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Abstract. In order to advance understanding of the role of
seawater surfactants in the air–sea exchange of climatically
active trace gases via suppression of the gas transfer velocity
(kw), we constructed a fully automated, closed air–water gas
exchange tank and coupled analytical system. The system al-
lows water-side turbulence in the tank to be precisely con-
trolled with an electronically operated baffle. Two coupled
gas chromatographs and an integral equilibrator, connected
to the tank in a continuous gas-tight system, allow tempo-
ral changes in the partial pressures of SF6, CH4 and N2O to
be measured simultaneously in the tank water and headspace
at multiple turbulence settings, during a typical experimen-
tal run of 3.25 h. PC software developed by the authors con-
trols all operations and data acquisition, enabling the optimi-
sation of experimental conditions with high reproducibility.
The use of three gases allows three independent estimates of
kw for each turbulence setting; these values are subsequently
normalised to a constant Schmidt number for direct compari-
son. The normalisedkw estimates show close agreement. Re-
peated experiments with Milli-Q water demonstrate a typical
measurement accuracy of 4 % forkw. Experiments with natu-
ral seawater show that the system clearly resolves the effects
on kw of spatial and temporal trends in natural surfactant ac-
tivity. The system is an effective tool with which to probe
the relationships betweenkw, surfactant activity and biogeo-
chemical indices of primary productivity, and should assist
in providing valuable new insights into the air–sea gas ex-
change process.

1 Introduction

Air–sea gas exchange is a critical global process, providing
the fundamental link between reactive trace gas production
and consumption in the oceans and global atmospheric pro-
cesses. For example, the oceans are the largest single sink for
tropospheric carbon dioxide (CO2) (Khatiwala et al., 2009),
contribute around one-third of tropospheric nitrous oxide
(N2O) (IPCC, 2007) and make significant contributions to
the global biogeochemical budgets of several other climate-
active gases including methane (CH4), carbon monoxide
(CO), dimethyl sulfide (CH3SCH3) and some other sulfur
gases, and a range of halocarbons and hydrocarbons (Upstill-
Goddard, 2011). Understanding the physical and biogeo-
chemical controls of air–sea gas exchange is therefore nec-
essary for establishing biogeochemical models for predicting
regional- and global-scale trace gas fluxes and feedbacks.

For a sparingly soluble gas, which applies to almost
all gases of global biogeochemical interest, the fluxF (in
mol cm−2 h−1) across the air–sea interface can be considered
as a diffusion-limited process in a typically 20 µm to 200 µm
thick “diffusive sub-layer” on the water side of the interface
(Jähne, 2009). It is written as the product of the driving force,
i.e. its concentration difference between airCa and sea water
Cw (in mol cm−3), and the air–sea gas transfer velocitykw
(in cm h−1):

F = kw(αCa− Cw) , (1)

whereα is the Ostwald solubility coefficient. Similar equa-
tions apply to the exchange of heat and momentum. The con-
centration difference term (αCa− Cw) can be directly mea-
sured quite routinely butkw cannot. Moreover, the magnitude
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of kw varies with the degree of near-surface turbulence; in-
creasing turbulence reduces the depth of the diffusive sub-
layer, resulting in an increase inkw. Indirect approaches
are therefore required to estimatekw in situ and evaluate
its variability in response to environmental forcing func-
tions generating turbulence. One often-used method for in
situ measurement is the so-called “dual tracer technique”,
which measures the relative rates of evasion to air of two
purposefully released, inert volatile tracers: sulfur hexafluo-
ride (SF6) and helium-3 (3He). Temporal changes in the ratio
of their seawater concentrations, typically measured over 24
to 48 h time intervals, are used to derivekw estimates which
are then scaled to corresponding values for CO2 and other
reactive trace gases of interest, using diffusivity-based re-
lationships (Wanninkhof et al., 1993, 1997; Watson et al.,
1991; Nightingale et al., 2000). The dual tracer technique is,
however, time-consuming, logistically complex and expen-
sive, and it provides little, if any, information on the spatio-
temporal variability ofkw. Moreover, when the dual tracer
kw data are plotted against wind speed as the primary driver
of turbulence, they show a high degree of scatter. Indeed, un-
certainty overkw variability presents one of the greatest chal-
lenges to quantifying the net global air–sea exchange of CO2
(Takahashi et al., 2009). While a recent analysis shows that
around one half of this uncertainty may be ascribed to exper-
imental and measurement errors inherent in the dual tracer
technique (Asher, 2009), this still leaves significantkw vari-
ability unaccounted for. This remaining variability reflects
other environmental forcing functions in addition to wind
speed, including wind fetch, atmospheric stability, sea state,
wave breaking, white capping and bubble bursting, sea sur-
face temperature, rain and the presence of surfactants and
other organics (Upstill-Goddard, 2006, 2011).

Surfactants are well known to greatly suppresskw and con-
sequently the rate of air–sea gas exchange, mostly by modi-
fying sea surface hydrodynamics and hence turbulent energy
transfer, but also by forming a monolayer physical barrier
(McKenna and McGillis, 2004). Natural surfactants are ubiq-
uitous in seawater, being primarily phytoplankton exudates
such as polysaccharides, proteins and lipids, and their degra-
dation products (Gašparovíc, 2012; Zutić et al., 1981), with
additional sources via terrestrial inputs of humic and ful-
vic acids to coastal waters. Spatio-temporal distributions are
therefore highly variable. Surfactants tend to be enriched in
the diffusive sub-layer relative to underlying water up to high
wind speeds (Wurl et al., 2011) but their precise effects onkw
are not well characterised, studies with natural seawaters be-
ing comparatively scarce. Most data have been derived using
wind flumes and/or open exchange tanks in the laboratory
(e.g.Goldman et al., 1988; Frew, 1997; Bock et al., 1999);
this in part reflects the specialised nature of the analyses and
a need to simplify experiments by using single, “model sur-
factants” in controlled conditions. While deliberate releases
of man-made surfactant in tandem with the dual tracer tech-
nique have yielded some information on potential surfactant

effects in situ (Salter et al., 2011), practical considerations
currently preclude isolating the effects onkw of natural sur-
factant levels during field experiments. This makes recourse
to laboratory-based experiments inescapable.

