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Abstract. In the present study, the classical description of
diffusive convection is updated to interpret the instability of
diffusive interfaces and the dynamical evolution of the bot-
tom layer in the deep Arctic Ocean. In the new considera-
tion of convective instability, both the background salinity
stratification and rotation are involved. The critical Rayleigh
number of diffusive convection is found to vary from 103

to 1011 in the deep Arctic Ocean as well as in other oceans
and lakes. In such a wide range of conditions, the interface-
induced thermal Rayleigh number is shown to be consistent
with the critical Rayleigh number of diffusive convection. In
most regions, background salinity stratification is found to be
the main hindrance to the occurrence of convecting layers.
With the new parameterization, it is predicted that the maxi-
mum thickness of the bottom layer is 1051 m in the deep Arc-
tic Ocean, which is close to the observed value of 929 m. The
evolution time of the bottom layer is predicted to be∼ 100 yr,
which is on the same order as that based on14C isolation age
estimation.

1 Introduction

Double diffusion is one of the most important non-
mechanically driven mixing processes. It occurs in a fluid
in which there are gradients of two (or more) properties with
different molecular diffusivities and of opposing effects on
the vertical density distribution. This phenomenon is of great
interest to many disciplines in physical sciences and engi-
neering (Turner, 1973), but the most active research area
is exploration of thermocline staircases in oceans and lakes
(Schmitt, 1994; Kelley et al., 2003). Basically, there exist two

modes: salt finger (SF) and diffusive convection (DC). When
cold and fresh water lies on top of warm and saline water,
vertical mixing is triggered by different molecular diffusion
rates of heat and salt, and DC forms (Kelley et al., 2003). DC
is characterized by a series of thermohaline staircases: a stack
of homogenous mixed layers of nearly constant temperature
and salinity, separated by strongly stratified thin interfaces.

As sketched in Fig.1, each convecting layer includes
a well-mixed layer and is bounded by two adjacent inter-
faces. In each convecting layer of DC, the fluid properties
and flow dynamics can be described by four dimensionless
parameters. The first one is the thermal Rayleigh number
RaT = αgL31T/νκT, whereg is the gravitational acceler-
ation, andα, ν, κT, 1T , andL being, respectively, the ther-
mal expansion coefficient, the kinematic viscosity, the ther-
mal diffusivity, the temperature difference and the typical
length scale of the convecting layer. The second one is the
salinity Rayleigh number,RaS = βgL31S/νκT, where1S

is the salinity difference andβ is the haline contraction co-
efficient. The other two parameters are the Prandtl number,
Pr = ν/κT, and the Lewis number,Le = κS/κT, whereκS is
the salinity diffusivity. As the interface is the boundary of two
adjacent convecting layers, the thermal Rayleigh number of
the interface,RaTI , is proposed to be on the same order as the
critical Rayleigh number of convection, which is on the order
of 1000 (Turner, 1968, 1973). This argument has been found
to work well in DC staircases in Lake Banyoles (Sánchez and
Roget, 2007).

Recently, DC staircases have been observed in the deep
Arctic Ocean (Timmermans et al., 2003; Timmermans and
Garrett, 2006; Björk and Winsor, 2006; Carmack et al.,
2012). These thermohaline staircases exhibit several unique
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Fig. 1. (a)A sketch of temperature distribution of a diffusive inter-
face in DC staircases;δ is the boundary layer thickness of a con-
vecting layer.(b) A cartoon of flow pattern near the interface.

characteristics. One of them is the thick diffusive interface. It
is about 5–8 m, which is much larger than those observed in
laboratory experiments (Turner, 1968; Huppert and Linden,
1979; Fernando, 1987), lakes (Sánchez and Roget, 2007;
Schmid et al., 2010) and other ocean regions (Voorhis and
Dorson, 1975; Larson and Gregg, 1983; Padman and Dillon,
1987; Anschutz and Blanc, 1996). Associated with the tem-
perature difference across the interface,1θ ∼ 1.3×10−3 ◦C,
and other fluid properties, as listed in Table1 below, the ther-
mal Rayleigh number of the interface,RaTI , is on the order of
109, which is much larger than the typical value reported in
the literature (Turner, 1968, 1973; Sánchez and Roget, 2007).
Therefore, additional understanding is needed to elucidate
the difference between the result in the deep Arctic Ocean
and those in previous studies.

