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Abstract. We present a method in which the optimal inter-
polation of multi-scale processes can be expanded into a suc-
cession of simpler interpolations. First, we prove how the
optimal analysis of a superposition of two processes can be
obtained by different mathematical formulations involving
iterations and analysis focusing on a single process. From
the different mathematical equivalent formulations, we then
select the most efficient ones by analyzing the behavior of
the different possibilities in a simple and well-controlled test
case. The clear guidelines deduced from this experiment are
then applied to a real situation in which we combine large-
scale analysis of hourly Spinning Enhanced Visible and In-
frared Imager (SEVIRI) satellite images using data interpo-
lating empirical orthogonal functions (DINEOF) with a lo-
cal optimal interpolation using a Gaussian covariance. It is
shown that the optimal combination indeed provides the best
reconstruction and can therefore be exploited to extract the
maximum amount of useful information from the original
data.

1 Introduction

Optimal interpolation (in the following noted OI) is well es-
tablished (e.g.,Gandin, 1965; Delhomme, 1978; Bretherton
et al., 1976) and a reference tool when analyzing satellite
images. The method has therefore been applied in a large
number of scientific studies (e.g.,Kawai et al., 2006) and
operational setups (e.g.,Stark et al., 2007; Donlon et al.,

2012; Nardelli et al., 2013). To be optimal, the method re-
quires the correct specification of covariance matrices, most
of the time given by parametric functions (e.g.,Reynolds and
Smith, 1994). Another approach for analyzing a set of satel-
lite images (data interpolating empirical orthogonal func-
tions – DINEOF) uses the data to create a truncated empiri-
cal orthogonal function (EOF) representation of the data set
to fill in missing data (e.g.,Beckers and Rixen, 2003; Alvera-
Azcárate et al., 2005, 2007). The latter method has been fa-
vorably compared to OI and has been exploited in a series of
applications (e.g.,Sheng et al., 2009; Ganzedo et al., 2011;
Nikolaidis et al., 2014; Wang and Liu, 2014), including op-
erational setups (e.g.,Volpe et al., 2012). In some situations,
however, the truncation of the EOFs series can reject some
interesting small-scale features that only give a small contri-
bution to the total variance, and that can often be split into
several modes (Sirjacobs et al., 2008). This is due, on one
hand, to the fact EOF truncation is related to the percentage
of variance that would be associated with noise and, on the
other hand, to the limits of EOF decomposition itself in iden-
tifying evolving mesoscale features in a single mode (actu-
ally, any feature propagating across the spatial domain is split
into several modes) and under clouds. Hence, there might re-
main small-scale information not fully exploited. One natural
approach would be to first analyze the large scales with DI-
NEOF and then add an analysis of the residuals using a local
optimal interpolation. We will show that this simple approach
provides good results but is still suboptimal. The purpose
of the present paper is thus to recover additional pieces of
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information in the reconstruction process by optimally com-
bining the DINEOF approach with a local small-scale opti-
mal interpolation approach. The method we will propose is
however more general in the sense that we will show how to
deal with a situation in which a combination of processes at
different scales needs to be analyzed, possibly using differ-
ent software optimized to analyze a specific process. We will
then illustrate the approach in the particular situation with
DINEOF analyses for larger scales and OI for smaller scales.

Section2 will present the theory of optimally combining
the analyses of two processes. Then a synthetic example in
Sect.3 will serve as a test bed to provide guidelines in se-
lecting an analysis order among a series of possible options
identified. The algorithm called DINEOFOI is then spelled
out for the combination of DINEOF and OI in Sect.4. Fi-
nally, the application of the method to real data with a vali-
dation exercise will be presented in Sect.5.

2 Multi-scale optimal interpolation

We will present the method in an optimal interpolation
framework and use the following notations and assumptions.
Without loss of generality, data are considered anomalies
with respect to a reference field and are stored in vectord.
The observations are considered imperfect or as including
representativity errors so that the observational error is char-
acterized by covariance matrixR. The analysis will generally
be performed on regular grids, hence in locations not neces-
sarily coinciding with the observation points. The so-called
observing operatorH (e.g.,Kalnay, 2002) allows the defini-
tion of how to retrieve the analysis values at the observational
points from the analysis grid. For filling pixels in satellite im-
ages, the application of this matrix to the analysis containing
all pixels would simply retrieve the pixels where data were
originally present.

The field we try to recover is considered to be created by
different independent processes with each process charac-
terized by a specific covariance. On the analysis grid, each
process therefore defines a different background covariance
matrix. We note these matricesBs for a specific processs.
Since we are in the presence of different independent pro-
cesses, each one leading to a different covariance matrixBs ,
the covariance of the total field isB=

∑
s Bs and includes

the contribution of processes at all scales (e.g.,Wackernagel,
2003). Here we start with the premise that the covariances
have already been chosen as there is a wide range of litera-
ture on how to model and calibrate covariances (using para-
metric functions, reduced rank representation, ensemble ap-
proaches, smoothness or diffusion operators, see for example
Gasparini and Cohn, 1999andWeaver and Mirouze, 2013).
Hence, the purpose of the present paper is not to defend or
propose one particular version.

In this case, with covariances defined, the best analysis
φ of data d including all scales in the sense of optimal

interpolation (e.g.,Cushman-Roisin and Beckers, 2011)
would be given byφ = Kd with gain matrix

K = BHT (HBHT
+R

)−1
(1)

=

∑
s

BsHT

(∑
i

HBiHT
+R

)−1

=

∑
s

K s

and

K s = BsHT

(∑
i

HBiHT
+R

)−1

. (2)

At this stage, we observe that the optimal interpolation
demands the inversion of

(∑
i HBiHT

+R
)
. If this can be

achieved for the chosen representation of the differentBs ,
then the problem of the multi-scale analysis is solved since
the optimal interpolation is provided by Eq. (1).

However, sometimes some of the individual matricesBs

are not explicitly calculated (for example, in spline methods,
e.g.,Brasseur et al., 1996, or 3DVar-NMC implementations,
e.g.,Parrish and Derber, 1992; Fisher, 2003) and cannot be
added to other matrices before inversion. In other cases, us-
ing a singleBs can lead to very efficient inversions (for exam-
ple, when reduced rank approaches are possible, e.g.,Kaplan
et al., 2000; Beckers et al., 2006, or localization is used, e.g.,
Reynolds and Smith, 1994) while when trying the inversion
with the sum ofBs , one cannot exploit the particular struc-
ture of the individualBs anymore. In such situations, we can
therefore only suppose that we have efficient tools to cal-
culateK sx, i.e., we are able to apply an analysis tool with
a single specific background covarianceBs to any data array
x. Formally, the Kalman gain matrix for the sole processs

is1

K s = BsHT(HBsHT
+R

)−1
. (3)

Hence, the problem is to find a way to calculateK sx when
we can only calculateK sx.

