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Abstract. The annual cycle of sea surface temperature (SST)
in the eastern equatorial Pacific (EEP) has the largest am-
plitude in the tropical oceans, but it is poorly represented
in the coupled general circulation models (CGCMs) of the
Coupled Model Intercomparison Project Phase 3 (CMIP3).
In this study, 18 models from CMIP5 are evaluated in terms
of their capability of simulating the SST annual cycle in the
EEP. Fourteen models are able to simulate the annual cycle
fairly well, which suggests that the performances of CGCMs
have been improved. The results of multi-model ensemble
(MME) mean show that CMIP5 CGCMs can capture the an-
nual cycle signal in the EEP with a correlation coefficient
up to 0.9. Moreover, the CMIP5 models can simulate the
westward propagation character of the EEP SST – in par-
ticular, EEP region 1 (EP1) near the eastern coast leading
EEP region 2 (EP2) near the central equatorial Pacific by 1
to 2 months in spring. However, the models fail to reproduce
the in-phase SST relationship between EP1 and EP2 in Au-
gust and September. For amplitude simulations, the model
SST in EP1 shows weaker seasonal variation than the obser-
vations due to the large warm SST biases from the southeast-
ern tropical Pacific in the boreal autumn. In EP2, the simu-
lated SST amplitudes are nearly the same as the observations
while there is the presence of a quasi-constant cold bias as-
sociated with poor cold tongue simulation in the CGCMs. To
improve CGCM simulation of a realistic SST seasonal cycle,
local and remote SST biases that exist in both CMIP3 and
CMIP5 CGCMs must be resolved at least for simulating the
SSTs in the central equatorial Pacific and the southeastern
tropical Pacific.

1 Introduction

The eastern equatorial Pacific (EEP) is a key region for El
Niño–Southern Oscillation (ENSO) that affects weather, ex-
treme events and climate globally. Although the equatorial
region is dominated by the semi-annual cycle of solar radia-
tion, the sea surface temperature (SST) seasonal variation in
the EEP exhibits a strong annual cycle with the March–April
warm phase and August–October cold phase (Mitchell and
Wallace, 1992; Nigam and Chao, 1996), which is different
from the semi-annual cycle in the western equatorial Pacific
due to the sun crossing the Equator twice a year. Substantial
attention has been devoted to understand the mechanisms of
the SST annual cycle (Mitchell and Wallace, 1992; Giese and
Carton, 1994; Xie, 1994, 2004; Mechoso et al., 1995; Nigam
and Chao, 1996; Dewitt and Edwin, 1999). Numerous phys-
ical processes have been hypothesized to contribute to the
annual cycle in the EEP (reviewed by Xie, 2004), such as
wind–evaporation–SST feedback, stratus–SST feedback and
upwelling–SST feedback. Because the annual cycle in the
EEP involves complex dynamical and physical interaction
among climate subsystems, it can serve as an indicator for
the performance of the coupled general circulation models
(CGCMs).

Since the pioneering work of developing a climate model
by Manabe and Bryan (1969), CGCMs have achieved signif-
icant progress and can provide credible basic climate simu-
lation, particularly through several important climate model
intercomparison programs such as the Coupled Model In-
tercomparison Project (CMIP), the Paleoclimate Modelling
Intercomparison Project (PMIP) and the Cloud Feedback
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Figure 1 Seasonal cycle of sea surface temperature (SST) in the eastern equatorial 3	
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Figure 1. Seasonal cycle of sea surface temperature (SST) in the eastern equatorial Pacific (EEP). Shadings represent climatological SST,
and contours represent SST anomalies relative to climatological annual mean.

Model Intercomparison Project (CFMIP). Climate models
are important because climate process research and climate
projection depend on them. Despite the progress, model bi-
ases still persist in the state-of-the-art CGCMs in terms of
simulating the SST seasonal cycle in the EEP (Mechoso et
al., 1995; Covey et al., 2000; Latif et al., 2001; Xie et al.,
2007). Several years ago, De Szoeke and Xie (2008) com-
pared the SST results of 14 global CGCMs in the CMIP
Phase 3 (CMIP3), and showed that eight of these models sim-
ulated two cold phases in the EEP rather than a single cold
phase as observed. For example, the simulation of the Com-
munity Climate System Model version 3 (CCSM3), which
was one of the CMIP3 models, has a robust SST semi-annual
cycle in the EEP. This problem was regarded as one of the six
challenges for the further development of CCSMs (Collins et
al., 2006). Several studies have reported that the EEP SST an-
nual cycle has been improved in their climate models (Gent
et al., 2011; Yu et al., 2013). The model outputs of the CMIP
Phase 5 (CMIP5) were released recently, which include the
latest version of models participating in CMIP3 and some
new models. Therefore, a natural question is how well the

SST annual cycle in the EEP is reproduced in CMIP5 mod-
els.

