Twilight migra-
tions were found in more than 80 % of records of northwest-
ern Atlantic zooplankton DVM (Ashjian et al., 1994). The
observed behavioural patterns have different interpretations,
with hunger-satiation and escapes from predators (i.e. krill)
as the most plausible causes (Tarling et al., 1999).

Time–frequency analysis provides evidence for the tempo-
ral evolution of the amplitude of each signal and allows for
the identification of the periods when a signal characterizing
a specific DVM pattern is prevailing. The spectrograms are
obtained using a 240 h sliding window with 216 h overlap be-
tween each sample. For all three periods, the time evolution
of the amplitude of the 12 h and 24 h harmonics at different
depths is given in Fig.12.

The three distributions show that both 12 h and 24 h cycles
are particularly intense between November and December,
when the backscattering strength values are least. Further-
more, during the first experiment the maximum of the spec-
trum for the 24 h harmonic is obtained for the surface layer,
and it is found at 40 m depth for the 12 h harmonic. On the
contrary, during the other two experiments, the spectrum for
both harmonics is weak at the surface. The 24 h harmonic
time series shows the maximum amplitude at 40 m depth,
while the 12 h harmonic shows it at the deepest layers.

These results may suggest the presence of different types
of zooplankton organisms, some of which migrate according
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Fig. 10.Power spectrum for the three times series of the backscatter
strength at 40 m depth.

to their own specific DVM pattern, while others are station-
ary, as observed in other areas like in the Irish Sea where
generally more than 60 % of the zooplankton community
does not perform significant DVM (Irigoien et al., 2004).
In the Mediterranean Sea few mesozooplanktonic species
show considerable DVM. Thus, taking into account that the
widest migrations appear when the backscatter is weak, the
more marked DVM signals may be ascribed to some large
and more active organisms, likely macrozooplankton and mi-
cronekton (i.e. euphausiids, small mesopelagic fish) which
are quite abundant in late autumn in other areas of the
northwestern Mediterranean (McGehee et al., 2004; Olivar
et al., 2012). Among them, the euphausiidMeganyctiphanes
norvegicais one of the most widespread in the Ligurian Sea
(Tarling et al., 2001; Andersen, 2001a). Its vertical migration
is usually wide and has a 24 h cycle, however, depending on
multiple factors (i.e. reproduction, moon phase, etc.), it can
also take place on a 12 h cycle.

3.5 Vertical velocities analysis

Data obtained by ADCP are considered to be an average of
a backscattering field consisting of both migrating and sta-
tionary organisms (Plueddemann and Pinkel, 1989). Depend-
ing on the prevalence of one or another organism, the DVM
signal may be more or less detectable by ADCP measure-
ments. Each migrating species has its own behaviour that
may change during the different stages of life and due to
environmental conditions. Different studies provided accu-
rate estimates of vertical velocity of zooplankton population,
which generally varied (depending on the frequency used for
the estimates) between 1 and 8 cm s−1. Vertical velocity is
greater during ascent (5–8 cm s−1) than during descent (3–
4 cm s−1) and with increasing depth (Heywood, 1996; Smith
et al., 2008).

Although the ADCP measurements do not give the true
value of the zooplankton vertical speed but, generally, a
lesser one (Plueddemann and Pinkel, 1989; Tarling et al.,
2001), the analysis of the recorded mean hourly vertical
velocity may help to investigate if part of the observed

Fig. 11. Subset of backscatter strength hourly data at 40 m depth
in presence of twilight diel vertical migration pattern for the three
deployments. Label at 12:00 UTC.

variability could be ascribed to a change of the proportion
between the different genotypes making up the observed zoo-
plankton population.

Almost all vertical velocity data have values close to zero.
Values greater than±0.5 cm s−1 are recorded mainly in con-
junction with changes of Sv or during strong wind events.

As a result, the analysis is carried out on the time series of
the maximum and minimum daily values (Fig.13). The time
series of maximum and minimum mean hourly vertical ve-
locity show that values tend to increase from the first to the
third experiment and going from the surface to the deepest
layers. In fact, during the first deployment more than 94 % of
the values are between±1.5 cm s−1, of which 40 % fall in the
range±0.5 cm s−1. During the second deployment, the per-
centage in the range±1.5 cm s−1 is still greater than 90 %,
but far fewer values are between±0.5 cm s−1 and the de-
crease is even more evident in the deepest layer, where they
are less than 10 %. During the third deployment the recorded
values are larger at all depths and fewer than 10 % are in the
interval±0.5 cm s−1.