Another prominent characteristic is that there exists a thick
bottom mixed layer (Timmermans et al., 2003; Björk and
Winsor, 2006; Timmermans and Garrett, 2006; Carmack
et al., 2012). In the Canada Basin, this isothermal and iso-
haline bottom layer reaches to approximately 1000 m thick
and extends about 1000 km across the basin (Timmermans
et al., 2003). Björk and Winsor(2006) proposed a simple
one-dimensional diffusive-convection model to understand
the dynamics of the bottom layer. However, their proposed
evolution process strongly depends on turbulent eddy diffu-
sivity, which is unavailable at the present stage, and can only
explain parts of the observation. Therefore, it is necessary to
seek other mechanisms that may dominate in the deep-water
evolution process.

In this paper, we explore the instability of the diffu-
sive interface using hydrographic data measured by McLane
Moored Profilers (MMP) at a fixed location in the Canada
Basin. The classical description proposed byTurner(1968,
1973) is extended here by considering the influences of
background salinity stratification and rotation. Then the

Table 1. Mean properties of four diffusive interfaces at Mooring
A between 2 October 2009 and 9 August 2010. They are potential
temperature difference,1θ , salinity difference,1S, thickness,1h,
density ratio,Rρ , buoyancy frequency,N , thermal Rayleigh num-
ber,RaTI , salinity Rayleigh number,RaSI, and Taylor number,T aI .

Interface 1 2 3 4

1θ (10−3 ◦C) 1.79 1.25 1.34 0.96
1S (10−4) 6.46 5.11 8.23 5.26
1h (m) 7.79 6.29 8.61 5.32
Rρ 2.13 2.46 3.67 3.27
N (10−4 s−1) 5.86 6.14 7.36 7.46
RaTI (109) 3.91 1.43 4.11 0.59
RaSI (109) 8.33 3.52 15.1 1.96
T aI (107) 2.13 0.91 3.18 0.46

instability of the interface is discussed in comparison with
the onset thermal Rayleigh number of DC. With the new pa-
rameterization, we evaluate the thickness and evolution time
of the bottom layer in the deep Arctic Ocean.

2 Data

Hydrographic data were mainly obtained from the Beau-
fort Gyre Exploration Project (BGEP) (Ostrom et al., 2004;
Proshutinsky et al., 2009). We focus on the variances of tem-
perature and salinity in the deep ocean at a fixed location in
the Beaufort Sea of the Canada Basin. As marked in Fig.2,
Mooring A was deployed at 75◦ N, 150◦ W at the depth of
3825 m. From 2 October 2009 to 9 August 2010, the tempera-
ture and salinity between 2135 and 3080 dbar were measured
by using an MMP at an interval of 8 or 11 h. This resulted in
791 profiles. Typical potential temperature,θ , and salinity,S,
profiles at Mooring A are shown in Fig.3. Note that these
data measured by conductivity–temperature–depth (CTD),
not by MMP, are used here because data of CTD covers a
larger depth range. As reported inZhou and Lu(2013), both
CTD and MMP detected exactly the same staircase structures
at the same depth range. The potential temperature,θ , profile,
is shown in Fig.3a. θ decreases with increasing depth till it
reaches a minimum,θmin, around a depth of 2400 m. When
the depth increases further,θ increases and is accompanied
by obvious staircases, where the mixed layer and the inter-
face are well resolved. Between 2950 m and the sea floor,
both θ andS are homogenous and uniform, and this range
forms the bottom layer. Similar step structures were observed
in the salinity profiles (Timmermans et al., 2003; Björk and
Winsor, 2006; Timmermans and Garrett, 2006). These struc-
tures are less pronounced in the salinity profiles, as shown in
Fig. 3b, due to the instrument resolution. As analyzed in our
previous work (Zhou and Lu, 2013), the interface properties
could be determined with an averaging technique.
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Fig. 2. Map of the Canada Basin in the Arctic Ocean. Isobaths are
plotted using the ETOP data. The location of Mooring A is marked
by a star.