In order to make further progress in this regard, we have
devised a laboratory procedure that enables us to directly
evaluate the contrast inkw between natural seawaters of vary-
ing surfactant content under controlled and reproducible con-
ditions of turbulence. To simplify the system, we generate
water-side turbulence, allowing us to concentrate on the im-
portant aspects of comparativekw measurements at constant
turbulence and avoiding unnecessary complication of the
system. This simplifies process-understanding and also over-
comes difficulties associated with simulating wind-induced
turbulence in a laboratory. Even though the absolutekw val-
ues may not be strictly comparable to in situ conditions, this
simplification is wholly adequate to achieve our goal of com-
parativekw measurements at constant turbulence, and is an
important step in understanding more completely the rela-
tionships between surfactants, turbulence andkw. Once this
is established, more elaborate experiments in wind–wave fa-
cilities can provide valuable supplementary information. By
measuring wave spectra in the tank, a record of the (tempo-
ral) wave field is available for each measurement, facilitating
further comparison of experimental conditions between runs.

Our system uses a sealed laboratory gas exchange tank
with integral water equilibrator. The partial pressures of ex-
perimental gases (SF6, CH4 and N2O) in the water and air
phases of the system are measured using gas chromatogra-
phy. Turbulence in the tank can be routinely selected and
modified such that inter-sample differences inkw exclusively
reflect differences in sample surfactant content, something
that cannot currently be achieved through field experiments.

2 System design

2.1 Prior considerations

We previously used a sealed gas exchange tank for exam-
ining the microbial controls of air–sea gas transfer (Upstill-
Goddard et al., 2003). This featured semi-automated analy-
sis of the tank headspace gases (SF6 and CH4) but the water
phase sampling required manual operation and large sample
volumes, necessitating large and cumulative volume correc-
tions, and turbulence control was comparatively rudimentary.
Analytical uncertainty was therefore high but experimental
reproducibility and accuracy were not rigorously assessed.
Overall system reliability was also rather variable. To ade-
quately resolve inter-sample differences inkw due to variabil-
ity in surfactant content demands a redesigned system with
vastly improved performance and flexibility. An important
aspect of the system described here is its full automation. PC
control software developed by the authors controls all opera-
tions and data acquisition. This is a key aspect of the system
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because it guarantees that all experiments are run under iden-
tical conditions, free of operator-induced variability. It also
facilitates the optimisation of experimental run times, which
is critical for surfactant-focused work because it is essential
to preserve sample integrity when several samples have been
collected along lateral seawater transects, for example. Natu-
ral surfactants can degrade rapidly and significantly on stor-
age. Such changes are variable and can be difficult to pre-
dict due to differences in organic composition between water
samples (Schneider-Zapp et al., 2013). Consequently, when
sample storage is unavoidable it should be minimised as far
as is practically possible.

2.2 Selection of experimental gases

The use of SF6, CH4 and N2O in the gas exchange ex-
periments is based on our prior experience with them, in
particular their ease of analysis, but most importantly be-
cause of their relevance in the context of air–sea gas ex-
change and global biogeochemistry. SF6 is inert and is es-
sentially all man-made, although there is a small geologi-
cal source (Harnisch and Eisenhauer, 1998), and it is rou-
tinely used for estimatingkw in situ (Wanninkhof et al., 1993,
1997; Watson et al., 1991; Nightingale et al., 2000). CH4
and N2O both have significant marine sources and sinks, are
infrared active and have long atmospheric lifetimes (IPCC,
2007). N2O is also involved in stratospheric O3 regulation
via NOx generation (Nevison and Holland, 1997) and CH4
participates in stratospheric water formation and in the pho-
tochemical regulation of tropospheric OH and O3 (Crutzen
and Zimmermann, 1991). Both gases are currently increas-
ing in the troposphere, but at variable rates that are not well
understood (Dlugokencky et al., 1998, 2001; Khalil, 1993;
Prinn et al., 1990; Rigby et al., 2008). Quantifying the con-
straints on their air–sea exchange rates is therefore critical.

2.3 System overview

A schematic of the gas exchange system is shown in Fig.1.
Its principal components are: (i) a sealed acrylic gas ex-
change tank that can be approximately half filled with sea-
water (Fig.2 details its major features); (ii) an equilibration
system used in preparing tank water subsamples for analysis;
(iii) two gas chromatographs (GCs) identically configured
for the analysis of SF6, CH4 and N2O, in the tank headspace
and in air that has been equilibrated with a tank water sub-
sample. These components form a continuous, sealed circuit
that can be decoupled and reconnected as required via the
operation of solenoids. Details of the components are given
in Sect.3. The gas equilibration system is shown in Fig.3
and the GC configuration in Fig.4.
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Figure 1. Schematic of the gas exchange experiment. The seawater
sample (93 L) is contained in a gas-tight tank (0.73m× 0.48m×

0.48m internally). Water-side turbulence is created with a baffle
driven by a stepper motor. An automatic equilibration circuit (de-
tails see Fig.3) regularly takes water samples and equilibrates the
water with an “equilibrator gas” of known SF6, CH4 and N2O com-
position, before measuring resulting gas partial pressures in a gas
chromatograph (GC). Air phase gas partial pressures are constantly
measured with a second GC. Wave spectra at a single point are ac-
quired with a capacitance wave probe. Pressure and temperature in
the tank and the equilibrator as well as total ambient pressure are
continuously monitored.
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Figure 2. Annotated photograph of the gas exchange apparatus:
(a) the gas exchange tank. Note that the overflow vessel usually
connected to the expansion vessel is omitted for clarity;(b) the equi-
libration vessel shown by the dashed red box in image(a).