Although during the first experiment the extreme values
of the vertical velocity are small, the analysis of the daily
data shows that, under strong wind conditions lasting a few
days, peaks of up to 5 cm s−1 and more are recorded, mainly
in the surface layer whilst they decrease with depth. These
large values are never reached in the other two periods, de-
spite the occurrence of several episodes with even stronger
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Fig. 12.(left) Time evolution of the amplitude of the 24 h and (right)
12 h harmonics at different depths. Year is indicated below January
label.

wind. Furthermore, the first period is also characterized by
a different distribution of the vertical velocities. This does
not show any particular seasonal pattern, but rather single
episodes whose amplitude is less in spring. On the contrary,
a weak seasonal trend may be detected for the data collected
during the second and third periods. Particularly, the extreme
values of the vertical velocity increase from late summer to
November, when they start again to decrease, reaching min-
imum values in January. During the period 2005–2006, an
increase and subsequent decrease is also observed between
the middle of June and the end of August.

4 Discussion and conclusions

Three years of acoustic backscatter and vertical velocities
data collected by a 300 kHz ADCP in the central Ligurian
Sea are analysed to investigate the zooplankton dynamics.
Even based on only one frequency and without net samples,
the analysis of backscatter variability at different timescales
allows for the identification of different zooplankton migra-
tion patterns and, from these, to infer about its presence and
composition in the area.

At seasonal scale, the biomass follows the NPP signal
with a delay of about 1 month, having higher values in April
and May and a secondary maximum in January or February;
lower values are generally observed in autumn.

The prevailing vertical migration pattern is the 24 h cycle
performed by the zooplankton swimming upward at sunset
and downward at sunrise. A second pattern having a 12 h cy-
cle is also identified, the twilight migration, in particular in
the measurements with 30 min temporal resolution.

Fig. 13. (upper panel) Maximum and minimum vertical velocity
and (lower panel) wind stress at different depths. Year is indicated
below January label.

Furthermore, the analysis of both Sv and vertical veloc-
ity data suggests that changes in composition of zooplankton
population may occur during the three years of continuous
monitoring.

Although no biological sampling was performed during
the experiments, the results of several studies made in ad-
jacent areas (Licandro and Ibanez, 2000) and the zooplank-
ton composition there reported can help in interpreting the
findings of this ADCP data analysis. Among the mesozoo-
planktonic species abundantly found in those studies, such
asClausocalanusspp.,Paracalanusspp. andOithona spp.
(McGehee et al., 2004; Licandro and Ibanez, 2000), no
one species shows a strong diel vertical migration (Ander-
sen, 2001b). Indeed, according toBrugnano et al.(2011),
only species of the Scolecithricidae family show significant
DVM in the area, confirming previous information about
the presence of a few strong migrants in the Mediterranean
Sea. Thus, it may be supposed that the species mainly re-
sponsible for the strong Sv signal found in some periods
of this study, at times of small biomass, are ascribable to
the macroplanktonic/micronektonic component. Particularly,
the area is dominated by the euphausiidMeganyctiphanes
norvegica(Tarling et al., 2001; Andersen, 2001a) which at-
tains its maximum abundance values in August–September.
This species is known to perform wide vertical migration
(Kaartvedt, 2010) and it could be responsible for the max-
imum amplitude found in ADCP data recorded in Septem-
ber 2005.

Furthermore, other previous investigations (Boucher et al.,
1987; Licandro and Ibanez, 2000; McGehee et al., 2004;
de Puelles and Molinero, 2008; Raybaud et al., 2008;
Licandro and Icardi, 2009) point out that the Ligurian Sea
is characterized by different zooplankton populations whose
distribution is related to the main hydrological features of this
basin. The importance of Mediterranean circulation dynam-
ics in the determination of different zooplankton associations
was also found in the Gulf of Trieste (Cataletto, 1995) and in
the Gulf of Naples (Carrada et al., 1980).
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Water masses and marine circulation of the whole
Mediterranean Sea, and particularly of the Ligurian Basin,
underwent major changes over the three years of the study.
The contemporaneous measurements of sea currents show a
significant modification in the study area, with an anticlock-
wise rotation from north to west and a decrease of intensity
(Fig. 2). This may lead to the dominance of different zoo-
plankton associations, related to changes in current intensity
and direction, as observed byLicandro and Ibanez(2000) in
a long-term study in the Gulf of Tigullio, an area adjacent to
the ADCP mooring position.

Although more qualitative than quantitative, the results of
this study clearly show the skill of ADCP to highlight some
characteristics of the zooplankton population that the usual
biological observations hardly fail to grasp. Particularly, they
show the important role of the time at which the discrete bi-
ological sampling is carried out. Thus, in the future, the joint
use of long-term continuous monitoring by ADCP and pe-
riodic net samplings may be a good observational strategy
for deepening the zooplankton knowledge. Nevertheless, at
present, the re-examination of backscatter signals of many
long time series of ADCP data that have been collected to es-
timate horizontal and vertical oceanic currents can also con-
tribute to the biological monitoring of the oceans, even in the
absence of corresponding in situ direct observations.
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