In Fig. 3a, four DC steps can be identified from the po-
tential temperature,θ , profile, which are referred to as the
1st, 2nd, 3rd and 4th steps from the bottom to the top, re-
spectively. Each step includes a mixed layer and its overlying
interface. Note that the mixed layer of the first step is the bot-
tom layer. Usually, two parameters are used to characterize
the susceptibility of water columns to DC staircases. One is
the density ratioRρ (Turner, 1965), which is expressed as

Rρ =
β∂S/∂z

α∂θ/∂z
. (1)

Rρ is the ratio of the stabilizing force due to the salinity gra-
dient and the destabilizing force due to the temperature gra-
dient. The other one is the buoyancy frequency, which has
the form

N = [g(α∂θ/∂z − β∂S/∂z)]1/2. (2)

N shows the stability of the stratification of water columns.
It has been proposed that the shape of DC structures and
the vertical heat transfer strongly depend on these parame-
ters (see the review paper ofKelley et al., 2003). In the case
of well-developed DC steps, where the mixed layer is homo-
geneous in temperature and salinity,∂S/∂z and ∂θ/∂z are
reduced to the salinity and temperature gradients across the
interface. According to the definitions ofRaT andRaS, Rρ

can be rewritten asRρ = RaS/RaT. For detailed analysis of
the determination of the diffusive interface properties, read-
ers are referred toZhou and Lu(2013). The mean properties
of the four interfaces are listed in Table1.

3 The classical description of DC instability

The instability of DC has been extensively studied based on
the results in laboratory experiments (Veronis, 1965; Turner,
1973; Caldwell, 1974; Huppert and Moore, 1976; Pearlstein,

Fig. 3. Profiles of(a) potential temperature (θ ) and(b) salinity (S)
measured by conductivity–temperature–depth (CTD) at Mooring A
on 28 Septermber 2010. The dashed line is the linear fit of the DC
staircases in the salinity profile.

1981). Basically, two modes may occur at the onset of con-
vection; one is steady convection and the other is oscillatory
convection. In the case of the ocean (Le ∼ 0.01), it has been
found that the onset Rayleigh number of steady convection
appears to be less than the value for oscillatory convection
(Huppert and Moore, 1976). This implies that the steady con-
vection mode is responsible for convective instability in DC
staircases. In terms of linear stability analysis (Turner, 1973),
the convection occurs when the thermal Rayleigh number,
RaT, exceeds a critical value,Rac. Rac is written as

Rac =
Pr + Le

P r + 1
RaS+ (1+ Le)(1+

Le

P r
)
27π4

4
. (3)

In the case of homogeneous fluid,RaS = 0 andLe = 0, and
the equation is reduced to the onset Rayleigh number of

Rayleigh–Bénard convection,Rac =
27π4

4 .
In the deep Arctic Ocean, the DC staircases are thick and

the corresponding Coriolis frequency,f , is large; one may
expect that the rotation influences the occurrence of con-
vection. The rotation is characterized by the Taylor number,

T a = 4(
f L2

ν
)2. In linear stability analysis, it has been found

that the rotation inhibits the onset of convective instability
(Pearlstein, 1981). When the rotation strongly affects DC,
the onset Rayleigh number,Rac, would be in the form of