Here we present the solution for two processes, but by re-
cursion more scales can be taken into consideration. If we
have only two processes, we can provide the optimal analy-
sis for each one of them asK1d andK2d and also the over-
all optimal interpolationK1d+K2d exploiting the following
matrix identities (proof in Appendix A):

K1= K1−K1H(I −K2HK 1H)−1K2 (I −HK 1) , (4)

= K1−K1HK 2(I −HK 1HK 2)
−1 (I −HK 1) (5)

Method P1a,

= (I −K1HK 2H)−1K1 (I −HK 2) , (6)

= K1(I −HK 2HK 1)
−1 (I −HK 2) Method P1b. (7)

Similar relationships hold forK2 (as we can just interchange
indices 1 and 2). We therefore now have a way to calculate

1Carefully note the absence ofto distinguish it from Eq. (2).

Ocean Sci., 10, 845–862, 2014 www.ocean-sci.net/10/845/2014/



J.-M. Beckers et al.: Multi-scale optimal interpolation 847

the optimal interpolation exploiting the individual analysis
toolsK1 andK2. All formulations are mathematically equiv-
alent but they have the problem that(I −K2HK 1H)−1 or
similar inversions are needed. These are not accessible or
lead to an expensive inversion for the same reasons we did
not want to invert a matrix involving the sum ofBs . So it
seems we have only displaced the problem. However, the
important point to observe is that gainsK sH or HK s are
“smaller than 1”2 and the matrix inversion can therefore be
implemented by a series expansion: for4 smaller than 1, we
have the convergent series (e.g.,Young, 1981):

(I −4)−1
= (I +4(I +4(I +4(. . .) . . .))) . (8)

When applied to a vectorx, this immediately provides the
algorithm to calculatey = (I −4)−1x as follows:

Algorithm 1. Approximate matrix inversion.

y← x

(9)
Loop
y← x+4y

End loop

This will converge to the desired vectory. In our case, the
calculation of4y only involves successive analyses using
K1 and K2, which by hypothesis can be done efficiently.
Then of course, if we limit the number of iterations, the four
formulations (4)–(7) might lead to different results. In fact, it
is easy to show thatn iterations used in Eqs. (4) and (5) will
yield the same results since(

I +41+42
1+ . . .+4n

1

)
K2 (10)

= K2

(
I +42+42

2+ . . .+4n
2

)
,

with 41= K2HK 1H and42= HK 1HK 2. Similarly, itera-
tive versions of Eqs. (6) and (7) will also lead to the same
analysis. The only difference is possible in terms of com-
putational load. Since generally the number of observations
is much smaller than the number of points on the output
grid of the analysis, using Eqs. (5) and (7) during itera-
tions will work on smaller files/arrays and also could ben-
efit from quicker analysis if the analysis tool is faster when
asked to output values only at data locations. Hence, Eqs. (5)
and (7) are two formulations which we will retain and which
will differ if iterations on the inversion of(I −HK 1HK 2) or
(I −HK 2HK 1) are not pursued until convergence. ForK2,

2A formal definition of “smaller than 1” for the matrices de-
mands the module of their eigenvalues being all smaller than 1; see
page 127 inDaley(1993) for a proof thatHK , which is also some-
times called the hat matrix or influence matrix, has eigenvalues be-
tween 0 and 1.

we now write out the two equivalent relevant versions:

K2= K2−K2HK 1(I −HK 2HK 1)
−1 (I −HK 2) (11)

Method P2a,

= K2(I −HK 1HK 2)
−1 (I −HK 1) (12)

Method P2b,

The cost for calculating an analysis withK1 or K2 usingn

iterations is 3+2n analyses usingK1 and K2 in Eqs. (5)
or (11), whereas the use of Eqs. (7) or (12) demands 2+2n

standard analyses. In the following, P1a and P2a will refer
respectively to the application of Eqs. (5) and (11) with it-
erations, and P1b and P2b refer respectively to the use of
Eqs. (7) or (12).

We also note that even when using iterated versions, using
Eqs. (5) and (12) leads to

K1= K1

(
I −HK2

)
, (13)

which will be exploited in our final algorithm.
K1 andK2 allow us to calculate the best analysis for each

of the processes. A natural but suboptimal estimate for each
process would of course be obtained when usingK1 for pro-
cess 1 andK2 and for process 2. A slightly more elaborated
idea would rather be to useK1 (I −HK 2) andK2 (I −HK 1)

so as to get the analysis of one process only using data from
which we tried to subtract the information from the other pro-
cess. Therefore, we can also design several simple ways to
sub-optimally estimate the overall analysis using the follow-
ing gain matrices:

S00= K1+K2, (14)

S01= K1+K2 (I −HK 1) , (15)

S10= K1 (I −HK 2)+K2, (16)

S11= K1 (I −HK 2)+K2 (I −HK 1) . (17)

These simple versions (S∗∗) can also be compared later to the
iterated versions.

Error covariance fields

The estimation of uncertainties is very valuable information
that is to be added to the analysis itself. The formal derivation
of it is well established for the general case: the analysis error
covariance matrixPa when using any gain matrixK is given
by (e.g.,Cushman-Roisin and Beckers, 2011)

Pa
= B−BHTZ−1HB (18)

+
(
BHT
−KZ

)
Z−1(HB−ZK T) ,

Z =
(
HBHT

+R
)
. (19)

When the gain is optimal, the last term vanishes and we
get the minimal error of the optimal interpolation approach.
Hence, we can also assess the errors of the different analyses
we propose.
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For example, if we are interested in the analysis of pro-
cess 1 and use the exact form ofK1, the expected error co-
variance on the analysis of process 1 reads

Pa
1= B1−K1HB1. (20)

Similarly, the error of the analysis of process 2 alone when
using the exact form ofK2 reads

Pa
2= B2−K2HB2. (21)

If we are interested in the overall analysis including both
processes, the error on the sum of the two analyses is

Pa
= B1+B2−

(
K1+K2

)
(HB1+HB2) (22)

since we usedK = K1+K2; we note that the error on the full
analysis is not the sum of the errors on each process but will
be lower.

In all cases, since we have a way to replaceK1 andK2
as functions ofK1 and K2, the error covariance fields can
also be assessed in any desired location by applying our new
method to a pseudo-data set containing, in fact, covariances.

3 Synthetic example

The objective of the synthetic test case is see which formula-
tions are the most interesting, and we do so by using a Monte
Carlo approach. In order to allow for a large number of real-
izations, a simplified framework is used in which only spatial
interpolation will be performed instead of a full time–space
analysis. This approach is not limiting since the time inter-
polation amounts to add a dimension to the system. As long
as the same types of correlation functions are also used over
time, the timescale will play exactly the same role as cor-
relation length, and the conclusions of the spatial interpola-
tion will also hold for the higher dimensional case (see also
Nardelli, 2012). Also, the conclusion we will derive from the
synthetic case will be shown a posteriori to perform well in
the real application including the time dimension.