3 System components

3.1 Gas exchange tank

The basic structure of the gas exchange tank (Fig.2) was
custom-built (Bay Plastics Ltd, UK) for ourkw-surfactant
work. Subsequent modifications, principally the installation
of mechanical and electronic components (see below), were
carried out in-house. The tank has an internal base area of
0.73 m× 0.48 m, is 0.48 m in height internally and is con-
structed from 12 mm acrylic. Stainless steel bulkhead con-
nectors are used for all tank connections. The incorporation
of a headspace pressure relief valve precludes system over-
pressurisation and subsequent damage to the tank structure in
the event of system malfunction. The tank is filled with sam-
ple gravimetrically to a notional volume of(93.0± 0.1) L,
leaving a corresponding notional 74.1 L headspace (1.11±
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0.01 L is accounted for by the baffle, expansion bag and hold-
ers). This method of filling was selected because it is impor-
tant to reproduce the sample volume precisely. Small differ-
ences in the fill level can have a large effect on the degree of
tank water turbulence, which is selected and controlled using
an internal acrylic baffle mounted across the full width of the
tank on a transverse shaft. The gravimetric procedure over-
comes this problem. A stepper motor (PD2-116-60-SE: Tri-
namic, Germany) is located outside the tank and connected to
the baffle shaft via a gas-tight bearing and Viton® seal. The
motor is operated via a serial RS232 link and allows pre-
cise control of the forward and reverse motion of the baffle.
The tank air-phase (headspace) is continuously mixed using
a low throughput fan (Sanyo Denki 9S1212F4011: RS com-
ponents, UK) that does not create any detectable water tur-
bulence. The fan is mounted on the inside of a removable
circular tank lid, along with a wave height gauge (Sect.3.3).
The lid facilitates access for maintenance, for internal tank
cleaning and for filling with sample and is sealed using a dou-
ble Viton® O-ring. Viton® is compatible with gaseous hydro-
carbons and its use also precludes SF6 memory effects that
may be encountered with some other seal materials (Upstill-
Goddard et al., 2003).

During operation (Sect.4.2) aliquots of the tank wa-
ter are automatically transferred to the equilibration vessel
(Sect.3.2). In order to prevent a progressive decrease in tank
internal pressure due to this procedure, an expandable plastic
bag (Supel Inert Film 10 L gas sampling bag, Sigma-Aldrich,
UK) inside the tank is connected to a small external wa-
ter reservoir containing artificial seawater (ASW) of salinity
≥ 45 via a water-tight bulkhead fitting. The density contrast
between the ASW and the tank seawater (maximum salin-
ity ≈ 35) ensures a negative buoyancy that prevents the ex-
pandable bag from rising from the bottom of the tank. A sec-
ondary, larger ASW reservoir is used to maintain the water
level inside the small reservoir at the same level as in the
exchange tank using a peristaltic pump; an overflow returns
any excess back into the larger reservoir, thereby keeping the
water level in the smaller reservoir constant.

Pressure in the tank headspace (Ph) is continuously mon-
itored using a transducer (40PC001B: range±66.7 hPa; ac-
curacy 0.5 hPa: Honeywell, USA). The analogue output volt-
age is converted to a digital signal using a USB-6008 (12 bit)
ADC (National Instruments, USA). Temperature in the tank
water phase is recorded on an autonomous mini data log-
ger (Minilog 8, Vemco, Canada; accuracy 0.2◦C) that is re-
trieved for data download at the end of each experiment.

3.2 Equilibration vessel

The analysis of dissolved gases by gas chromatography ne-
cessitates either a pre-extraction or equilibration step, fol-
lowed by the measurement of gas partial pressures in the re-
sulting gas phase and corrections for air and water volumes
and gas solubilities (Upstill-Goddard et al., 1996). Extraction
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Figure 3. Schematic of the equilibration system. For circuit opera-
tion see text.

techniques often involve pre-concentration procedures which
can be complicated and the overall extraction efficiency can
vary significantly. By contrast, automated gas equilibration
has been shown to be highly reproducible (Upstill-Goddard
et al., 1996). We therefore incorporated a water–air equilibra-
tion vessel as an integral component of the gas exchange tank
apparatus. The equilibration vessel has a total internal vol-
ume of 183 cm3 and has two principal components: a glass
vessel equilibrator and a removable stainless steel equilibra-
tion manifold (Fig.3). The design derives from a system we
constructed for the high-precision analysis of dissolved gases
at sea (Upstill-Goddard et al., 1996). The equilibration man-
ifold comprises three lengths of stainless steel tubing silver-
soldered through a tapered stainless steel plug machined to
seat precisely in the neck of the glass vessel to give a gas-
tight seal. Two tubes are cut flush to the base of the plug
and a third is connected to a stainless steel aerator frit near
the bottom of the glass vessel. The frit is a standard chro-
matography solvent filter (Thames Restek, UK). The equi-
libration vessel has three water inlet/outlets (all 4 mm i.d.),
each connected via a short length of flexible Tygon® tub-
ing to a solenoid (Burkert 0124 2/2 way for aggressive me-
dia, Burkert, Germany; W1–W3 in Fig.3). A digital temper-
ature sensor (DS18B20+; resolution 0.1◦; accuracy< 0.5◦:
Maxim, USA) is housed in a side arm. A second side arm in
the equilibrator neck houses a pressure transducer identical to
that used for monitoring tank headspace pressures (Sect.3.1).
A cylinder containing compressed air of known SF6, N2O
and CH4 composition (the “equilibrator gas”) is connected
via solenoid G1. The gas is circulated through G2, the GC
sample loops and back through the equilibrator frit. Solenoid
G3 allows venting of the equilibrator during its filling with
seawater via W1. Solenoids G1–G3 are Burkert 6013A 2/2
way (Burkert, Germany).