Rac =
Pr + Le

P r + 1
RaS+ (1+Le)(1+

Le

P r
)(

27π4

4
)

1
3 T a

2
3 . (4)

Equation (4) implies that the convection occurs when the
heat-induced buoyancy force gradient overcomes the resis-
tance produced by the salt stratification and rotation. In the
ocean,Le ∼ 0.01 andPr ∼ 4−13; Eqs. (3) and (4) are then
simplified to

Rac =
PrRaS

Pr + 1
+

27π4

4
, (5)
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for T a < 103, and

Rac =
PrRaS

Pr + 1
+ (

27π4

4
)

1
3 T a

2
3 , (6)

for T a > 105.

4 Results and discussions

There is not much work to address the instability of DC in
the ocean because the involved convective flow state is typ-
ically far beyond the onset convection regime (Carpenter et
al., 2012). However, findings about the instability mechanism
of DC in previous laboratory experiments (Howard, 1964;
Turner, 1968; Huppert and Linden, 1979) may actually help
to understand the characteristics of diffusive interface and the
bottom layer in the deep Arctic Ocean, both of which are dis-
cussed next.

4.1 Diffusive interface

For the diffusive interface in the deep Arctic Ocean, the cor-
responding thermal Rayleigh number,RaTI , is obtained from
its definition, with the typical scaleL and temperature differ-
ence1T being identified by the interface thickness1h and
temperature difference1θ . As 1h and1θ vary with time
(Zhou and Lu, 2013), the deducedRaTI is a function of time
too. Its temporal distributions (shown in Fig.4) indicate that
theRaTI of each interface is distributed approximately log-
normal, which suggests thatRaTI is strongly intermittent.
Similar distributions have been found in vertical heat flux,
eddy diffusivity and other properties (Zhou and Lu, 2013).
These results imply that the deep Arctic Ocean exhibits cer-
tain turbulent behaviors (Frisch, 1995). The meanRaTI of
each interface, as listed in Table1, is on the order of∼ 109.

Although the diffusive interface is the internal boundary
of two adjacent convecting layers, how to relate the inter-
face to the boundary layer is arguable (Turner, 1973; Lin-
den and Shirtcliffe, 1978; Padman and Dillon, 1989). Linden
and Shirtcliffe(1978) proposed a boundary layer model. In
this model, the boundary layer,δ, is defined asδ = (1hT −

1hS)/2, where1hT and1hS are the thicknesses of inter-
face based on temperature and salinity. This model has been
further employed in some studies, e.g.,Worster(2004), and
Carpenter et al.(2012).

On the other hand, many studies follow the classical
boundary layer definition in diffusive convection (Turner,
1968, 1973; Padman and Dillon, 1989; Sánchez and Roget,
2007; Zaussinger and Spruit, 2013), which is similar to that
in Rayleigh–Bénard convection. In Rayleigh–Bénard con-
vection, two thermal boundary layers exist near the top and
bottom ends. At the boundary, the temperature gradient is
the largest. Away from the boundary, the temperature gradi-
ent becomes smaller and smaller till it reaches zero in the
mixed layer. Such a temperature distribution is the result of

Fig. 4.Probability density functions (PDFs) of the thermal Rayleigh
number,RaTI , of the four diffusive interfaces. Data of the first, sec-
ond, third and fourth interfaces are plotted using the dashed lines
with solid circles, open circles, solid down triangles and open tri-
angles, respectively. The log-normal fitting of the PDF of the first
interface is shown as a gray curve.