Focusing on spatial interpolation, we generate two random
fields of different covariances (“true states”) on a domain
100 grid points wide, sample the fields, sum them up, add
noise and then analyze these pseudo-data with the different
formulations. Then we can calculate the squared norm of the
difference between the analysis and the true fields (each field
individually and the overall field). This exercise is repeated
a large number of times (100 000) to have a statistically sig-
nificant estimate and also error distribution. To simplify the
interpretation, the error estimates are scaled by the expected
analysis errors Eqs. (20)–(22) so that if the analysis is indeed
optimal, the average scaled error should be 1.

We can then look at the quality of the analysis for each in-
dividual process and the overall analysis for a series of differ-
ent values of the parameters describing the covariance struc-
tures of each process. These parameters will characterize the

correlation length of the processes and the signal-to-noise ra-
tio (e.g.,Troupin et al., 2010): the signal-to-noise ratio for
process 1 is defined asλ1= trace(B1)/trace(R) and similar
definitions hold for the signal-to-noise ratio for process 2 and
the total signal-to-noise ratio.

We made a series of tests with different length scales and
signal-to-noise ratios for both processes the results of which
are provided in Appendix C for completeness. Interestingly,
very clear and robust guidelines emerged.

Resulting guidelines

From what we saw, the best we can do is to label the process
with the highest signal-to-noise ratio as 1 and the other pro-
cess as 2 and apply P1a+P2b if we want to achieve the best
analysis.

If both processes have a similar signal-to-noise ratio, we
should label the larger-scale process as process 1 so that the
same formulas are still the best.

For simpler analyses Eq. (15) definingS01 remains a good
option with this choice of numbering.

For individual processes, P1a should be used for the it-
erated versions, whereasK1 is the best choice for a sim-
ple analysis for process 1; for process 2 version P2b and
K2(I −HK 1) are indicated respectively for the iterated ap-
proach or a simple approach.

For iterative methods, if scales are well separated or at
least one of the processes has a small signal-to-noise ratio,
only very few iterations are needed. In this case, the simple
formulation can also be competitive.

On the other hand, in difficult situations with overlapping
scales and strong signals, the iterated versions can always be
made convergent by using more iterations and the optimal
interpolation will result. Alternatively if scales are very simi-
lar, a single analysis with average correlation length could be
used.

4 DINEOF + OI

We now come to the application of our ideas to the better
reconstruction of satellite images. DINEOF has proven to be
efficient, particularly when looking at larger scales since the
interpolation exploits dominant large-scale EOF structures to
reconstruct missing data under clouds. Those EOF structures
generally capture a very high percentage of the data variance
and in this sense we can assume that the signal-to-noise ratio
is high.

If we try to add a local covariance structure with an
optimal interpolation approach, the signal-to-noise ratio for
this additional process we want to extract is probably much
lower. Hence, we are in the situation covered in synthetic
case (cases 3 and 4 of Appendix C) and the iterative version
of P1a+P2b is the natural choice, whereK1 stands for the
DINEOF-based analysis andK2 for the local OI application.

Ocean Sci., 10, 845–862, 2014 www.ocean-sci.net/10/845/2014/
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The analyzed fieldφ can be easily obtained from P1a+P2b,
called hereafter DINEOFOI, programmed as

Algorithm 2. Combination of two analysis tools for an optimal interpo-
lation.

φ← K1d

w1← Hφ (Use only analysis at data points without clouds)
w1← (d −w1) (Residuals)

Calibrate or check OI parameters at this point usingw1
w2← w1 (Start of iterative matrix inversion)
Loopn times

w2← HK 2w2 (Apply tool 2 and retrieve solution at data points)
w2← HK 1w2 (Apply tool 1 and retrieve solution at data points)
w2← w1+w2

End loop
ω1← K2w2

ω1 now contains scale 2 fieldK2d; can be saved for other uses
φ← φ+ω1 (Add it to K1d)
w1← Hω1

ω1← K1w1 (CalculatesK1HK2d)
φ← φ−ω1 (Final analysis)

If scale 1 solution is requested, subtract saved scale 2 solution from
φ and save it

This shows that the simple application of existing anal-
ysis tools to data arrays and a few working arrays/files
(w1,w2,ω1) will solve our problem and provide the analysis
φ. This demands 2+n applications ofK1 and 1+n applica-
tions ofK2.

For the calibration of OI parameters it is probably safe to
work on residuals after step 3 (available in intermediate re-
sultsw1) for fitting or verification of the correlation length
and signal-to-noise ratio since we showed in the synthetic
case that if scale separation is good,K2(I−HK 1)d is a good
proxy of the analysis for process 2.

There remains to formulate howK1 andK2 are defined. If
during step 1 of the algorithmφ could be interpreted as the
DINEOF result (and henceK1 the DINEOF tool applied to
the data), in the subsequent part of the algorithm we cannot
just replaceK1 by “apply DINEOF” since the EOFs calcu-
lated are data dependent. Hence, when working with residu-
als in the later steps, we would not use the same covariances
as we would generate new covariances from the residuals in-
stead of using the covariances from the large-scale processes.
So instead of choosing “apply DINEOF”, we must find a way
to exploit the large-scale covariances recovered by the orig-
inal DINEOF application. For this purpose we can use the
EOFs calculated by DINEOF on the raw data to specify co-
variance matrices as inBeckers et al.(2006). For such an op-
timal interpolation using EOFs from DINEOF, we recall that
DINEOF provides the singular value decomposition (SVD)
of the data3 stored in am×n matrixX with m pixels for each
cloud-free image andn images as

X = U6VT. (23)

3We stress again that averages have been subtracted to work with
anomalies.

TheN spatial EOFs (stored in them×N matrixU) and tem-
poral EOFs (stored in then×N matrix V) can be used to-
gether with the singular values (stored in the diagonal matrix
6) to estimate the spatial covariances

B(s)
=

1

n
U62UT. (24)

These spatial covariances then allow the spatial interpolat-
ing/analysis of eachn image: for a spatial analysis of image
j , the gain matrix reads indeed

K (s)j = B(s)HT
(
HB(s)HT

+R
)−1

. (25)

Note that for each imagej , another observation operatorH is
used as the cloud coverage changes. In order not to overload
notations we do not add an index but remember thatH is
image dependent.

The computational efficiency of this method stems from
the fact that the application of the Woodbury matrix identity
(e.g.,Golub and Van Loan, 2012) translates this into a least
square fitting ofN modes (e.g.,Beckers et al., 2006). Assum-
ing independent and identical observational errors of vari-
anceε2, this leads to

K (s)j = L
(
ε2I +LT

pLp

)−1
LT

p, (26)

with L = U6/
√

n and the corresponding version for the
data present in each imageLp = HL (note that hereH still
changes for each image). The computational efficiency is
now understood as for each image the matrix to invert is of
sizeN×N when using Eq. (26) instead ofp×p when using
Eq. (25), with the numberN of retained EOFs much smaller
then the numberp of pixels in an image. So from the EOFs
found by DINEOF, we can perform spatial interpolations at
low cost yet retaining the original spatial covariances.