This study aims to use the outputs of the CMIP5 historical
simulations to evaluate the EEP SST annual cycle simulation
in the newest versions of coupled models. A brief descrip-
tion of the models and validation data sets used in this study
are presented in Sect. 2. Section 3 presents the simulations
of CMIP5 models, and Sect. 4 provides the conclusion and
discussion.

2 Models and data sets

In this study, the historical model simulations used are sum-
marized in Table 1. This new generation of CMIP5 CGCMs
was from 12 scientific organizations across 10 countries, and
the simulations have been submitted to the Program for Cli-
mate Model Diagnosis and Intercomparison (PCMDI) for the
Intergovernmental Panel on Climate Change Fifth Assess-
ment Report (Taylor et al., 2012). Each historical simulation
was integrated from pre-industry spin-up experiment and was
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Table 1.List of the CMIP5 models whose output are analyzed in this study.

No. Model Model center Reference

1 CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) Chylek et al. (2011)

2 CCSM4 National Center for Atmospheric Research (United States) Gent et al. (2011)

3 CSIRO-Mk3-6-0 Australian Commonwealth Scientific and Industrial Research Organi-
zation Marine and Atmospheric Research, and Queensland Climate
Change Centre of Excellence (Australia)

Rotstayn et al. (2010)

4 FIO-ESM First Institute of Oceanography (China) Qiao et al. (2013)

5 GFDL-CM3
Geophysical Fluid Dynamics Laboratory (United States)

Griffies et al. (2011)
6 GFDL-ESM2G Dunne et al. (2012)

7 GISS-E2-H
Goddard Institute for Space Studies (United States) Shindell et al. (2013)

8 GISS-E2-R

9 HadCM3 Smith et al. (2010)
10 HadGEM2-CC Met Office Hadley Centre (United Kingdom) Collins et al. (2011)
11 HadGEM2-ES Jones et al. (2011)

12 inmcm4 Institute for Numerical Mathematics (Russia) Volodin et al. (2010)

13 IPSL-CM5A-MR
Institute Pierre Simon Laplace (France)

Hourdin et al. (2013a)
14 IPSL-CM5B-LR Hourdin et al. (2013b)

15 MPI-ESM-LR
Max Planck Institute for Meteorology (Germany) Giorgetta et al. (2013)16 MPI-ESM-P

17 MRI-CGCM3 Meteorological Research Institute (Japan) Yukimoto et al. (2012)

18 NorESM1-M Norwegian Climate Centre (Norway) Bentsen et al. (2013)

then forced by solar, volcanic, aerosol, and greenhouse gas
forcing for the period of 1850–2005. In this study, we select
the monthly outputs from 1949 to 2005 for analysis.

Simulation results were compared with the SST data set of
the observations, which is the monthly data from the National
Oceanic and Atmospheric Administration extended recon-
structed SST version 3b (ERSST v3b) (Smith et al., 2008).
This data set is a global monthly gridded data set generated
by using in situ data from the International Comprehensive
Ocean-Atmosphere Data set (ICOADS) with missing data
filled in by statistical methods. To validate model simula-
tions, we also used the ERSST monthly data from 1949 to
2005.

3 Results

3.1 Comparison

The annual cycle is one of the major features of SST vari-
ability in the EEP (Mitchell and Wallace, 1992; Nigam and
Chao, 1996; Xie, 1994, 2004). As shown in Fig. 1, the ob-
served EEP SST reaches the peak at 27◦C during March and
April and exhibits a minimum of 23◦C during September
and October. This annual cycle, approximately 4◦C in am-
plitude, is mainly restricted in the region between 110 and

85◦ W along the Equator. So, we define the region from 110
to 85◦ W and 5◦ S to 5◦ N as the EP region 1 (EP1). The
annual cycle is almost non-existent to the west of 140◦ W.
Then, we define the transition region (140–110◦ W and 5◦ S–
5◦ N) as EP2, where SST shows a much weaker annual cycle
compared with that in EP1. The warming in EP1 tends to
propagate westward and takes 1-month lead over EP2 in the
warm phase (see ERSST in Fig. 1). After June, the variations
in EP1 and EP2 are in phase, which suggests that the mech-
anisms behind the warm and cold phases in the EEP vary
with season. Therefore, the two regions of EP1 and EP2 are
selected for analysis in this study.