convecting rolls. The thermal boundary layer thickness is de-
fined as a small region between the boundary and the mixed
layer (Lui and Xia, 1998). In DC, the temperature gradient
is the largest around the middle of the interface, and it gets
smaller and smaller as it approaches the edges of the inter-
face. By analogy with Rayleigh–Bénard convection, each in-
terface indeed consists of two boundary layers, as shown in
Fig.1, which are the top boundary layer of the lower convect-
ing layer and the bottom one of the upper convecting layer.
Here, we still use this definition of the boundary layer thick-
ness. To the first-order approximation, the boundary layer
thickness,δ, and the corresponding temperature difference,
1θδ, can be taken asδ ∼ 1h/2 and1θδ ∼ 1θ/2. Conse-
quently, the boundary layer thermal Rayleigh number,RaTδ,
is RaTδ ∼ RaTI/16. The same consideration is also applied
to the salinity Rayleigh number,RaSδ, and the Taylor num-
ber,T aδ, of the boundary layer. Typical values ofRaTδ and
T aδ in the deep Arctic Ocean are listed in Table2.

In Rayleigh–Bénard convection, it is assumed that the
Rayleigh number based on the boundary layer thickness,
Raδ, is on the order of the critical value, namely,RaTδ ∼ Rac
(Howard, 1964; Siggia, 1994). This assumption has been
confirmed to be marginally correct in experiments (e.g.,Cas-
taing et al., 1989; Lui and Xia, 1998). Analogously, the same
argument has been employed to study the diffusive interface
instability by Turner(1968, 1973). This argument has been
found to work well in the DC staircases of the Arctic Ocean
(Padman and Dillon, 1989) and Lake Banyoles (Sánchez and
Roget, 2007). However, in the deep Arctic Ocean,RaTI of
interfaces is on the order of∼ 109; then the deducedRaTδ

is 108, which is much larger than the observed value (∼ 103)
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Table 2.Data used in the analysis. The average values are listed when more than one data set are included in the data source. There are the
temperature difference,1θ , salinity difference,1S, thickness,1h, and Prandtl number,Pr, of the interface; saline buoyancy frequency,NS,
based on the background salinity profile; Taylor number,T aδ , thermal Rayleigh number,RaTδ , and salinity Rayleigh number,Ra′

Sδ
, of the

boundary layer. Deep Arctic – data of the present work; Upper Arctic – average data measured by the Ice-Tethered Profiler (ITP) 2 in the
Beaufort Gyre observation system (BGOS); Atlantis II 1 – Fig. 4 ofAnschutz and Blanc(1996); Atlantis II 2 – Fig. 4 ofSwift et al.(2012);
Lake Kivu – Fig. 1 and Table 2 ofSchmid et al.(2010); Lake Banyoles – Figs. 2 and 8 ofSánchez and Roget(2007); and the Bahamas –
Fig. 2 ofLarson and Gregg(1983).

Location 1θ (◦C) 1S 1h (m) Pr NS (s−1) RaTδ Ra′
Sδ

T aδ

Deep Arctic 0.0012 0.00063 6.74 13.3 0.00031 1.3× 108 6.2× 107 9.5× 105

Upper Arctic 0.044 0.016 0.62 13.3 0.0056 1.7× 106 1.3× 106 62.0
Atlantis II 1 4.082 30.08 1.70 3.8 0.14 6.3× 1010 9.4× 1010 3.7× 103

Atlantis II 2 4.436 30.09 1.92 4.3 0.17 1.2× 1011 2.9× 1011 6.6× 103

Lake Banyoles 0.360 0.073 0.018 6.2 – 1.7× 103 55.1 8.9× 10−5

Lake Kivu 0.0045 – 0.19 6.2 0.0086 3.5× 104 4.3× 104 2.5× 10−3

Bahamas 0.047 0.026 0.069 6.4 0.018 2.2× 104 3.8× 103 6.8× 10−3

in Rayleigh–Bénard convection (Castaing et al., 1989) and in
DC (Sánchez and Roget, 2007).