By symmetry we can also choose to perform a temporal
interpolation of each of them pixels by using for pixeli the
time interpolation from covariance

B(t)
=

1

m
V62VT (27)

and use the computationally efficiently calculated gain ma-
trix

K (t)i = T
(
ε2I +TT

pTp

)−1
TT

p, (28)

with T = V6/
√

m andTp = HT (hereH changes for each
of the pixels and selects the images in which the pixel is not
clouded).

Then we can further improve the covariance model ex-
ploiting both temporal and spatial correlations as follows: in-
stead of choosing one or the other method (spatial or tempo-
ral interpolation alone) we can again apply the basic idea of
the present paper allowing the combination of two analysis

www.ocean-sci.net/10/845/2014/ Ocean Sci., 10, 845–862, 2014
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tools. We can indeed use as a covariance the combination of
the spatial and temporal covariances and for a pixeli of im-
agej , the covariance with a pixeli′ of imagej ′ is modeled as
B(s)

ii′
δjj ′ +B(t)

jj ′
δii′ with the standard Kronecker4 symbolδii′ .

In other words, as we are in the presence of the combination
of two covariances, without actually creating the sum and full
gain matrix, we can use again the iterated versions P1a+P2b
where process 1 is now provided by the spatial interpolation
tool and process 2 by the temporal interpolation tool. This
“inner” iterative combination provides then our EOF-based
analysis toolK1 for the “outer” combination method with
a local OI.

So if it is clear that in the later steps of Algorithm 2 we use
K1 as just described (the combination of spatial and temporal
EOF-based covariances), the first step could still be taken as
the DINEOF analysis as it could be regarded as some kind of
best first guess. This option will be looked at later.

For K2, a standard optimal interpolation tool is used. In
practice, the OI application for satellite images repeated at
the same locations can be strongly optimized since it is easy
to collect the data points which are within reach of the co-
variance function at any given point in which the analysis is
demanded. As the correlation length will be small, the num-
ber of data points involved will also be small and the ma-
trix inversion very quick for each analysis point. The typical
parametric correlation functionc used in optimal interpola-
tion is a Gaussian

c = e
−

(
δx
Lx

)2

e
−

(
δy
Ly

)2

e
−

(
δt
T

)2

, (29)

whereδx, δy and δt are the difference in space and time
coordinates between the two points for which we want to
calculate the covariance.Lx and Ly are then the correla-
tion length scale inx and y direction andT the correla-
tion timescale. The correlation function has to be multi-
plied by varianceσ 2

2 to provide B2. For the implementa-
tion of this optimal interpolation we used the open-source
codeoptiminterp available athttp://octave.sourceforge.
net/optiminterp/overview.html5. Its use was computationally
optimized by exploiting the fact that for each point in which
the analysis is demanded the gridded nature of the data points
allows a direct selection of possibly involved data points and
a rejection of all others. So it means one can feed the analy-
sis only with data in a box of size 4Lx ×4Ly ×4T centered
around the analysis point, which greatly reduces sorting and
selecting time and also allows for a parallel execution.

5 Test case

For the real case application, we use an interesting sea
surface temperature (SST) hourly data set derived from

4δii′ is 1 wheni = i′, 0 otherwise.
5Or http://modb.oce.ulg.ac.be/mediawiki/index.php/Optimal_

interpolation_Fortran_module_with_Octave_interface

Spinning Enhanced Visible and Infrared Imager (SEVIRI)
onboard the Meteosat Second Generation (MSG) geosta-
tionary satellite and produced operationally by the Euro-
pean Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) Ocean and Sea Ice Satellite Appli-
cation Facility (OSI-SAF) at Meteo-France/Centre de Me-
teorologie Spatial (CMS) in Lannion (EUMETSAT, 2011;
Le Borgne et al., 2011). Because of its geostationary or-
bit, high-frequency sampling is available and analyses re-
solving the daily cycle appeared (e.g.,Marullo et al., 2010,
2014). Some high-frequency content is expected to be fil-
tered by standard DINEOF applications and therefore the
data should provide a good test bed for our new method.
Furthermore, capturing the diurnal cycle in using satellite-
derived sea surface temperature is considered an important
challenge (Stuart-Menteth et al., 2003) and several studies
have been performed recently using hourly data (Karagali
et al., 2012; Le Borgne et al., 2012; Eastwood et al., 2011).

Excellent results when using SEVIRI data have been ob-
tained (Marullo et al., 2014): by combining a dynamical
model resolving the daily cycle with the SEVIRI data, their
reconstruction of hourly data covering the whole Mediter-
ranean Sea during the 3-month summer period of 2011
showed rms (root mean square) errors compared to in situ
data of 0.64 K with offshore moorings and 0.47 K with drifter
data, with a well-resolved daily cycle. A synthetic cloud
cross-validation exercise also provided an rms difference of
only 0.16 K between the artificially clouded SEVIRI points
and their reconstruction. In their case, the artificial clouds
were constructed by moving a 200 km wide meridional band
of “clouds” westward across the domain over around 24 h so
that no persistent artificial clouds were included.

For our study focusing on the methodology rather the re-
construction itself, we selected a smaller data set, covering
the period of 1–16 August 2013. This data set has some clear
images with daily cycles on which artificial clouds can be
added for validation purposes. The spatial resolution of the
data is 0.05◦, available at an hourly frequency, leading to
n= 16×24= 384 images. In all cases, we used all data with
quality flags 4 or 5 (acceptable and best quality). In order to
assess the robustness of the method and the conclusions of
this experiment, we look at four different cases.

Two different spatial coverages were considered, one look-
ing only at the western Mediterranean Sea, the other to the
whole Mediterranean Sea. This approach permits checking
the robustness of the statistical results and the effect of dif-
ferent EOF structures, and also shows the effect of larger data
variability. For the western Mediterranean Sea, we retrieved
images of 327×217=70 959 pixels from which 29 380 fall
on land, so that the maximum number of pixels in each image
useful for analysis ism=41 579. Without additional artifi-
cial clouds, this data set presents an average cloud coverage
of 29.70 %. For the whole Mediterranean Sea, images have
850×320 pixels, from which 120 343 fall onto the sea so
thatm=151 566 (see Fig.1). The average cloud coverage is
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Figure 1. Mean spatial structure of standard DINEOF analysis (left panel) and spatially averaged time evolution (right panel) of the analyzed
field (solid blue line), the original data (dashed green line) and the DINEOF analysis at pixels with data present (red line). The lower
temperatures in the DINEOF reconstruction are simply due to the fact that mostly cold regions were covered by clouds and the data average
only used available (warmer) pixels. More importantly, we see however that the DINEOF reconstruction has a lower-amplitude cycle than
the data. With the new methods DINEOFOI explained later, we recover the amplitudes found in the data (dotted line coinciding with the
dashed line).

23.53 % in this case. We also note that for the setup over the
whole Mediterranean Sea, data from the Black Sea and the
Atlantic Ocean are included, making the test more challeng-
ing as the EOF structures will need to cope with different,
mostly unconnected, variabilities.