The major characteristics of the SST annual cycle in the
EEP are effectively represented in the 14 models classified as
Group 1, which includes CanESM2, CCSM4, CSIRO-MK3-
6-0, FIO-ESM, GFDL-ESM2G, GISS-E2-H, GISS-E2-
R, HadCM3, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-
MR, IPSL-CM5B-LR, MPI-ESM-LR, and MPI-ESM-P.
These model results suggest that the CGCMs in CMIP5
show improvement in capturing the annual cycle of the EEP
SST from the previous generation CGCMs of the CMIP3
(which were not effective in simulating the annual SST cy-
cle in the EEP). However, four models classified as Group 2,
which includes GFDL-CM3, INMCM4, MRI-CGCM3, and
NorESM1-M, produce semi-annual cycle; namely, they are
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Figure 2. SST seasonal cycles for EEP region 1 (EP1; 110–85◦ W, 5◦ S–5◦ N; blue line) and EEP region 2 (EP2; 140–110◦ W, 5◦ S–5◦ N;
red line). The solid curves are the ERSST, and the dashed are model outputs.

still not able to simulate the realistic annual cycle of the
EEP SST. Among the models in Group 1, CanESM2, FIO-
ESM, GISS-E2-H, GISS-E2-R, HadCM3, and IPSL-CM5B-
LR have weaker seasonal variation in the EP1 region in com-
parison with the observations. In addition, the annual cycle of
the EEP SST in CSIRO-MK3-6-0 extends to 180◦ W, and the
westward propagation processes in its EP1 to EP2 are seen in
both warm and cold seasons (Fig. 1 CSIRO-MK3-6-0). This
implies the westward Rossby-wave propagation mechanism
(Xie, 2004) in the warm phase of observations is overexag-
gerated in CSIRO-MK3-6-0.

The regional average SSTs, shown in Fig. 2, are used to
show the seasonal cycle in the EEP. The EP2 SST is ob-
served to follow the EP1 SST variation in March and April;
in the following seasons, EP2 SST varies in phase as EP1
when the Pacific cold tongue develops, but with a weaker
amplitude (Fig. 2, ERSST). The CMIP5 CGCMs used in the
present study are not able to accurately represent this fea-
ture. In March and April, 16 out of the 18 models, CanESM2,
CCSM4, CSIRO-MK3-6-0, FIO-ESM, GFDL_CM3, GFDL-
ESM2G, GISS-E2-H, GISS-E2-R, HadCM3, HadGEM2-
CC, HadGEM2-ES, INMCM4, IPSL-CM5A-MR, IPSL-
CM5B-LR, MPI-ESM-LR, and MPI-ESM-P, show that EP1

leads EP2 by 1 to 2 months. However in August and Septem-
ber, only two models, FIO-ESM and HadCM3, demonstrate
that the SSTs in EP1 and EP2 are in phase. A comparison be-
tween the multi-model ensemble (MME) mean and observa-
tion reveals that CMIP5 CGCMs can capture the annual cycle
signal in both the EP1 and EP2 regions and westward prop-
agation process in spring. In addition, the correlation coeffi-
cient between MME and observations can reach 0.9. How-
ever, the CMIP5 models fail to reproduce the in-phase SST
relationship in EP1 and EP2 in August and September when
the cold tongue develops.

It is notable that the SST amplitude of MME (2.7◦C) in
EP1 is weaker than that observed (3.8◦C), whereas that in
EP2 (2.1◦C) is nearly the same as that observed (2.4◦C). For
the MME in EP1, the weaker amplitude is due to the cold bias
in the boreal spring at its high peak and the warm bias is up to
1.0◦C in the boreal autumn at its low peak. However, for the
MME in EP2, a quasi-constant cold bias is present through-
out the year; therefore, its SST amplitude is the same as that
observed. To determine the reason behind the difference in
amplitudes of MME in EP1 and EP2, we trace the sources of
the model deficiencies in the following subsection.
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Figure 3. Multi-model ensemble (MME) mean SST for the east-
ern equatorial Pacific seasonal cycle(a andb) and tropical eastern
Pacific SST biases in spring(c) and autumn(d).