Prior to equilibration the equilibration vessel and all as-
sociated GC sample tubing is flushed with the equilibrator
gas via solenoid G1. Next the vessel is completely filled
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with tank water via solenoid W1, all air being displaced
via solenoid G3. A headspace of equilibrator gas is then
introduced via G1, displacing sample via the overflow and
solenoid W2. The fill/displacement cycle is then repeated
to ensure the removal of all traces of previous sample and
equilibrator gas. The procedure facilitates a reproducible
headspace to water volume ratio (Sect.4.4.2) which is re-
quired for accurately correcting for solubility-driven phase
partitioning during equilibration (Upstill-Goddard et al.,
1996). All solenoids are then closed and G2, G4 and G5 are
opened. Two gas sampling pumps (NMP015.1.2KNL: KNF
Neuberger AG, Switzerland) circulate the equilibrated sam-
ple gas around the closed circuit, through the GC sample
loops and back through the equilibrating water sample via the
aerator frit inside the equilibrator for 4.35 min. Equilibration-
time curves (Fig.5) show that all three gases are fully equi-
librated within 3 min. Two pumps are necessary to equalise
pressure gradients and thus maintain the internal equilibra-
tor pressure at ambient. Pumping rates are regulated via 8 bit
pulse width modulation of the 12 V supply. The speed of
pump 1 is kept constant and that of pump 2 is regulated in
response to the equilibrator internal pressure.

Following equilibration the pumps are switched off, all
solenoids are closed and G6 is opened for 20 s to allow the
GC sample loops to reach ambient atmospheric pressure be-
fore injection onto the GC carrier gas lines. This avoids pres-
sure effects that might otherwise interfere with the detector
responses.

Each equilibration step removes 549 mL of water from
the gas exchange tank. This is around 0.59 % of the initial
tank water volume and the total cumulative volume removed

during a typical experiment is therefore less than 4 % of
the initial volume. This is accounted for in subsequent data
processing, the required corrections being smaller than for
our experiments with an earlier gas exchange tank (Upstill-
Goddard et al., 2003).

Determining equilibration volumes

The relative volumes of water to headspaceVa/Vw involved
in the equilibration step must be accurately known in order to
facilitate corrections for solubility-driven phase partitioning
(Upstill-Goddard et al., 1996). Vw can be determined gravi-
metrically by repeatedly generating headspace in the equi-
librator. By contrast, system configuration precludes directly
measuringVa. To overcome this we directly estimatedVa/Vw
by equilibration, similar toUpstill-Goddard et al.(1996).
The gas exchange tank was filled with 93 L Milli-Q water
(resistivity typically 18.2M� cm−3: Millipore Corporation,
USA) enriched with SF6, N2O and CH4, sealed and equili-
brated by operating the baffle until the gas partial pressures
in both the equilibrator headspace and in the tank headspace
remained constant for> 12h. For this measurement ultra-
high purity (UHP) N2 (> 99.999 % N2, no detectable SF6,
N2O or CH4) was used as equilibrator gas, i.e.C0 = 0. Con-
centrations in the tank headspace and equilibrator were then
determined multiple times and averaged. These values were
used together with the appropriate Ostwald solubilities of
SF6 (Bullister et al., 2002), CH4 (Wiesenburg and Guinasso,
1979) and N2O (Weiss and Price, 1980) at the temperature
and pressure of equilibration and the tank headspace and
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water volumes, to calculateVa/Vw according to Eq. (17). For
the system as currently configuredVa/Vw = 0.79± 0.02.

3.3 Wave height gauge

A capacitance-type high-precision wave height gauge (AWP-
24; 30 cm double strand sensing wire, Akamina Technolo-
gies, Canada) is used. Analogue output voltage is digitised at
400 Hz (USB-6008 ADC, National Instruments, USA). The
output voltage of the device is linearly proportional to the
water level.

The probe is routinely calibrated to determine the relation-
ship between water depth and output voltage by filling the
gas exchange tank with sample water and progressively im-
mersing the probe step-wise into the water. This is done by
mounting the probe on a rod with precisely machined holes at
1 cm intervals. For each step the rod is bolted through one of
the holes to a sturdy mount secured to the tank. After waiting
for the water surface to settle, the output voltage is averaged
over 10 s. A line is fitted to the immersion depth–voltage re-
lation.

3.4 Ancillary measurements

Absolute pressure (P0) and temperature (T ) in the labora-
tory are measured using a digital sensor (Sensortec BMP085;
pressure range 300–1100 hPa; absolute pressure accuracy
1 hPa; absolute temperature accuracy 0.5◦C: Bosch, Ger-
many).