For cross-validation purposes, additional clouds will be
added to the original data. The so-clouded cross-validation
data are never used in the calculations (neither in the DI-
NEOF decomposition nor the different optimal interpola-
tions) but allow for the computation of metrics characteriz-
ing the quality of the analysis under clouds. The rms errorδD

of the DINEOF reconstruction under these additional clouds
can be used as a reference error which we want to improve.
We can then define a skill-scoreS as

S = 1−
δ2

δ2
D

, (30)

which measures the relative increase in precision (a 0 skill-
score value indicates no better results than DINEOF whereas
a value of 1 means a perfect reconstruction). A second stan-
dard metric for the validation is the correlation coefficient
between the analysis and the cross-validation points notedr.

Two different kinds of artificial cloud sets allows one to
check the effect of more or less persistent cloud coverage
on the reconstruction quality and the improvements brought
by our new method. In one situation, clouds from the last
2 weeks of July 2013 are superimposed onto the already
present clouds and the pixels masked in this way taken aside
as cross-validation data. In the other situation, we generate
artificial clouds as inMarullo et al.(2014): the slab of clouds
moves from east to west across the domain in about 1 day
and then starts again from the east. The fraction of overlap
between successive images was taken similar to the one in
Marullo et al.(2014).

From these two different spatial coverages and two differ-
ent cloud coverages we create our four test cases:

Setup 1: western Mediterranean Sea, added July clouds

For cross-validation purposes, clouds from the last 2 weeks
of July were superimposed, resulting in total average cloud
coverage which increases from 29.70 to 42.06 % The data set
is then analyzed with DINEOF, providingN = 38 EOFs, the
singular values and the DINEOF reconstruction explaining
91 % of the variance. As expected, DINEOF captures a large
part of the variability. A first diagnostic can be performed
by calculating the root mean square difference between this
reconstruction and the artificially clouded pixels (the cross-
validation points, here we have 1 973 438 of them), and we
obtain an associated standard deviationδD = 0.496 K close
to the noise level in the data, as the SEVIRI SST standard
deviation is around 0.5 K (Brisson et al., 2002). For DINEOF
we obtainr = 0.9371, which is therefore the baseline to im-
prove upon in this case.

For this case and the following cases, the metrics of the
standard DINEOF application just mentioned are summa-
rized in Table1 and for the following cases we only describe
the cross-validation approach.

Setup 2: western Mediterranean Sea, added
banded clouds

In the first setup, analyses under persistent large-scale clouds
can of course not be improved by the local optimal interpola-
tion. To check if we can reconstruct data under fast-moving
clouds, we take a band of westward-moving “clouds”.

Setup 3: whole Mediterranean Sea, added July clouds

To check how the reconstructions behave when a larger range
of observations are present, we look at the whole Mediter-
ranean Sea. The full Mediterranean Sea case exhibits gener-
ally less clouds (23.53 %); with the July clouds added to the
original data, the cloud coverage increases to 35.29 %.

www.ocean-sci.net/10/845/2014/ Ocean Sci., 10, 845–862, 2014
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Table 1. Skill scores and correlation coefficients for the four SEVIRI setups and the different methods. DINEOF stands for the direct use
of standard DINEOF results. DINEOF+K2 uses the simple approach of adding a local optimal interpolation of residuals. DINEOF+10 it
stands for the method in which we start from DINEOF results and then apply the iterative version usingK1 based on the EOFs. VersionK1
uses only the EOF-based covariances,S01 stands for the simple approach when we add the local optimal interpolation of residuals to the
previous solution and finally the last two lines correspond with the full method with no iterations or 10 iterations (for inner iterations within
K1 combining space- and time-EOF-based interpolations, iterations are maintained in all cases).

Setup 1 Setup 2 Setup 3 Setup 4
δD 0.496 K 0.308 K 0.492 K 0.285 K
Cloud fraction 42.06 % 34.09 % 35.29 % 27.02 %
N EOF modes 38 37 38 40

S r S r S r S r

DINEOF 0.00 0.9371 0.00 0.9699 0.00 0.9707 0.00 0.9824
DINEOF+K2 0.21 0.9507 0.45 0.9835 0.21 0.9769 0.40 0.9895
DINEOF+10 it −1.25 0.8476 −1.79 0.9149 −0.51 0.9559 −0.97 0.9650
K1 0.24 0.9516 0.22 0.9764 0.18 0.9760 0.18 0.9855
S01 0.33 0.9576 0.47 0.9839 0.28 0.9791 0.42 0.9899
DINEOFOI 0 it 0.34 0.9579 0.47 0.9840 0.29 0.9792 0.43 0.9899
DINEOFOI 10 it 0.37 0.9602 0.49 0.9845 0.31 0.9798 0.44 0.9901

Setup 4: whole Mediterranean Sea, added banded clouds

Finally, we complete the comparisons by using the whole
Mediterranean Sea, but with a fast-moving westward band
of “clouds”.

To proceed, we now need to specify the observational er-
ror variance and the varianceσ 2

2 for the local optimal inter-
polation in each case. As we will show later, the conclusions
remain robust in all cases and we only detailed results of the
most challenging Setup 3 in Appendix D. The parameter op-
timization of the other cases was performed in a similar way
with similar results.

From the calibration we note in Fig.2 that the time au-
tocorrelation spectrum exhibits an anticorrelation at 6 h and
maximum autocorrelation at 12 h. This reflects, in fact, the
asymmetry of the diurnal cycle. When analyzing the raw data
instead of residuals, the spectrum and autocorrelation (not re-
produced here) indeed shows an anticorrelation at 12 h and
correlation at 24 h. Thus, the residuals will allow for follow-
ing the higher-frequency content.

The observational noise variance was fixed as 0.25 K2.
A sensitivity analysis was performed, changing this value
into the range of 0.1 to 10 K2. In all cases, the conclusion
in terms of ranking of the different methods remained the
same; only the relative part of the solution picked up by the
EOF-based covariances or local optimal interpolation was af-
fected. As the value of 0.25 K2 is the typical value associated
with SEVIRI data (Brisson et al., 2002), we kept this value
even if better skill scores were obtained for other values used
in sensitivity analyses.

With all parameters defined, we proceed to the optimal in-
terpolation and compare the different techniques to the stan-
dard DINEOF solution for the four different setups. As seen
from Table1, robust conclusions can be drawn:

– Results for cases working on a larger domain had bet-
ter correlations then the cases working on the west-
ern Mediterranean Sea alone because of the larger
data range, but ranking between the methods re-
main the same, independently of the domain covered.
Conclusions are therefore robust with respect to the do-
main size.

– Results with fast-moving slabs of cloud are always bet-
ter than with more realistic clouds, but again the ranking
of the methods is not changed between the two situa-
tions and conclusions robust with respect to the type of
cross-validation clouds added.

– In all cases, our new iterated method provides the best
skill scores and correlation coefficient. Using 0 itera-
tions instead of 10 iterations only slightly degrades re-
sults and keeps the non-iterated method ranked second
in terms of skill scores and correlation coefficient.

– The simple method of using DINEOF followed by a lo-
cal optimal interpolation of residuals (DINEOF+K2)
also provides good skill scores. In cases with fast-
moving artificial clouds, the skill score is close to the
one of our new version, but adding real clouds using the
new method clearly increases the skill further.

