

Supplement of

Interannual correlations between sea surface temperature and concentration of chlorophyll pigment off Punta Eugenia, Baja California, during different remote forcing conditions

H. Herrera-Cervantes et al.

Correspondence to: H. Herrera-Cervantes (hherrera@cicese.mx)

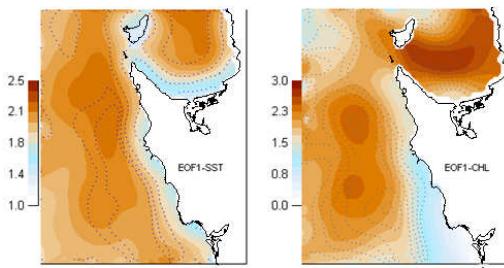


Figure 1. Spatial patterns for mode 1 of the individual EOF analyses. SST (left), Chlorophyll a (right, (with the sign reversed). Overlaid on the spatial component maps are contours (dotted) of the homogeneous correlation.

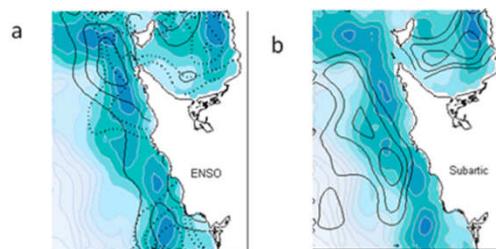


Figure 2. a) HCs for the ENSO period (dotted an solid contours) overlaid on the correlation map (a) present spatial trends of SST and Chl-a in a broad band along the coast and (b) HGs patterns of subarctic water (solid contours) partially coincide with the band of high correlations values.

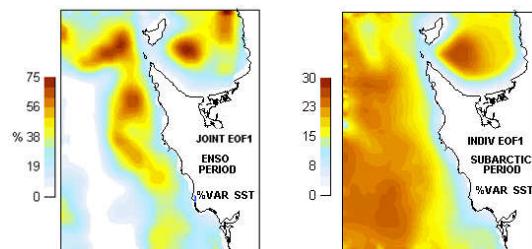


Figure 3. Spatial distribution of SST variance in both ENSO and SUBARCTIC periods. These patterns are similar to Joint and individual EOF₁ patterns.

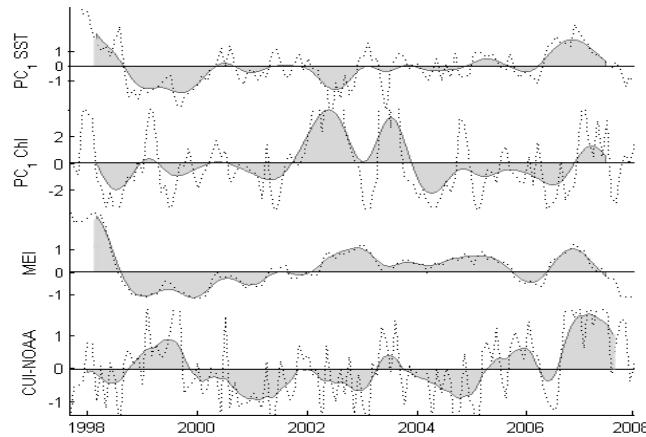


Figure 4, Time-series data (shaded) indicate the temporal evolution of both SST AND Chl-a EOF₁ alongside the MEI and monthly CUI anomalies, all smoothed by a double five-term running mean. Dotted lines indicate the original data.

Table 1. Correlations for original monthly time series (N = 124)

	<i>N</i>	<i>R</i>	<i>tau</i>	<i>N_{eff}</i>	<i>t</i> -student	<i>P_{val}</i>
PC ₁ SST - MEI	124	0.66	3.0	42	5.5	$P < 10^{-6}$
PC ₁ CHL - MEI	124	-0.10	1.7	74	0.4	$P < 10^{-1}$
PC ₁ SST - CUI	124	-0.13	1.7	70	1.1	$P < 10^{-1}$
PC ₁ CHL - CUI	124	-0.30	1.2	100	3.0	$P < 10^{-3}$
PC ₁ SST - CP ₁ CHL	124	0.20	1.4	85	1.4	$P < 10^{-2}$

Table 2. Correlations for the period ENSO, N = 28 months.

	<i>N</i>	<i>R</i>	<i>tau</i>	<i>Neff</i>	<i>t</i> -student	<i>Pval</i>
PC ₁ SST - Mei	28	0.87	4.0	7	4.0	$P < 10^{-2}$
PC ₁ CHL - Mei	28	-0.10	1.0	25	0.5	$P < 10^{-1}$
PC ₁ SST - CUI	28	-0.54	1.5	17	2.5	$P < 10^{-2}$
CP ₁ CHL - CUI	28	-0.24	1.0	27	1.2	$P < 10^{-1}$

Table 3. Correlations for the period SUBARCTIC, N = 24 months.

	<i>N</i>	<i>R</i>	<i>tau</i>	<i>Neff</i>	<i>t</i> -student	<i>Pval</i>
PC ₁ SST - Mei	28	-0.10	1.3	17	1.3	$P < 10^{-1}$
PC ₁ CHL - Mei	28	0.40	1.5	15	1.5	$P < 10^{-1}$
PC ₁ SST - CUI	28	-0.19	1.1	21	1.1	$P < 10^{-1}$
CP ₁ CHL - CUI	28	-0.62	1.2	19	1.2	$P < 10^{-3}$