3.5 Gas chromatography

The need to determine the partial pressures of SF6, CH4
and N2O in both the air and water phases during an exper-
iment precludes using a single GC; this would necessitate
long sampling intervals and/or a long experimental duration,

with consequent loss of experimental resolution. Therefore,
two identically configured GCs were used (both HP 5890),
one for analysing tank headspace (“air-phase GC”) and one
for analysing equilibrator air following water sample equi-
libration (“water-phase GC”). The analysis is identical in
each GC, being isothermal (60◦C) and based on methods
developed in our laboratory (Upstill-Goddard et al., 1990,
1996, 2003). A schematic is shown in Fig.4. A series of
motor-driven stainless steel chromatography valves, V1–V5
in Fig. 4 (Valco: Vici AG, Switzerland), allow the selective
switching of tank headspace, equilibrator headspace and cal-
ibration standards onto the separating columns (one each for
SF6, N2O and CH4 in each GC) and detectors, via fixed vol-
ume sample loops (internal volume: SF6 10 mL, CH4 1 mL,
N2O 1.5 mL). Chromatographic separation of SF6 is on
Molecular Sieve 5A columns (4m× 1.75 mm i. d.), whereas
N2O and CH4 are both separated on 80–100 mesh Porapak
Q columns (CH4, 4 m× 1.75 mm i. d.; N2O, 5 m× 1.75 mm
i. d.). The GC carrier gas is UHP N2. Flow rates are typically
around 25cm3 min−1 for CH4 and N2O, and 50 cm3 min−1

for SF6. Water vapour produced during sample equilibra-
tion is removed using Mg(ClO4)2 and CO2 is removed using
NaOH (Upstill-Goddard et al., 1996). Detection of CH4 uses
a flame ionisation detector (FID) at 300◦C whereas detection
of N2O and SF6 uses an Electron Capture Detector (ECD)
with a 63Ni source at 350◦C.

The GC responses are integrated automatically using pro-
prietary GC software (Clarity: DataApex, Prague, Czech Re-
public). Method calibration uses a series of mixed calibration
standards prepared by pressure dilution in UHP N2 (Upstill-
Goddard et al., 1990, 1996). Analytical precisions are typi-
cally±1 % CH4, ±0.8 % N2O and±1 % SF6. All three gases
are analysed in less than 8 min.

3.6 Limits of detection

Minimum detectable levels of SF6, N2O and CH4 have been
determined by estimating the detector responses correspond-
ing to a signal-to-baseline-noise ratio of 2 and dividing by
the detector peak width (peak area/peak height) in seconds
(Upstill-Goddard et al., 1996). Minimum detectable levels
are 0.5 pptv SF6, 0.2 ppbv N2O and 10 ppbv CH4. However,
in practice the partial pressures of all three gases in the equili-
brator gas combined with solubility considerations (Bullister
et al., 2002; Wiesenburg and Guinasso, 1979; Weiss and
Price, 1980) preclude operating the detectors close to these
limits.

4 Experimental procedure

Prior to use, all ancillary equipment is thoroughly cleaned
with ethanol and rinsed with Milli-Q water. All metal and
glassware is subsequently baked at 450◦C overnight.
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Figure 6. The sampling stations (red circles) on the transects in the
coastal North Sea off northeast England.

4.1 Field sampling

Large-volume water samples (≈ 100L) for the gas exchange
experiments were collected during two coastal North Sea
transects of R/VPrincess Royal, on 4 October 2012 and
13 February 2013. On both, samples were collected from five
fixed locations approximately equally spaced up to 20 km
off-shore of the UK Northumberland coast (Fig.6). The sam-
ples were drawn with an on-board sampling pump and stored
on-deck in “aged” polyethylene seawater carboys (i.e. all
leachable components removed using concentrated HCl solu-
tion). Additional samples for the measurement of surfactant
activity were collected from the surface microlayer (SML)
using aGarrett(1965) screen (for further details of our Gar-
rett screen samplers, seeSchneider-Zapp et al., 2013) and
decanted into sterile polypropylene sampling tubes; for sam-
ples from the underlying water (ULW), water was drawn us-
ing a stainless steel bucket, then sterile polypropylene tubes
were opened below the water surface of the bucket, filled, and
closed using nitrile gloves to avoid sampling SML. All these
samples were kept refrigerated in the dark at 4◦C to min-
imise degradation during pre-analysis storage (Schneider-
Zapp et al., 2013). Salinity and temperature were measured
using a hand-held probe. Meteorological data were acquired
via an on-board weather station.

4.2 Gas exchange experiments

The inside of the gas exchange tank is repeatedly cleaned
and filled/rinsed with Milli-Q water until surfactant activ-
ity (SA) in the tank water surface microlayer (SML) is an-
alytically identical to that of fresh Milli-Q (within between
0.02 eq. mg L−1 T-X-100 and max. 0.04 eq. mg L−1 T-X-
100). The SML is routinely collected with a smallGarrett
(1965) screen and SA is measured by hanging mercury drop
AC voltammetry (see Sect.4.3).

Following cleaning and thorough rinsing of the inside of
the tank with sample, the tank is filled with 93 L of sam-
ple (measured gravimetrically), which is added directly from
sampling carboys using a peristaltic pump. During this pro-
cedure 1.1 L of sample is decanted directly from one of the
carboys into a sealable glass bottle and enriched with SF6,
N2O and CH4 as follows: 80cm3 of 10 ppmv SF6 in UHP N2,
prepared by pressure dilution (Upstill-Goddard et al., 1990,
1996), 20 cm3 of ≥ 99.99 % research grade CH4 and 1 cm3 of
99.998 % research grade N2O are injected into the vessel and
equilibrated with the sample water for 20 min using a small
pump and aerator. This gas-enriched subsample is added to
the tank at the end of the filling procedure to give the final,
notional 93 L volume and the tank is then sealed.

To estimate the sample volume, the carboys (including that
of the gas enriched subsample) are weighed before and af-
ter filling. The weight difference quantifies the sample mass,
which is converted to volume using sample density derived
from its salinity and temperature. These are measured in the
residual sample in the carboys directly after filling, using
a pre-calibrated hand-held probe, in order to preclude any
possible contamination of the tank water sample. Continuous
weighing during the filling process allows the filling proce-
dure to be terminated when the correct nominal volume is
reached.

The enriched subsample creates a disequilibrium in gas
partial pressures between the tank water and tank headspace,
so as to drive measurable water-to-air exchange of the mea-
sured gases during the experiment. Note that for a subset of
our tests, the N2O chromatography was not yet fully oper-
ational. To be consistent, we decided to only show data for
CH4 and SF6, where measurements are available for all data
sets.