– Starting from DINEOF and then applying itera-
tions with K1 based on the DINEOF EOFs (called
DINEOF+ it) is not a good idea since in all cases neg-
ative skills and lower correlations are observed. Hence,
in this case the inconsistency of the first step in our al-
gorithm with the rest of the steps deteriorates results.

– Finally, the simple methodS01 also yields better results
than DINEOF+K2.
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Figure 2.Spectrum analysis leading to autocorrelation functions, for longitude, latitude and time (from left to right). Autocorrelation is given
as a function of distance expressed in number of grid points or as a function of time-delay expressed in number of time steps (hours). The
continuous line corresponds with the fitted Gaussian correlation function.

Figure 3. Correlation at cross-validation points using DINEOF alone and the new method DINEOFOI in Setup 1 (top) and Setup 2 (below).

The higher correlation found with the banded fast-moving
clouds is also seen in the correlation plots of Figs.3 and4.
When July clouds are used, some persistent large-scale
clouds do not permit improving DINEOF reconstructions in
these regions. This leads to larger dispersion. When fast-
moving clouds are used, the local optimal interpolation can
infer missing information from the surrounding pixels and
correlations are much higher. We also notice that even in
the July cloud case, the new method filters the extreme

values less than the original DINEOF reconstruction (the S-
shaped tendency of DINEOF reconstructions dampening the
extreme variations is reduced with the new method).

Since the computational load of the new method is a frac-
tion of the computational cost of the DINEOF decomposi-
tion (typically 10 % for the iterated version) it is the natural
choice to improve DINEOF results when good skill scores
and correlations are sought. If one does not want to program
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Figure 4. Correlation at cross-validation points using DINEOF alone and the new method DINEOFOI in Setup 3 and Setup 4.

Figure 5. DINEOF reconstruction, residual and autocorrelation of residuals. DINEOF (top) and new method DINEOFOI (lower images).

K1 and iterations6, the simple approach of using DINEOF
followed by the local optimal interpolation of residuals is
a simple alternative.

6To avoid reprogrammingK1 and iterations, the code will be
made available athttp://modb.oce.ulg.ac.be/mediawiki/index.php/
DINEOF

Skill scores and correlation coefficients are not the only
criteria to select a method, and we can further check if the
new method also leads to better feature reconstruction.

Figure5 shows the analysis, residuals and they autocorre-
lation for the standard DINEOF approach and our new iter-
ated solution DINEOFOI. While DINEOF residuals exhibit
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Figure 6. Data used (upper left panel), data including cross-validation data (upper right), DINEOF reconstruction (lower left) and new
approach DINEOFOI with 10 iterations (lower right).

patterns identified in the autocorrelation function, the residu-
als of the new method are almost pure spatially uncorrelated
noise. For the other methods, not shown here,K1 and DI-
NEOF+ it both contain a similarly autocorrelated signal as
DINEOF. All other methods are able to retrieve this structure
and leave mostly spatially uncorrelated residuals. We also see
that the amplitude of the daily cycle is now closely following
the data (Fig.1).

Looking into the northwestern Mediterranean Sea (Fig.6),
the typical lower temperature structures are also used in
model validations (e.g.,Millot , 1987; Beckers et al., 2002).
Here the comparison of the reconstructions with the cross-
validation data not used also reveals that some features are
now better visible in the reconstruction with the new method,
in particular the form of the cold patch in the center of the
domain.

Instead of looking at the full analysis, we can also focus
on individual processes 1 and 2. For example, the time evo-
lution at latitude 34.375◦ N in the eastern Mediterranean Sea
(Fig. 7) shows clearly how scale 1 solution is dominated by
the daily cycle (we even see the earlier heating in the eastern
part during the day). Scale 2, on the other hand, has a 12 h
period component whose structure could lead to interesting
interpretations.

6 Conclusions

We presented a general framework for multi-scale analysis
using optimal combinations of analysis tools focusing on dif-
ferent scales and processes. It provides this multi-scale anal-
ysis in an efficient way by combining the analyses obtained
with different simpler tools based on the assumption that only
a single process is present. The method also allows one to fo-
cus on individual scales by isolating the analysis of a single
process in the presence of another one.

With a synthetic test case, we were able to provide guide-
lines for which formulations to choose among a series of
possible algorithms. In particular, we showed that by naming
process 1 as the process which has the highest signal-to-noise
ratio (or largest correlation length when the other process has
a similar signal-to-noise ratio), process 1 can then be effi-
ciently analyzed by a well-identified iterative method7. The
other process then is optimally reconstructed with another it-
erative formula8 and the combination of the two provides an
analysis which is close to the theoretical optimal interpola-
tion even with a reduced number of iterations.

7P1a in the text.
8P2b in the text.
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Figure 7. Hovmöller diagram in the eastern Mediterranean at lati-
tude 34.375◦ N. Temperature as a function of longitude (in degrees)
and time (in days) for process 1 (left panel) and process 2 (right
panel).

Then we showed how we can exploit large-scale covari-
ances together with small-scale covariances in a feasible
way without the need to explicitly invert huge matrices that
would arise from a direct application of the OI formula.
This was possible through the particular choice of the covari-
ance model (EOF-based large-scale covariance and localized
parametric covariance) and the new iterative method we pro-
posed.

This was then implemented in a real application where
it was shown that with the new approach, we can indeed

retrieve fine-scale features previously filtered out. The
iterative version with a combination of DINEOF-based EOF
covariances and local optimal interpolation called DINEO-
FOI behaved best, but an alternative cheaper version is us-
ing the DINEOF analysis itself augmented by the analysis
of residuals with a local optimal interpolation. But we have
shown that the latter, quite natural approach was suboptimal
in all situations. Other simple methods have also been iden-
tified: a time–space interpolation using EOFs from DINEOF
alone9 possibly augmented by an additional local optimal
analysis of residuals10. Both yield good results, but they also
remain suboptimal. Hence, DINEOFOI provided the optimal
solution at a still reasonable cost.

Further fine-tuning of the real application could be per-
formed but is out of the scope of the present paper, focus-
ing on how to combine two or more analysis tools, each
one exploiting different covariance specifications. To provide
the best possible SST products, the following improvements
could be included: we can adopt more complicated expres-
sions of the observational error covariances, exploiting the
preliminary outliers detection offered by DINEOF and the
quality-flag value of the original data. In this case, suspect
pixels (near clouds or with statistically too-large residuals)
can be flagged and see their observational error increased.
This should lead to further improvement in noise filtering.
The temporal covariance functions used in the local optimal
interpolation could be modulated by a cosine function to take
into account the 12 h cycle identified in the residuals and pro-
vide better estimates for clouds present over several hours.