One may expect that the influences of salt stratification or
rotation must be involved, that is, Eqs. (5) and (6) can be used
to explain the results here. However, as listed in Table1, to
each interface, the salinity Rayleigh numberRaSI is always
larger thanRaTI . Thus, whenRaSδ (∼ RaSI/16) is employed
in Eqs. (5) and (6), the obtainedRac would be larger than
RaTδ (∼ RaTI/16), which may mean that the assumption of
RaTδ ∼ Rac does not work here.Carpenter et al.(2012) sug-
gested that Eqs. (5) and (6) cannot apply to the instability of
diffusive convection of large density ratioRρ (Rρ > 1.15).

An alternative consideration can be found in a previous
laboratory study byTurner(1968). In this study, Eq. (5) was
used to interpret the onset of the convecting layer in DC.
When the breakdown of the unstable boundary layer is de-
scribed, it is further argued that the original salinity gradi-
ent remains unchanged because the salt diffuses much more
slowly than heat. In other words, the salinity Rayleigh num-
ber,Ra′

S, is in the form of

Ra′

S =
N2

SL4

νκT
. (7)

In Eq. (7), NS =

√
gβ dS

dz
is the buoyancy frequency based

on the initial salinity gradient before being heated. This ar-
gument has been supported by the measurement of the ad-
vancing boundary layer in another laboratory experiment
(Huppert and Linden, 1979). In the laboratory, however, the
calculatedRa′

S is found to be very small due to the thin
boundary layer, and it is reasonable to neglect it. Conse-
quently, Rac is reduced to the ordinary critical Rayleigh
number based on heat alone (Turner, 1968).

It is expected that the same idea can be applied to the
case of interest here. As it is impossible to obtain the ini-
tial salinity gradient of the deep Arctic Ocean, the back-
ground salinity gradient is alternatively used in Eq. (7). As

shown in Fig.3b, the background salinity gradient is ob-
tained by the linear fitting to all DC staircases in salinity pro-
files, resulting inds

dz
= 1.3×10−5 m−1 and the corresponding

NS = 3.1× 10−4 s−1. Meanwhile, more data in the oceans
and lakes have been collected to check the applicability of the
argument. These data include the field observations in the up-
per layer of the Canada Basin (BGOS, 2013), deep Red Sea
(Anschutz and Blanc, 1996; Swift et al., 2012), Lake Kivu
(Schmid et al., 2010), Lake Banyoles (Sánchez and Roget,
2007), and the Bahamas (Larson and Gregg, 1983). Typical
interface properties of these data sources are listed in Table2.

In terms of Eqs. (6) and (7), the thermal critical Rayleigh
number,Rac, is obtained here from theδ-based salinity
Rayleigh number,Ra′

Sδ, and theδ-based Taylor number,
T aδ. Note that Eq. (5) is used whenT a < 1000. Within the
collected data, the thermal critical Rayleigh number,Rac, is
found to vary in a wide range from 103 in the Lake Banyoles
to 1011 in the deep Red Sea, as shown in Fig.5a. Figure5a
also shows that the calculated thermal critical Rayleigh num-
ber,Rac, is very close to theδ-based thermal Rayleigh num-
ber,RaTδ, in almost all the collected data. As some data were
captured from the published figures (Sánchez and Roget,
2007; Larson and Gregg, 1983), the limited accuracy would
be the most probable reason responsible for the data scatters
in Fig. 5a. When the set of data is large enough to have good
statistics, e.g., those in the Upper Arctic (BGOS, 2013), Rac
is in good agreement withRaTδ. As far as we know, this is
the first time that the classical description of DC has been
applied to interpret instability of diffusive interfaces in the
oceans.