A configuration file defining all experimental settings is
read by the control program which executes the experiment.
The system is optimised to run a gas exchange experiment
in just under 3.25 h. We routinely use three sequential fixed
levels of turbulence, each of 64.5 min duration; correspond-
ing baffle frequencies are 0.6, 0.7, and 0.75 Hz. GC analysis
of the tank headspace and equilibrated water phases is every
10.75 min, enabling six measurements of each phase for each
selected level of turbulence during an experiment. Tempera-
tures and pressures are logged every 0.1 min. Immediately
prior to and following each experiment, calibration gas stan-
dards are repeatedly measured on each GC for data calibra-
tion and to allow an estimate of detector drift. This is usually
less than 2 % over the course of a typical experiment and is
corrected for by applying a time-dependent linear fit to the
detector responses.

Gas concentration uncertainties are estimated using the
standard deviation of the standard measurements. For all
other measured quantities, specified instrument accuracies
are used. In the calculations, Gaussian error propagation
(Tayler, 1996, chapter 3; for details of the calculations
see the Appendix) is used to propagate uncertainties. This
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over-estimates the uncertainty, because not all uncertainties
are independent, but covariance matrices are not known. For
example, the GC errors include the detector drift of up to
2 % as estimated from the standard measurements. This ef-
fect cannot be separated from the statistical error or corrected
for, as the drift is irregular.

Estimates ofkw are obtained from Eq. (13) using weighted
linear regression (Sect.4.4.1). The uncertainty is estimated
from the weighted fit. Convention is to scale all measured
values ofkw to Schmidt numbers of either 660 or 600, be-
ing the values for CO2 in freshwater and salinity 35 seawater
respectively, at 20◦C. Therefore,kw estimates are scaled to
Schmidt number 660 using Eq. (19) (Sect.4.4.3). Schmidt
numbers are obtained fromWanninkhof (1992). From the
Milli-Q data, a Schmidt number exponent ofn = 1/2 was
determined using Eq. (20), corresponding to a wavy surface.

The wave frequency energy spectrum (Phillips, 1980) is
calculated from the sampled wave height using the method
of Welch (1967) (seeHarris, 1978, for more information)
with a Hann window of length 131 072. For the measure-
ment frequency of 400 Hz, used here, the Nyquist frequency
is 200 Hz≈ 1257 rad s−1; however, noise begins to affect the
measurements at frequencies lower than this. We plotted the
results up to 500 rad s−1

≈ 80 Hz, since we consider these
data to be unaffected by noise.

4.3 Surfactant measurement

Surfactant activity (SA) is measured using AC voltammetry
(Ćosovíc and Vojvodíc, 1982) (Metrohm 797 VA Compu-
trace, Metrohm, Switzerland) with a hanging mercury drop,
a silver/silver chloride reference electrode and a platinum
wire auxiliary electrode. Samples are brought to salinity 35
prior to measurement by adding surfactant-free NaCl solu-
tion. For each measurement, a new mercury drop is cre-
ated and the first few drops discarded. Surfactants accumu-
late on the drop atV = −0.6 V for 15 or 60 s with stirring
(1000 rpm). Alternating voltage scans of 10 mV at 75 Hz pro-
duce a current which is measured. Instrument calibration
uses the non-ionic soluble surfactant Triton T-X-100. Each
response is corrected for the added NaCl solution and ex-
pressed as an equivalent T-X-100 concentration.

4.4 Theory

4.4.1 Tank gas exchange

For a sealed gas exchange tank containing seawater and air
and without gas sources or sinks, Eq. (1) can be used to derive
a mass balance:(

∂Ca
∂t

Va
∂Cw
∂t

Vw

)
= kw

(
Cw − αCa
αCa− Cw

)
A. (2)

The solubility α, volumesVa and Vw, and surface areaA
are assumed to be constant. In reality,α depends on tem-
perature. In practice changes in experimental temperature

are of the order of 0.5◦C. For such a change in tempera-
ture at 20◦C, the change inα is < 1.6 % for SF6, < 1.4 %
for N2O and< 1 % for CH4 according to published parame-
terisations (Bullister et al., 2002; Wiesenburg and Guinasso,
1979; Weiss and Price, 1980).

Let the height of phasei (i.e. air a or water w) behi , i.e.
hi := Vi/A, and let

D := Cw − αCa. (3)

Re-arranging Eq. (3), taking the derivative and using the
chain rule results in

∂Ca

∂t
=

1

α

[
∂Cw

∂t
−

∂D

∂t

]
=

kw

ha
D, (4)

where Eq. (2) (top) has been used in the last equality. Substi-
tuting ∂Cw

∂t
into Eq. (2) (bottom), a differential equation inD

is obtained:

∂D

∂t
+ kw

[
1

hw
+

α

ha

]
︸ ︷︷ ︸

=:β

= 0. (5)

Solving this gives

D = D0exp(−kwβt) , (6)

whereD0 := D(t = 0).
Due to conservation of mass, the total amount of gasN in

the system must remain constant. Hence,

N = CaVa+ CwVw = const. (7)

This relation serves as a routine check of the experimental re-
sults and system integrity; a change in the value ofN during
the experiment implies system leaks and/or defective chro-
matography.