9K1 in the text.
10S01 in the text.
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Appendix A: Proof of scale-selective analysis formula

With two processes, if we want to isolate the best analysis for
process 1, it can be obtained with the gain matrix Eq. (2) in
the presence of two scales:

K1= B1HT(HB1HT
+HB2HT

+R
)−1

. (A1)

We will now prove Eq. (6) rewritten as

B1HT(HB1HT
+HB2HT

+R
)−1

(A2)

=G−1K1 (I −HK 2) ,

with G= I−K1HK 2H supposed to be invertible andK1 and
K2 defined by Eq. (3).

Multiplying each side on the left byG and on the right by(
HB1HT

+HB2HT
+R

)
, we need to prove that

GB1HT
= K1 (I −HK 2)

(
HB1HT

+HB2HT
+R

)
, (A3)

which, by using the definitions ofG andK1 is true if

I −
(
HB1HT

+R
)
HK 2HB1HT

=
(
HB1HT

+R
)−1

(A4)

(I −HK 2)
(
HB1HT

+HB2HT
+R

)
,

which, multiplying each side by
(
HB1HT

+R
)

is true if

HB1HT
+R−HK 2HB1HT (A5)

= (I −HK 2)
(
HB1HT

+HB2HT
+R

)
,

which is true if

−HK 2HB1HT
= HB2HT (A6)

−HK 2
(
HB1HT

+HB2HT
+R

)
,

which in turn is true if

0= HB2HT
−HK 2

(
HB2HT

+R
)
. (A7)

Since the latter is true by virtue of the definition ofK2, we
have proven Eq. (6). Then, using Eq. (B1) we also prove
Eq. (7). From there, by interchanging indices 1 and 2 we also
prove Eq. (12).

We can also prove that Eqs. (4) and (6) are equivalent. We
need to show that withF= I −K2HK 1H,

K1−K1HF−1K2 (I −HK 1)=G−1K1 (I −HK 2) , (A8)

which is true if

GK1−GK1HF−1K2 (I −HK 1)= K1 (I −HK 2) , (A9)

itself true if

K1HK 2 (I −HK 1)=GK1HF−1K2 (I −HK 1) , (A10)

which is the case if

K1H =GK1HF−1 (A11)

or if

K1HF =GK1H, (A12)

which is true. Hence, we proved Eq. (4). Then application of
Eqs. (B2) to (4) proves Eq. (5). From there, as before, inter-
changing indices 1 and 2 yields Eq. (11) and all our identities
are verified.

Appendix B: Useful matrix identity

If the inverse matrices involved in the following expression
exist, than the following identity holds for any (size compat-
ible) matricesH, K1 andK2

(I −K1HK 2H)−1K1= K1(I −HK 2HK 1)
−1. (B1)

This can be easily shown by an application of the Woodbury
formula or a direct proof obtained by multiplying the right
side by(I −HK 2HK 1) and the left side by(I −K1HK 2H).
A similar expression can be obtained by interchanging in-
dices 1 and 2:

(I −K2HK 1H)−1K2= K2(I −HK 1HK 2)
−1. (B2)

Appendix C: Detailed comparison for synthetic case

Case 1: As a first case, we use two processes with unit signal-
to-noise ratios but very different correlation length. For pro-
cess 1 a length scale of 33 grid points was taken whereas for
process 2 a length scale of 4.5 grid points was used. The data
cover the original grid entirely and the analysis is therefore
only checking the filtering properties of the different formu-
lations. Hence, we only look at average behaviors, but dis-
tinguish errors in reconstructing process 1, process 2 and the
overall field, as detailed in TablesC1–C4. For process 1 (Ta-
ble C1), we note that it is not beneficial to try to subtract the
small-scale information before the analysis by a simple resid-
ual approach (column 3) and that the iterative version P1a
even without iterations yields the best results. When perform-
ing iterations, TableC1shows convergence and the superior-
ity of P1a. For small-scale process 2 (TableC2), the simple
version of first subtracting the large-scale analysis from the
data performs best and is equivalent to a non-iterated version
of P2b. All iterative versions converge and iterative version
P2b shows its superiority for small scales.

For the overall analysis, the simple approaches in TableC3
exhibit interesting facts. The best approach is to combine the
analysis of one process with the analysis of the residual for
the other process. Furthermore, even if we showed that pro-
cess 1 is best captured byK1 and process 2 by analyzing
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Table C1.Average error for different analysis formulations of pro-
cess 1. Column 5 of the upper part shows the same result as col-
umn 3 since it can be shown that without iterations, the formulations
are equivalent. So column 5 of the upper part of the table essentially
gives confidence that the implementation is correct. The average rel-
ative error variance is based on 100 000 independent realizations.

Case K1 K1 (I −HK 2) 0 it P1a 0 it P1b

1 1.3969 3.2775 1.2212 3.2775
2 1.8056 2.0853 1.6121 2.0853
3 1.1970 1.4024 1.0634 1.4024
4 1.0620 7.4532 1.0215 7.4532
5 1.0055 1.2405 1.0038 1.2405
6 1.9071 2.9159 1.6922 2.9159
7 1.9422 2.1873 1.8183 2.1873

Case 2 it P1a 2 it P1b 20 it P1a 20 it P1b

1 1.0916 2.2260 1.0007 1.0057
2 1.4012 1.8109 1.0281 1.0779
3 1.0205 1.1012 1.0024 1.0024
4 1.0044 2.6406 0.9982 1.0021
5 1.0021 1.1195 0.9997 1.0069
6 1.5009 2.5738 1.0894 1.4318
7 1.6686 2.0194 1.2510 1.3978

Table C2.Average error for different analysis formulations of pro-
cess 2. As in TableC1, column 5 of the upper part gives the same
result as column 3, as it should. The average relative error variance
is based on 100 000 independent realizations.

Case K2 K2 (I −HK 1) 0 it P2a 0 it P2b

1 2.5580 1.1923 2.1361 1.1923
2 2.0783 1.6684 1.9256 1.6684
3 1.1882 1.0355 1.0890 1.0355
4 6.0804 1.0225 3.7195 1.0225
5 6.1443 1.0814 4.0191 1.0814
6 1.5339 1.2145 1.4921 1.2145
7 2.0680 1.7672 1.9825 1.7672

Case 2 it P2a 2 it P2b 20 it P2a 20 it P2b

1 1.6118 1.0669 1.0016 0.9991
2 1.6931 1.4126 1.0672 1.0278
3 1.0321 1.0115 1.0024 1.0024
4 2.1335 1.0066 1.0037 1.0004
5 2.5873 1.0415 1.0946 1.0008
6 1.4230 1.1522 1.1580 1.0348
7 1.8451 1.6062 1.3362 1.2211

residuals viaK2(I −HK 1), the overall analysis performs as
well when doing the inverse and adding the results up. For the
iterated version (TableC4), we see a similar pattern; adding
up formulations of the same type (P1a+P2a or P1b+P2b)
does not perform as well as adding up formulations of dif-
ferent types (P1a+P2b or P1b+P2a), but convergence is
observed in all cases. The natural choice for this case is

Table C3. Average error for different simplified analysis formula-
tions for the overall analysis. The average relative error variance is
based on 100 000 independent realizations.