In addition, we examine the influences of background
salinity stratification and the rotation on the onset of convec-
tion. The comparison between the first and the second terms
in Eq. (6) is plotted in Fig.5b. In the deep Arctic Ocean, the
influence of rotation is supposed to be the largest because
of the thickest diffusive interface and the largest Coriolis
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Fig. 5. (a) Comparison between the calculated onset thermal
Rayleigh number,Rac, based on Eqs. (5) and (6) and the bound-
ary layer thermal Rayleigh number,RaTδ . (b) Comparison be-
tween the first term,PrRa′

Sδ
/(P r + 1), and the second term,

(27π4/4)1/3T a
2/3
δ , in Eq. (6).

frequency in all the data. Even so, the contribution of ro-
tation is found to be about 1000 times smaller than that of
the salinity stratification. In other regions, the contribution
of rotation is even smaller. Therefore, background salinity
stratification would be the main hindrance to the occurrence
of convective flow in the ocean. The influence of the salin-
ity stratification, however, is not always important. In Lake
Banyoles, as shown in Fig.5b, it is found thatRa′

Sδ ∼ 55;
thus, the inherent mechanism of thermal convection plays a
dominating role there, which results inRac ∼ 1000 (Sánchez
and Roget, 2007).

4.2 Bottom homogenous layer

As introduced in Sect. 1, the thick homogenous bottom layer
is a unique feature of the deep Arctic Ocean (Timmermans
et al., 2003; Björk and Winsor, 2006; Timmermans and
Garrett, 2006; Carmack et al., 2012; Zhou and Lu, 2013).

As the model proposed byBjörk and Winsor(2006) cannot
explain the dynamics of the bottom layer well, we attempt to
find other mechanisms instead. Recently, more evidence has
been collected that geothermal heating plays an important
role in the hydrographic configuration of deep water in the
Arctic Ocean (Timmermans et al., 2003; Björk and Winsor,
2006; Timmermans and Garrett, 2006; Carmack et al., 2012;
Zhou and Lu, 2013). The situation that the weakly stratified
deep Arctic Ocean is being heated by geothermal heating is
similar to those studied in the laboratory experiments and
numerical simulations, where DC occurred in salt-stratified
fluid heated from below (Turner, 1968; Huppert and Linden,
1979; Fernando, 1987). Thus, it is interesting to examine
whether the results obtained from the laboratory experiments
can be applied to the deep ocean and whether they can shed
more light on the deep water dynamic process.

In the laboratory experiments where a salt-stratified fluid
was heated from below (Turner, 1968, 1973; Huppert and
Linden, 1979; Fernando, 1987), it has been found that the
bottom layer is much thicker than the overlying staircases,
which is similar to the observation in the deep Arctic Ocean.
In Turner’s (1968) theoretical work, he suggested that the ho-
mogeneous bottom layer reaches a critical thickness before a
second convecting layer appears on top of it. This maximum
thickness was proposed to be in the form of

hc1 = (

1
4Racνq0

3

κ2
TN8

S

)
1
4 . (8)

Here q0 is the buoyancy flux, which is derived asq0 =

αgF/ρ0cp, andF is the heat flux supplied from the bottom
boundary. Eq. (8) has been verified in Turner’s laboratory,
except that the fittedRac was about∼ 2.4× 104, which is
larger than the ordinary value (∼ 1000). As discussed in the
last subsection, the instability of DC follows the arguments
based on Eqs. (5), (6) and (7). Then we can evaluate the bot-
tom layer thickness in the Arctic Ocean by using Eq. (8).
In the deep Arctic Ocean, geothermal heating is taken as
F ∼ 50 m Wm−2 (Langseth et al., 1990). At Mooring A, the
physical properties of sea water are respectivelyα = 1.27×

10−4 ◦C−1, β = 7.5× 10−4, ν = 1.85× 10−6 m2 s−1, κT =

1.39×10−7 m2 s−1, g = 9.8 m s−2, ρo = 1041.3 kg m−3, and
cp = 3899.1 J kg−1 ◦C−1. With the related properties of the
first interface, as listed in Table1, hc1 is calculated to be
526 m, which is smaller than the observed value of 929 m
(Zhou and Lu, 2013). However, as found in the laboratory
experiment (Turner, 1968), the fittedRac was about 20 times
the ordinary value, and so was close to the interface thermal
Rayleigh numberRaTI . If Rac is replaced byRaTI in Eq. (8),
hc1 is found to be 1051 m, which is much closer to the ob-
served value.