At each equilibration step the tank water volumeVw de-
creases (here assumed instantaneously) by volumeVs, such
thatVw> = Vw<−Vs, whereVw< andVw> are the tank water
volumes before and after drawing the sample, respectively.
The effect is to change the value ofβ so that the differen-
tial equation no longer has constant coefficients. However,
within each interval[tn, tn+1] between two measurements at
timestn andtn+1, the volumes are constant and Eq. (6) can
be used. At each sampling step the values of the coefficients
change instantaneously; the variables at the end of the previ-
ous interval become the initial conditions for the next inter-
val. If Ve,n = nVs is the total water volume already extracted
at tn, using the abbreviationsVw,n := Vw|t=tn , Dn := D(t =

tn) and

βn := β|t=tn =
A

Vw,n−1 − Vs
+

Aα

Va

=
A

Vw,0 − nVs
+

Aα

Va
=

1

hw,0 − nhs
+

α

ha
(8)
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derives

Dn = Dn−1exp(−kwβn(tn − tn−1)). (9)

The first water sample is drawn att0, the experiment starts
running with the reduced water volumeVw −Vs and thus the
system response is

Dn = D0exp

(
−kw

n∑
j=1

βj (tj − tj−1)

)
. (10)

Note that forn = 0, the sum is zero and the equation is iden-
tical to the original Eq. (6). The new solution Eq. (10) is
not in the form exp−kwβt but has a sum of differenttj
in its exponential. It can be solved forkw; however, it di-
verges forn = 0. This is overcome by conversion to the form
exp−kwβt as

Dn = D0exp

−kw

[
n∑

j=1

βj

tj − tj−1

tn − t0

]
︸ ︷︷ ︸

=:Bn

(tn − t0)

 (11)

with

Bn : =

n∑
j=1

βj

tj − tj−1

tn − t0

=
A

tn − t0

n∑
j=1

tj − tj−1

Vw,0 − jVs
+

Aα

Va
. (12)

Note thatB0 = β0 (Eqs. 11 and 6). For Vs = 0, we ob-
tainBn = β0 and the solution reduces to Eq. (6) with t0 = 0.
With Vs > 0, the value ofBn increases (the denominator in
each summand is decreased) and consequentlyD decreases
progressively more rapidly with increasing experimental run
time during which further water is extracted from the tank.
Consequently, some fraction of the decrease inD is due
to volume extraction. Without any correction for this,kw is
overestimated. The factor

tj −tj−1
tn−t0

is applied as a weight factor
for any given water volume during the experiment.

The solution can be expressed in logarithmic form to de-
rive a linear fit obtainingkw as

χn :=
1

Bn

ln
D0

Dn

= kw(tn − t0) . (13)

The mass balance Eq. (7) also has to be adjusted to account
for the water loss on sampling:

Nn = Vw,nCw,n +

n∑
j=1

Cw,j−1Vs+ VaCa,n . (14)

4.4.2 Water sample equilibration

We can consider a water sample of volumeVw in the equili-
brator with an initial dissolved gas concentrationCw at in situ
pressureP1 and temperatureT1. The number of moles of gas
in the water isN1 = CwVw.

The water subsample then equilibrates with a head space
of volumeVa and initial gas concentrationC0. The total num-
ber of moles of gas in the equilibrator is thenN = N1+N0 =

VwCw+VaC0. During equilibration the gas partitions accord-
ing to αC′

a = C′
w, whereα is the Ostwald solubility coeffi-

cient.N remains constant (conservation of mass), thus

VaC
′
a+ VwC′

w = VaC
′
a+ VwαC′

a = VaC0 + VwCw . (15)

Solving forCw results in

Cw =
Va

Vw
(C′

a− C0) + αC′
a, (16)

which can be used to back-calculate the gas concentration in
the water sample usingC′

a.
For evaluating Eq. (16), the water–headspace volume ratio

Va/Vw is required. It is determined by a measurement with
knownCw andC′

a so that Eq. (15) is then solved forVa/Vw:

Va

Vw
=

Cw − αC′
a

C′
a− C0

. (17)

4.4.3 Schmidt number scaling

The value ofkw for any gas is a function of its Schmidt num-
berSc, which is defined as the ratio of the viscosity of water
to the corresponding gas diffusivity at the requisite tempera-
ture, i.e.Sc= ν/D. Theory predicts the scaling

kw =
u∗

R
Sc−n (18)

where u∗ is the friction velocity,R is the resistance for
momentum transfer and the exponentn is equal to 2/3 for
a smooth surface and 1/2 for a rough surface with a smooth
transition (Richter and Jähne, 2010). This relation allows the
interconversion ofkw for any given gas tokw for any other
specified gas. Given two gases 1 and 2 with transfer velocities
kw1 andkw2 and Schmidt numbersSc1 andSc2, respectively,
one obtains

kw1 =

(
Sc1
Sc2

)−n

kw2 . (19)

Simultaneous measurements of two gases with different
Schmidt numbers can be used to calculate the exponent:

n =
ln kw1

kw2

ln Sc2
Sc1

=
ln kw1

kw2

ln D1
D2

. (20)
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Figure 7.Total amount of gas in the tank according to Eq. (14), nor-
malised to the first measurement, vs. time of a typical gas exchange
experiment with Milli-Q water. It shows that no gas is measurably
lost or acquired during the experiment.
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experiments, for both CH4 and SF6.

5 Results and discussion

5.1 Evaluation procedure

To test the evaluation procedure, synthetic data were used.
After choosing a nominal value ofkw, an initial condition
Cw,0, Ca,0, and constantsT andS, the true system response
was calculated using Eq. (10), with volumes and dimensions
from the experimental setup. Gaussian noise with mean 0 and
variance of 2 % was added to the true gas concentrations to
model the measurement process. The data were then put into
the evaluation procedure. The original transfer velocitykw
was always within the uncertainty of the estimated transfer
velocity.

Table 1. Estimated values ofk660 derived from CH4 and SF6 for
six different Milli-Q experiments.

k660 (cm h−1)

Baffle frequency (Hz) CH4 SF6

0.6 15.5± 0.6 16.7± 0.6
0.7 22.8± 0.9 24.0± 1.0
0.75 25.9± 0.6 25.5± 0.9
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Figure 9. Wave spectra of a typical gas exchange experiment with
Milli-Q water. The first peak for each boundary condition corre-
sponds to the respective baffle speed, peaks at higher frequencies to
harmonics.