Case S00 S10 S01 S11

1 6.2802 1.0088 1.0085 5.6440
2 21.6620 1.0165 1.0200 19.8658
3 1.4088 1.0371 1.0357 1.3120
4 4.7596 2.2262 1.0231 6.5037
5 1.5216 1.1202 1.0015 1.3122
6 2.5735 1.2828 1.1630 2.7218
7 19.8920 1.0089 1.0373 19.0295

Table C4. Average error for iterative versions for the overall anal-
ysis: 0, 2 and 20 iterations. The average relative error variance is
based on 100 000 independent realizations.

Case 0 it P1a+P2a 0 it P1a+P2b 0 it P1b+P2a 0 it P1b+P2b

1 4.6928 1.0220 1.0385 5.6440
2 18.0134 1.0784 1.0119 19.8658
3 1.1679 1.0071 1.0559 1.3120
4 2.9738 1.0055 2.8756 6.5037
5 1.3133 1.0016 1.0656 1.3122
6 2.3563 1.1118 1.2926 2.7218
7 18.0300 1.0737 1.0139 19.0295

Case 2 it P1a+P2a 2 it P1a+P2b 2 it P1b+P2a 2 it P1b+P2b

1 2.9137 1.0017 1.0203 3.3676
2 13.1811 1.0130 1.0077 14.2558
3 1.0560 1.0014 1.0073 1.0823
4 1.8108 1.0015 1.2031 2.4070
5 1.1680 1.0005 1.0195 1.1583
6 2.0934 1.0696 1.2255 2.3798
7 15.3637 1.0211 1.0113 16.0365

Case 20 it P1a+P2a 20 it P1a+P2b 20 it P1b+P2a 20 it P1b+P2b

1 1.0086 0.9998 0.9999 1.0102
2 2.0564 0.9991 0.9996 2.1293
3 1.0006 1.0006 1.0006 1.0006
4 1.0034 1.0009 1.0010 1.0043
5 1.0101 1.0000 1.0006 1.0094
6 1.3308 1.0056 1.0290 1.3799
7 6.6037 1.0004 1.0024 6.7399

therefore clearly P1a for the larger scales, equation P2b for
the shorter scales and their sum for the overall analysis.

For case 2, we use the same parameters but examine the
behavior when the scales are less well-separated and use
a correlation length of 16 grid points instead of 4.5 for pro-
cess 2. Compared to case 1, the conclusions remain mostly
unchanged, but we observe that more iterations are needed to
reach the same quality in the iterated version.

For case 3and the following cases, we only use obser-
vations in parts of the domain. In one region, sampling is
done at grid resolution and in other regions with larger parts
void of data (up to 20 grid points). This mimics the situation
we encounter with satellite images. Otherwise, the case is
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Figure C1. Histogram of scaled errors for reconstruction of process 1 (left) and process 2 (right). We see that for process 1, it is better to use
the full data set, whereas for process 2 it is better to work with residuals, i.e., data from which we subtract the analysis of the process 1.

Figure C2. Histogram of scaled errors for simple reconstructions of the total field (left) and with 0 iterations in the new formulations (right).
For reference, the distribution of the optimal solution is also shown, proving that not only is the average error of the new method combining
P1a and P2b optimal, but also that the error distribution falls along the optimal one.

identical to case 111. Conclusions for case 3 are similar to
case 1, and we see that even with few iterations we capture
the maximum information from the data available.

In case 4we take the same parameters as in case 3 (partial
observation, very different scales), but assume that process 1
has a much higher signal-to-noise ratio: we use a value of 20
instead of 1. In this case, P1a again provides the best analysis
for process 1 and P2b, for process 2 alone. For the simple
approaches for the total field (TableC3), now the selection
of the field used to create residuals is important, and as one
might have guessed, one has first to analyze the large-scale
process with the high signal-to-noise ratio and then add the
small-scale analysis of the residuals (meaningS01 is used for
the global analysis). For the iterated version, it is now clearly
the combination P1a and P2b which outperforms the others.

Since this case is also similar to our original question,
we can now also have a look at the error distribution of the
100 000 realizations (Figs.C1 and C2). They confirm that
when the average error of the formulations is close to the er-
ror of the truly optimal solution, the histogram of errors also

11Note that when comparing the results of case 1 and case 3, the
error has been scaled by the best analysis possible with the data
available. Hence, a better score in case 3 does not mean the analysis
itself is better than the analysis in case 1 (which uses more data) but
that we are closer to the best we can get from the data.

almost coincide, providing evidence that we are indeed very
close to the optimal interpolation.

To complete the analysis, some additional cases have been
examined: incase 5we use the same parameters as in case 4
but use the short correlation length for process 1 and the
larger one for process 2. Despite this inversion, the same con-
clusions as in case 4 remain. This means that it is the process
with the highest signal-to-noise ratio which should be labeled
as process 1 so that P1a and P2b remain optimal.

For case 6we use the same situation as in case 3, but now
both processes have the same high signal-to-noise ratio of
20. Similar conclusions still hold, but the simpler approaches
now degrade.

Finally, case 7uses the same situation as case 6 (two high
signal-to-noise ratios), but in addition the correlation scales
are now closer to each other (30 grid points for process 1 and
16 grid points for process 2). This is the most difficult situ-
ation and requires more iterations to converge. In this case,
one could anyway question whether a scale separation ap-
proach is meaningful or if a single correlation length scale
should be used.
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Appendix D: Calibration of covariance functions and
signal-to-noise ratio

To specify the covariance function to be used with the local
optimal interpolation, we can take advantage of two particu-
larities of the data we will analyze: we expect them to contain
mainly small scales (as we work on residuals) and we have
a rather large amount of data available on a regular grid to fit
the parametric covariance function. The following approach
exploits these two particularities.

For the longitude correlation length, we can randomly se-
lect a point in the data set and verify if a prescribed number
of consecutive data is present in the longitudinal direction.
Since we are looking at small scales, typically 20–50 points
of consecutive data would be enough to capture signals, and
the probability to find such a chunk of complete data is high
enough. Once such a chunk is found, we can apply a fast
Fourier transform to it and calculate the squared Fourier am-
plitude. This is repeated a large number of times (10 000 in
our case), and an average squared amplitude spectrum can be
assessed. The autocovariance function can then be calculated

as the inverse Fourier transform of this square of the am-
plitude spectrum of the signal (e.g.,Bracewell, 1986). This
autocovariance from the data can then finally be used to fit
the analytical function and estimate the signal-to-noise ratio.
In practice, the fitting is done by trying to fit the Gaussian
function αexp

(
−βδ2

x

)
to the points of the data-based auto-

correlation function up to the zero-crossing but eliminating
the zero-lag point. The signal-to-noise ratio can finally be es-
timated by (see Fig.2)

λ2=
α

1−α
, (D1)

whereα is the fitted value representing the signal and 1−α is
the part not explained by the correlation function, hence the
noise.

The same approach is then also applied to latitude and
time, and since the fitting is not perfect, the estimated overall
signal-to-noise ratio is conservatively taken as the lowest one
found from the three directions.
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