In another laboratory study,Fernando(1987) found that
the bottom mixed layer still grows upwards even after the
second mixed layer forms. Based on the assumption that
the kinetic and potential energies of turbulent eddies are
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balanced when the mixed layer grows to a critical height, an
alternative expression for the layer thickness has been pro-
posed,

hc2 = 41.5(
q0

N3
S

)
1
2 . (9)

With the properties of the interface, the thicknesshc2 is found
to be 29 m, which is much smaller than the observation. This
suggests that the assumption of energy balance cannot ex-
plain the formation of the bottom layer.

In a study of14C isolation age, the deep water of the
Canada Basin is estimated to be about 500 yr old (Macdonald
et al., 1993). According to the laboratory study ofTurner
(1968), the evolution time of the bottom layer can be pre-
dicted by

τ =
(NSh)2

2q0
(10)

before the formation of the secondary convecting layers.
Supposing that the bottom layer thickness,h, is about
1000 m, the timeτ is calculated to beτ = 109 yr. In observa-
tions, however, there are more than four thermohaline steps
overlying the bottom layer, which means that the evolution
time of the bottom layer must be longer thanτ . In some
sense,τ can be taken as the lower bound of evolution time of
the bottom layer.

Based on the above results, it is suggested that the main
evolution mechanism of the deep water in the deep Arc-
tic Ocean is similar to that in the laboratory experiments
(Turner, 1968, 1973; Huppert and Linden, 1979; Fernando,
1987). The homogenous bottom layer is the result of geother-
mal heating under salinity stratification. Its maximum thick-
ness can be described by Eq. (8), whereRaTI is alternatively
used. The time,τ , is inferred to be on the same order as that
estimated from the14C isolation age detection. Both results
imply that the evolution of the bottom layer is mainly con-
trolled by the convective instability mechanism.

5 Conclusions

In summary, the classical description of DC has been updated
to interpret the instability of diffusive interfaces and the dy-
namical characteristics of the bottom layer in the deep Arctic
Ocean. When both background salinity stratification and ro-
tation are considered, the critical Rayleigh number,Rac, of
DC is found to vary in a wide range from 103 to 1011 within
the collected data, and the thermal Rayleigh number of the
boundary layer,RaTδ, is consistent with the critical Rayleigh
number,Rac, of DC. It is expected that this new parameter-
ization of Eqs. (5), (6) and (7) can be extensively applied to
DC in other oceans and lakes. In most cases, the salinity strat-
ification is found to be the main hindrance to the occurrence
of convective flow, except for regions where the diffusive in-
terface is thin, e.g., in Lake Banyoles. When the interface

thermal Rayleigh number,RaTI , is alternatively employed in
the old parameterization of Eq. (8), the predicted maximum
thickness of the bottom layer is 1051 m, which is close to the
observed value of 929 m. The evolution time of the bottom
layer,τ , is predicted to be∼ 100 yr, which is on the same or-
der as the14C isolation age estimate. As several layers overlie
the bottom layer, the evolution time of water in the deep Arc-
tic Ocean must be longer thanτ , andτ can be taken as the
lower bound of the residence time.

In the formation of deep Arctic water, one perhaps can-
not exclude the effects of other instabilities, e.g., thermobaric
convection (Carmack et al., 2012) or topographic Rossby
waves formed as a result of instability of a strong current
(Timmermans et al., 2010). Nonetheless, according to the re-
sults in this study, the main evolution mechanism of the deep
water would be similar to that in the laboratory experiments
where salt-stratified fluid was heated from below (Turner,
1968, 1973; Huppert and Linden, 1979; Fernando, 1987).
Therefore, when the classical description of DC is updated,
it can be applied to interpret the flow dynamics of the deep
Arctic Ocean.
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