5.2 Milli-Q experiments

A number of experiments with Milli-Q water were conducted
to validate the experiment and to test the reproducibility. Fig-
ure 7 shows the mass balance, i.e. the total amount of gas
within the tank, for a typical exchange experiment. Devia-
tions are within the error, proving that the setup is gas-tight,
i.e. no gas is lost or acquired during the run.

Estimated values ofk660 (kw scaled to a Schmidt number
of 660) derived from CH4 and SF6 for six different Milli-Q
experiments are shown in Fig.8. Weighted means and stan-
dard deviations of these data are summarised in Table1. For
individual experiments the two independentk660 estimates
show very close agreement; any small discrepancies most
likely include uncertainties in the Schmidt number values
and the solubility parameterisations. Thus, even in the worst
case changes of 2 cm h−1 are significant with 95 % proba-
bility; for the baffle speed of 0.6 Hz the significance level is
1.2 cm h−1 with 95 % probability. The weighted standard de-
viation is 4 % for all baffle speeds and both gases.

Wave spectra for a selected experiment are shown in Fig.9.
As expected, the wave energy is higher for higher baffle fre-
quencies. The first peak for each boundary condition corre-
sponds to the respective baffle speed, showing that the baffle
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Figure 10. Top: estimated transfer velocities of seawater samples
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Sea off northeast England. Bottom: measured surfactant activity
(SA) of the surface microlayer (SML) on transects in the coastal
North Sea off northeast England. Results are expressed as equiva-
lent concentration of the calibration surfactant Triton T-X-100.

has a reproducible and stable frequency. Further peaks at
higher frequencies are the harmonics caused by reflection
and refraction inside the tank.

5.3 Seawater experiments

Estimated values ofkw from the coastal North Sea transects,
derived from CH4 at a baffle speed of 0.6 Hz, are shown in
Fig. 10 (top). For the winter transect (13 February 2013)kw
was between(12.4± 0.3) cm h−1 (near-shore) and(13.2±

0.2) cm h−1 (off-shore), while corresponding autumn (4 Oc-
tober 2012) values were between (9.4± 0.3) cm h−1 (near-
shore) and (11.6± 0.2) cm h−1 (off-shore). Comparing these
transfer velocities with the surfactant activity (SA) of the
SML samples (Fig.10 bottom) clearly shows a correlation.
The spatial and temporal differences inkw are a function of
SA. The spatial gradients inkw are consistent with a decreas-
ing influence of terrestrially derived surfactants in river out-
flow with distance offshore. Higherkw suppression by sur-
factant during the autumn reflects higher SA arising from
primary productivity, whereas lower winter suppression pre-
sumably reflects lower SA arising from surfactant degrada-
tion processes.
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Figure 11.Estimated transfer velocitieskw vs. baffle frequency for
the most landwards station of the autumn transect (lowkw) and the
most off-shore station from the winter transect (highkw) for CH4
and SF6. Note that for the 4 October 2012 transect, the datum for
SF6 atF = 0.6 Hz is excluded due to chromatography problems for
this particular point.

For the most landwards station of the autumn transect (low
kw) and the most off-shore station from the winter transect
(highkw), kw vs. baffle frequency is shown for CH4 and SF6
in Fig. 11. The agreement between the two gases is accept-
able, the discrepancies being largely attributable to uncer-
tainties in the Schmidt number parameterisations, with ad-
ditional small contributions arising from GC detector drift,
which is somewhat larger for SF6 than for CH4. Neverthe-
less, the observed trends are clearly significant within the
analytical error. Our experimental procedures are evidently
well suited to examine the relative natural variability ofkw
between seawater samples containing varying levels of sur-
factant.

6 Conclusions

We have developed a laboratory gas exchange tank and asso-
ciated analytical methodology that enables fully automated,
routine determination of the gas transfer velocities of SF6,
CH4 and N2O in natural seawaters under strictly controlled
conditions of turbulence. Repeated experiments with Milli-Q
water demonstrated a typical measurement accuracy of 4 %
for kw. Experiments with natural seawater samples collected
on two North Sea coastal transects showed a clear influence
of surfactant activity on the strong spatial and temporal gra-
dients inkw that we observed. During ongoing and planned
work, both in the coastal North Sea and in the open ocean,
we aim to establish clear relationships betweenkw, surfactant
activity and biogeochemical indices of primary productivity.
In so doing we hope to better understand the spatio-temporal
variability of kw and thereby, to contribute valuable new in-
sights into the air–sea gas exchange process.
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Appendix A: Error propagation

Uncertainties of measured quantities were calculated us-
ing Gaussian error propagation. For a quantityy which is
a function ofN statistically independent variablesxi with
Gaussian-distributed uncertaintiesσxi

, i ∈ 1, . . . ,N , i.e. y =

y(x1, . . . ,xN ), the uncertainty ofy is

σ 2
y =

N∑
i=1

(
∂y

∂xi

)2

σ 2
xi

. (A1)

Application to Eqs. (12) and (13) leads to

σ 2
Bn

=

[
A

tn − t0

n∑
j=1

tj − tj−1(
Vw,0 − jVs

)2
]2

σ 2
Vw,0

+

[
A

tn − t0

n∑
j=1

j (tj − tj−1)(
Vw,0 − jVs

)2
]2

σ 2
Vs

+

(
αA

V 2
a

)2

σ 2
Va

+

(
A

Va

)2

σ 2
α (A2)

and

σ 2
χn

=
1

B2
n

(
1

D2
σ 2

D +
1

D2
0

σ 2
D0

)
+

 ln
(

D0
D

)
B2

n

2

σ 2
Bn

. (A3)
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