3.2 Analysis

Figure 3a shows that in the region of EP1 the SST seasonal
cycle of the CGCMs is similar with the observations in terms
of phase. However, the MME exhibits cold SST bias during
the boreal spring (Fig. 3c) and warm bias (Fig. 3d) during
the cooling phase after July. The SST bias in the models re-
duces the amplitude of EP1 annual cycle. The September–
November warm bias in EP1 expands from the southeast-
ern tropical Pacific, where the warm bias exists throughout
the year. The model annual cycle in EP2 (Fig. 3b) shows a
cold bias within 1◦C from January through October. This
cold equatorial SST bias is associated with the excessive cold
tongue bias, which is a classic tropical bias in CGCMs that
still exists in CMIP5 models (Li and Xie, 2014; Wang et al.,
2014).

The zonal mean SST bias patterns in EP1 (Fig. 4a) and
EP2 (Fig. 4b) show that both regions have cold SST biases
in February–May. The cold bias in EP2 extends to the bo-
real winter. In EP1, however, the warm SST bias develops
in August and expands from the southeastern Pacific associ-
ated with a southward wind bias (Fig. 4a). In the boreal sum-
mer, the southeasterly trade wind prevails in the EP1 region.
Therefore, the southward wind bias reduces the southeast
trade wind over EP1 and leads to weaker latent heat loss from
the ocean, leading to a warm SST bias. It should be pointed
that the southward wind bias is associated with the double
ITCZ (Intertropical Convergence Zone) bias, which weak-
ens the meridional wind through the wind–evaporation–SST
feedback (De Szoeke and Xie, 2008). Furthermore, an east-
ward wind bias develops in EP1 in August, and this westerly
wind bias enhances the EP1 warm bias through the Bjerknes
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Figure 4 Evaluations of MME SST biases (shadings), surface northward wind biases 3	
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Figure 4. Evaluations of MME SST biases (shadings), surface
northward wind biases (contours ina and b), and eastward wind
biases (contours inc).

feedback. Eventually, the cold bias in the boreal spring and
the warm bias in the boreal summer in EP1 cause the weaker
annual cycle simulation in the models, in contrast to the ob-
servations. It was suggested that the cold bias in the boreal
spring originated in the ocean (Li and Xie, 2012). Therefore,
understanding the causes of the warm bias of EP1 in the cold
phase will contribute to improvements in the next-generation
CGCMs in terms of EEP annual cycle simulations. More-
over, the warm SST bias in the EP1 region in the boreal sum-
mer may explain why most CMIP5 models fail to reproduce
the in-phase SST relationship between the EP1 and EP2 re-
gions in August and September when the cold tongue devel-
ops.

4 Conclusions and discussion

We conducted a comprehensive evaluation of the perfor-
mance of CMIP5 CGCMs in terms of simulating the annual
cycle in the EEP. Fourteen out of the 18 models are able to
capture the main characteristics of the SST annual cycle in
the EEP. In addition, a comparison between the MME with
the observations revealed that the CMIP5 CGCMs can cap-
ture the annual cycle signal in both the EP1 and EP2 regions
with a correlation coefficient up to 0.9. The CMIP5 models
can simulate the SST westward propagation character in the
EEP, with SST in EP1 leading that in EP2 by 1 to 2 months
in spring. However, they fail to reproduce the in-phase SST
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relationship between EP1 and EP2 regions in August and
September when the cold tongue develops.

For the MME SST simulation in EP1, both the cold bias
along the Equator in the warm phase and the warm bias
in the cold phase lead to a weaker annual SST cycle in
CGCMs when compared with the observations. In EP2, how-
ever, the amplitude is nearly identical to the observed, be-
cause a quasi-constant cold bias persisted throughout the
year. Known as an excessive cold tongue, this problem is
common and still exists in the CMIP5 models (Li and Xie,
2014). To improve the capability of the CGCMs in simulat-
ing a realistic SST seasonal cycle in the EEP, both the local
and remote climatological SST biases (Wang et al., 2014)
that exist in both CMIP3 and CMIP5 CGCMs, such as the
climatological simulation of the cold tongue region and the
southeastern tropical Pacific, must be resolved.
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